
A hybrid hierarchical/operator-based planning approach
for the design of control programs

L. Castillo and J. Fdez-Olivares and A. González1

Abstract.
The design of a control program is a complex process whose re-

sult must satisfy very restrictive constraints imposed by new man-
ufacturing systems needs as flexibility, quick response, correctness
and low-cost building process. Current AI Planning approaches for
the synthesis of control programs are proving to be very useful to
satisfy these needs. But they have to be extended in order to build ef-
ficient and realistic systems which obtain truly real world solutions.
This work presents an approach in this direction which mixes hierar-
chical and POCL techniques in order to build an architecture closer
to the way that control engineers reason in order to design a control
program. The utility of this approach is shown along this paper.

1 INTRODUCTION

The design of a correct and complete industrial control program is
a process which involves different sources of knowledge and whose
final result is a sequence of control actions [6]. Concurrency, condi-
tional branches, soundness, security and flexibility are some of the
features that these sequences are expected to have.

The design process of a control program with these features is
very complex, even for human programmers. Traditionally control
engineers use different methodologies, standards, formal tools and
computer utilities to carry out this task. The ISA-SP88 [13] standard
(Figure 1) is one of such methodologies used to hierarchically de-
sign control programs for manufacturing systems. This standard al-
lows for a hierarchical specification of physical, process and control
models of a manufacturing system.
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Figure 1. Physical, Process and Control Model of SP88.
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Starting from a hierarchical physical model and from a process
specification (recipe) at the higher abstraction level, a control engi-
neer obtains a modular control program at different levels of granu-
larity. There are formal tools as GRAFCET [12] for the representa-
tion and specification of such programs.

These methodologies used by control engineers to develop con-
trol programs are useful and necessary, buy they are not sufficient
if we take into account requirements as flexibility and quick re-
sponse in new generation manufacturing systems [7]. The applica-
tion of AI Planning techniques for the synthesis of control programs
or operating procedures in manufacturing systems is a promising
technology that meets these requirements. Although at present it is
in an initial stage [5], interesting approaches have been carried out
([1, 6, 14, 20]). These techniques are proving to be very useful, al-
lowing for an error-free, fast and low-cost building process of control
programs.

Not all of these approaches are based on hierarchical planning
techniques [8, 10, 18], which are useful to represent the hierarchical
structure of devices and their operation in manufacturing systems. In
addition, hierarchical techniques are closer to the way in that control
engineers

� represent a control program (modular and hierarchically), and
� reason in order to find the sequence of instructions of the control

program.

In this sense, this work presents a planning approach which em-
ploys hybrid POCL and hierarchical planning techniques in order to

� Represent an industrial plant as a device hierarchy at different lev-
els of granularity, which accepts SP88 descriptions, providing a
friendly input level for control engineers, and

� autonomously develop control programs for manufacturing sys-
tems following a hybrid planning process (POCL+hierarchical),
which results in a hierarchy of control sequences (plans) at differ-
ent levels of detail, closer to the way that humans develop modu-
lar industrial control programs and, thus, providing a more under-
standable output.

In the next section we will show some related work and, after-
wards, we will describe our approach.

2 RELATED WORK

Apart from the partial-order planning approaches mentioned in pre-
vious section, one of the more recent hierarchical approaches can
be found in [20]. It is a general planning framework for the syn-
thesis of operating procedures following a top-down methodology.
The knowledge representation scheme is a translation of the SP88



Figure 2. A Manufacturing System.

standard, which allows for creating a procedural knowledge base at
different abstraction levels. The planner then applies basic HTN [8]
techniques in order to find a low level procedure which meets the
process of products introduced as problem.

In this system the user has to introduce a great deal of knowledge
to solve a problem, and the main role is left to the representation and
management of the procedural knowledge base. Therefore, the plan-
ner, and thus the autonomy of the approach, is only a very small part
of the whole system, and its operation lies on a static combination of
procedures at different abstraction levels where problems as detec-
tion of conflicts, preservation of invariants, and even order relations
(between procedure steps) must be hand coded by end users.

However, in order to obtain a efficient and realistic system that
applies hierarchical planning techniques, it is necessary to reduce the
amount of work that a control engineer has to do in order to describe
a manufacturing domain, and in order to find a program that control
its operation.

In addition, the control program obtained must have a sufficient
level of detail such that it incorporates every necessary action to carry
out a correct execution. Present approaches for the synthesis of op-
erating procedures [1, 14] or machining process [16] do not obtain
complete and realistic solutions in this sense because plans obtained
are operation procedures intended to be executed by human opera-
tors, thus they lack of the necessary level of detail to be considered
control programs and executed by a computer, or they are only fo-
cused in a small part of the overall manufacturing system.

The approach we present mixes hierarchical knowledge and rea-
soning aspects with POCL techniques in order to reduce the user
effort in the domain description and problem solving phases, and
also, in order to obtain complete plans so that they can be consid-
ered hierarchical control sequences, which can be easily translated
into standard representations of control programs.

Next sections describe in detail our approach. Section 3 is devoted
to describe how to represent a manufacturing domain as a hierarchy
of agents, and how the knowledge about the behavior and properties
of agents is inherited between different abstraction levels. In sec-
tions 4 and 5 we show the problems and plans representation of our
approach. Section 6 introduces the planning algorithm and the re-
maining sections show the future work and conclusions about this
approach.

3 DOMAIN REPRESENTATION

Our planning architecture conceives a plant as a multi-agent domain
(see Figures 2 and 3) where every agent represents the knowledge
about the relevant properties and behavior of every factory device.

Some aspects of the knowledge representation and planning algo-
rithm here presented are based on a previous system (MACHINE
[6]), which uses a non-hierarchical agent centered domain model for
representing a manufacturing system. In MACHINE the behavior of
every agent is described as an automaton and every transition of the
automaton is represented as a control activity (Figure 4), using an
expressive and rich language in order to represent actions as inter-
vals and, in addition, to manage different kinds of conflicts and in-
terferences which may arise in complex domains like manufacturing
systems.

Figure 4. Structure of a primitive Agent.

In this approach, a planning domain is a hierarchy of agents where
the root (a ”dummy” agent) represents the whole plant (Figure 2),
leaf nodes are primitive agents corresponding to the field devices of
the plant and intermediate nodes are aggregate agents, i.e., agents
whose structure and behavior are described at higher abstraction lev-
els and which represent a composition of a set of agents at lower
levels of abstraction.

Hence, a manufacturing domain is structured at different abstrac-
tion levels. Lowest level agents are represented as shown in Figure 4
and its actions are called primitive activities intended to be executed
by a device.

An aggregate agent is represented as shown in Figure 5. An aggre-
gate activity is represented as a primitive one but with an additional
property called expansion. An example of an aggregate agent and its
components can be seen in Figure 6.

The expansion slot of an aggregate activity is used to specify dif-
ferent ways to carry out that activity. These alternative ways are de-
scribed as a set of different methods 2 where every method is rep-
resented by a set of literals (which can be ordered) representing a

2 Not in the strict sense of HTN.
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Figure 3. A Hierarchical Domain.

Figure 5. Structure of an Aggregate Agent.

problem to be solved by the agents of the next abstraction level (see
Figure 7).
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Figure 6. The Handler Aggregate Agent.

In the next section we show how relations between agents and
activities at different levels of detail are represented.
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Figure 7. The Expansion Slot of an Aggregate Activity.

3.1 Levels of abstraction and knowledge
inheritance

Every aggregate agent of a hierarchical domain is composed of a set
of agents at a lower level of abstraction (or higher level of granular-
ity [11]) and it is part of another agent at a higher abstraction level.
Hence, properties, activities, states and literals of every agent have
an abstraction level associated with them.

Properties and behavior of a given aggregate agent are related with
those of its components by means of the interface of the aggregate
agent. The interface is actually a set of constraints inheritance rules
which defines how variables of every component agent inherit their
domains and constraints from the ancestor agent (Figure 8).

The aggregate activities of an aggregate agent (its behavior) are
represented at a greater grain size than the activities of its compo-
nents. For example, the activities of the agents UpDown, LeftRight
and Grasp (see Figure 3) have a lower grain size than the activities
of the agent Handler. The effects of activity H-RIGHT of the agent
Handler are

(LOC Handler Position2),(STATE Handler Carried).

These literals have a very low level of granularity, and they corre-
spond with the real situation in which the Handler agent is up and
over the Truck, it grasps a piece and it moves to its right. The effects
of activity LR-RIGHT of the agent LeftRight are

(LOC Handler Position2), (LOC LeftRight Position2),(STATE
LeftRight Right),



Figure 8. Properties and constraints inheritance.

which have a higher level of granularity and which mean that the
LeftRight agent is at the same position of the Handler agent and,
since it is a different agent, its state is moving to its right.

As can be seen, the literals of the requirements and effects of an
aggregate activity of an agent may have a different granularity level
than the ones of its component agents, and also it is possible that
literals of a given granularity level may be different from literals of
higher or lower granularity levels.

So, in order to maintain the coherence between different granular-
ity levels activities and literals at different levels must be associated
somehow.

The correspondence between a given aggregate activity of an ag-
gregate agent and the activities of its components, and between their
different granularity literals, is based on an activity expansion pro-
cess where the aggregate agent’s interface and also the expansion slot
of the aggregate activity play the key role. The process is described
as follows:

� The expansion slot of an aggregate activity of an aggregate agent
is represented as a set of methods, where every method is a set of
literals at the aggregate granularity level which represents a prob-
lem to be solved by the activities of its component agents.

� The literals of these activities have a different granularity, so the
activity expansion process applies the rules of the interface of the
aggregate agent to every literal in order to articulate the change
of granularity. Hence, the interface works as an articulation func-
tion [11], between abstraction levels, as follows: every subgoal
of a method of an aggregate activity ag of an aggregate agent g
is represented as a literal (f1 x1 ::: xn) where every argument
xi has a domain and constraints at the abstraction level of ag ,
then applying the function to this literal will result in a new literal
(f2 y1 ::: ym)

(f1 x1 ::: xn)
a:f:

�! (f2 y1 ::: ym)

at a higher level of granularity where every argument yi is a new
argument whose domain and constraints must be consistent with

the new granularity level. This literal represents a new subgoal to
be solved by the activities of the components of g.

H-RIGHT
(HANDLER)

DEFAULT
METHOD

HANDLER
INTERFACE

(LOC
Handler

Position2)

(LOC
Handler

Position2)

(STATE
Handler
Carried)

(STATE
LeftRight

Right)

Figure 9. Expansion of Aggregate Activity.

Following this process we obtain a set of literals of lower granu-
larity that represent a problem which must be solved by the activities
of the component agents of g by means of a generative process.

In addition, the expansion has always at least a default method
whose literals are the set of effects of the activity. So, a default and
domain independent expansion process can always be applied for ev-
ery aggregate activity. Figure 9 shows an example of expansion using
a default method. The effects of the activity H-RIGHT of the agent
Handler are the subgoals of the method, and they are mapped by its
interface and translated into a set of different literals at a higher level
of granularity. These new literals must be solved by the activities
of the agents LeftRigh, UpDown and Grasp at the lower abstraction
level.

In addition to this model, the architecture provides a predefined
hierarchy of generic classes of aggregate and primitive agents in or-
der to simplify the task of building planning domains, in such a way
that every specific agent of the domain is described as an instance of
a class of agents (like a drag & drop operation).

This model of agents and actions differs of HTN [8] techniques in
that expansions (reductions) are not predefined and static substitution
rules but a domain independent and dynamic generative process. It
also differs from hierarchies of abstraction spaces since sets of oper-
ators and literals may be different from an abstraction level to each
other. This is because abstraction levels of the proposed hierarchy
are based in an increasing semantic granularity instead of in literal
dropping as in [15, 18].

It possibly looks like models of action in SIPE [21] and OPlan
[19], however, their decomposition of actions is defined by the user
(plots in SIPE), while in our model the use of an interface between
an aggregate and its components and also the expansion of aggregate
activities allows for a well defined decomposition by means of the
articulation function and default methods, without any participation
of the user.

In next sections we will describe the problems and plans represen-
tation used in this architecture.

4 PROBLEMS REPRESENTATION

A problem description is a specification of process on products, i.e.,
a recipe. In our architecture, a problem is represented as an ordered
set of literals which represents the process to be carried out by ag-
gregate agents of highest abstraction level. As can be seen at the top
of Figure 11 (Step 0) the set of literals received as input by the algo-
rithm represents the ordered set of operations (in SP88 a procedure



HYBRID (Domai n , Leve l , Ag enda , H−Pl an )
If Ag enda is Empty

Then 
If Pr im itivePlan? ( H−Plan [Level] )

Return H−Plan
Else
1. RefAlternatives = How ToRef ine? (Domain, H−Plan)
2. While RefAlternatives is not Empty

2.1.How = Extr act (RefAlternatives)
2.2.REFINE (Domain, How, Level , Ag enda, H−Plan)
2.3.Result = HYBRID (Domain, Level , Ag enda, H−Plan)
2.4.If Result ≠ FAIL

Then Return Result
3. Return FAIL

Else
Result = GENERATE (Domain, Level , Ag enda, H−Plan)
If Result = FAIL

Then Return FAIL
Else Return HYBRID (Domain, Level , Ag enda, H−Plan)

Figure 10. The hybrid planning process

recipe) to be carried out by the highest level agents of the manufac-
turing system represented in Figure 3, that is, a piece must be located
in the truck, then it is heated and, finally, it is pressed.

5 PLANS REPRESENTATION

A plan obtained by this architecture is a hierarchy of control se-
quences (plans) at different levels of granularity, that is, a hierarchi-
cal plan. Every level in a hierarchical plan is a sequence of control
activities to be carried out by agents at the same or higher abstrac-
tion level. The last level of the plan is a sequence of primitive control
activities (Figure 11).

Every aggregate activity a of an aggregate agent g in a plan level
has associated a set of lower level activities of the components of g,
which have a causal relation between them and which solves the ex-
pansion of a. Hence, a plan can be seen as a modular control program
that can be easily translated into standard representations of modular
control programs like GRAFCET [12] .

The architecture obtains such a plan following the planning pro-
cess described in the next section.

6 PLANNING PROCESS

The planning process is a generative and regressive planning algo-
rithm at different levels of detail such that single level plans at higher
granularity are refined into lower granularity plans, until no aggre-
gate activities exist on the lowest abstraction level of a hierarchical
plan. The generative process is based on a previous non-hierarchical
planner [6].

The input to this process is a hierarchical domain and a recipe at
the highest abstraction level (a procedure level recipe in SP88, Figure

1). That recipe is preprocessed in order to build a hierarchical plan
H-Plan with a single abstraction level, containing a set of literals
which represent the problem stated by the recipe. As can be seen
in Figure 10, the hierarchical domain Domain, the initial abstraction
level Level (the highest one is 1), an initialized task agenda Agenda
and the initial hierarchical plan H-Plan are passed as inputs to the
hybrid algorithm. Then it proceeds as follows:

� First, by means of a generative process it obtains a sequence of
control activities to be carried out by the highest level agents.

� Second, if the sequence obtained is only composed by primitive
activities then the problem is solved. Otherwise, the sequence is
hierarchically refined, that is, the algorithm expands every aggre-
gate activity, according to its agent interface and its default method
or any other method specifically defined, obtaining a new lower
level problem.

� Third, the algorithm recursively proceeds to solve the new prob-
lem by the agents at the next level.

This is a very general description of the algorithm but, the follow-
ing describes some important details about the more relevant func-
tions and procedures involved in the algorithm.

HowToRefine?. The result of this function is a list of refinement
alternatives of activities which actually represents a heuristic for re-
fining a hierarchical plan H-Plan, given a hierarchical domain Do-
main. Depending on the returned heuristic, the behavior of the hy-
brid algorithm may vary between an ABSTRIPS and an HTN-like
behavior. Although many heuristics may exist, the function may re-
turn always a default heuristic. This default heuristic is represented
by a list with a single element, and its application by the procedure



REFINE results in the expansion of all activities of a given abstrac-
tion level, in H-Plan, by means of their default method.

REFINE. This procedure applies the above described activity ex-
pansion process to the aggregate activities of a hierarchical plan H-
Plan, according to the refinement alternative How returned by Ex-
tract, and taking into account that activities with a lower or equal
granularity level than Level may be expanded. When HowToRefine?
returns a unique alternative, representing the default heuristic, it is
worthy note that this heuristic applied by REFINE turns the HY-
BRID procedure into an Any Time hierarchical planning algorithm,
because it is able to obtain a plan with no pending subgoals at a given
abstraction level (see Figure 11). Additionally, if the refinement pro-
cess requires it, REFINE may introduce a new granularity level in
the hierarchical plan, and also may switch to the next abstraction
level (increasing Level).

GENERATE. This procedure is a generative and regressive plan-
ning algorithm based on MACHINE, which is able to represent and
reason about actions as intervals and to manage others different kinds
of conflicts and interferences which arise in complex domains. How-
ever, its features has been extended in order to manage the knowledge
inherited by lower level plans from previous abstraction levels in a
hierarchical plan (as activities order constraints, established intervals
between abstract activities, or the ownership of an activity to the ex-
pansion of a more abstract one).

This algorithm solves all of the single-level flaws registered in an
agenda Agenda, taking into account that, although inherited order
relations must be maintained, it is possible to interleave activities
belonging to different expansions. These flaws are solved at the
next abstraction level of the hierarchical plan. GENERATE finally
returns a hierarchical plan whith no single-level flaws, but which
may contain unexpanded activities.

The algorithm ends when all activities of the lowest abstraction
level in H-Plan are primitives and there are no pending flaws in
Agenda. Therefore, the final plan obtained by this algorithm is a hier-
archy of control sequences at different granularity levels (See Figure
11 (Step 5)).

As can be seen, the hybrid algorithm here introduced mixes hi-
erarchical and POCL techniques in such a way that the knowledge
hierarchy guides the hierarchical reasoning process. Thus, as the hi-
erarchical domain contains a fixed number of abstraction levels, the
number of hierarchical refinement levels is also fixed.

6.1 Comparison with other approaches

This approach presents important advantages with respect to previ-
ous hierarchical approaches due to the introduction of new issues in
the general framework of hierarchical planning [15, 18, 22]. Next we
describe the more important ones:

� The default expansion method, defined as the set of effects of an
aggregate activity, allows for conceiving the expansion of an ac-
tivity as a domain independent process. In addition, as it is possi-
ble to define alternative expansion methods, the expressiveness of
HTN techniques is maintained.

� It is possible to represent a domain as Abstraction Hierarchies
[15, 18] and to follow a reasoning process similar to the one used
in ABSTRIPS-like approaches. However, the concept of interface
and the expansion process here introduced allow for articulating

the abstraction levels in a more general way, with a more expres-
sive language and, as we will see, with a reasoning process able to
obtain real solutions.

� Unlike HTN [22] techniques, the expansion process of an activity
is dynamic and flexible. This means that there not exist a previ-
ously fixed reduction of activities, on the contrary, the expansion
process of every activity poses a set of lower abstraction goals
which have to be dynamically achieved by the agents’ activities
of the next abstraction level. Thus, the generative process of the
hybrid algorithm dynamically stablishes the set of lower level ac-
tivities that solves the posed problem, in such a way that the ex-
pansion process is independent from lower abstraction levels and,
therefore, accesible solutions at a given level of the hierarchy are
not completely fixed.

In the next section we will discuss some aspects to take into ac-
count about the correctness and completeness of this algorithm.

6.2 Correctness and completeness issues

In order to preserve the completeness and correctness of the planning
process it is necessary to establish a set of constraints about the way
agents and their activities inherit the knowledge of higher abstrac-
tion agents. In particular, one of these constraints states that goals
with not achieving activity, at a given abstraction level, turn the hi-
erarchical plan unsolvable. Additional completeness constraints are
defined in aggregate agents’ interfaces and others are ”guidelines” on
the domain definition in order to represent requirements and effects
of activities at different granularity levels. These constraints must
be satisfied in the domain elaboration phase of problem solving and
must be checked in the action expansion process.

However, although these constraints maintain several established
conditions between levels, the Downward Refinement Property
(DRP)[15, 22] cannot be satisfied. This property states that the exis-
tence of a ground-level solution implies the existence of an abstract-
level solution. The contrapositive of this property states that unsolv-
able conflicts at higher levels always appear in lower ones. Therefore,
if this property holds, it is not necessary to refine a plan with an un-
solvable conflict. Thus, in this case backtracking between levels is
allowed and preserves the algorithm completeness.

Hierarchical planning approaches as [15, 18, 22] are examples
about how this property can be satisfied by imposing syntactic con-
straints in the definition of a domain. However, these constraints re-
duce the expressiveness of the domain description language.

In abstraction hierarchies [15] levels of abstraction are built from
bottom to up by dropping literals from a set of ground operators (not
reducing the granularity of operators, but relaxing its conditions). In
this approach, the set of literals of a given abstraction level contains
all literals of the previous level, so lower abstraction levels directly
inherit all previous level literals and, hence, every conflict that ap-
pears at higher levels also appears in lower levels.

In HTN hierarchies [22], the DRP does not hold in general, but it
is possible to establish syntactic constraints in the definition of hier-
archical operators in order to satisfy it. However, as can be seen in
[22], the syntactic constraints impose that every non-primitive oper-
ator has an unique sub-operator which inherits all preconditions and
effects of the parent. Therefore, these constraints maintain the grain
size of operators between levels.

In our approach, the DRP does not hold because abstraction lev-
els have an increasing size of grain. The states of the automaton that
describes the behavior of an aggregate agent are not directly inher-
ited by its components, because they are different states at different



H−GET H−RIGHT H−PUT H−LEFT

(loc piece truck) (heat piece) (press piece)

H−GET H−RIGHT H−PUT H−LEFT

UD−DOWN G−CLOSE UD−UP LR−RIGHT UD−DOWN G−OPEN UD−UP LR−LEFT

(held piece) (loc handler h2) (loc piece truck) (state leftright home)

H−GET H−RIGHT H−PUT H−LEFT
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The initial problem 
is solved by a 
generative process at 
the highest 
abstraction level.

The abstract plan 
obtained is 
hierarchically refined 
by expanding all its 
activities.

Every activity 
introduces new literals 
at a lower level
of abstraction. They 
have to be solved by the 
agents’  activities at that 
abstraction level.

The hierarchical plan 
obtained contains 
aggregate activities in 
its lowest level and has
to be refined.

Finally, the generative 
process, at the lowest 
level of the refined 
hierarchical plan, 
returns a primitive plan. 
Then the hierarchical 
plan is returned by the 
hybrid algorithm.

0.− PROBLEM DESCRIPTION.

1.− GENERATIVE PROCESS AT ABSTRACTION LEVEL 1.

2.− HIERARCHICAL REFINEMENT

3.− GENERATIVE PROCESS AT ABSTRACTION LEVEL 2.

4.− HIERARCHICAL REFINEMENT.

5.−GENERATIVE PROCESS AT ABSTRACTION LEVEL 3.
THE COMPLETE HIERARCHICAL PLAN IS RETURNED.

Figure 11. A hierarchical plan obtained by HYBRID applying the default refinement heuristic.



granularity levels. This means that there exist literals established in
higher levels that disappear in lower levels, so unsolvable conflicts in
higher levels may not be inherited by lower levels.

Therefore, we have to face new problems which arise with the
application of hybrid planning techniques in a domain representation
based on granularity levels:

1. If the DRP does not hold, the algorithm is forced to refine a plan
with an unsolvable conflict. The refinement stops when the plan-
ner discovers, at a lower level, that the conflict is solved or when
the conflict is definitely unsolvable at the lowest level.

2. The activities involved in an unsolvable conflict have to be ex-
panded in order to test the conflict at a lower level. This means
that a plan may contain activities and literals at different levels of
abstraction (or granularity)

3. The time efficiency of the planner may be reduced if it expands ac-
tivities up to the lowest level every time that an unsolvable conflict
arises.

The second problem has an inmediate solution because the pro-
posed domain representation allows for several levels of abstraction
in a plan. For every literal and activity, an unique associated abstrac-
tion level always exists, so the harmful effects of the hierarchical
promiscuity [21] are avoided.

However, a solution to the first and third problem is complex and
may be found by extending the heuristics and plans representation
currently used in order to manage heterogeneous plans and to offer
a correct solution in a reasonable time. At present we are working
in this direction but, as can be seen in the next section, the results
presented, comparing to the system this approach it is based on, are
very promising.

7 EXAMPLES

This section shows the performance of this architecture with respect
to the non-hierarchical planner it is based (MACHINE) in the solving
of two manufacturing problems.

The layout of the first problem is shown in Figure 12. The problem
in this toy plant consists in carry out water from TANK1 to TANK3
and acid from TANK2 to TANK4, but taking into account that they
cannot be mixed and that there is only one pump. The plant is rep-
resented at two abstraction levels, the circuits are represented in the
highest level and the valves in the lowest one. The hierarchical plan
obtained is shown in Figure 13 and the performance of the hybrid
planning process is shown in Figure 15.

The batch plant of Figure 14 is the configuration of the second
problem. In this batch problem there are three types of raw products:
an ingredient A, stored into tank T-501, an ingredient B, stored into
tank T-505 placed somewhere out of the system, and an ingredient
C stored into tank T-504 also out of the system. The hierarchical
domain is represented at two granularity levels. The agents of the
highest level are represented by aggregating the properties and the
behavior of lowest level agents as can be seen in Figure 14

The manufacturing problem for the lowest hierarchical level is de-
fined by the following sequence of transformations:

1. STEP 1. Add ingredient B to ingredient A in reactor R-501. Dur-
ing this operation, the mixture must be in agitation.

2. STEP 2. Heat the mixture.
3. STEP 3. Add ingredient C to the mixture maintaining the agi-

tation. During this mixing operation a residual gas is generated
which must be evacuated through the scrubber S-501. Part of this

Figure 12. Layout of Problem1.
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Figure 13. A hierarchical plan for Problem1.

gas is condensed and it precipitates at the bottom of S-501. Once
the mixing operation ends, this residual liquid must be carried into
the external tank T-503.

4. After the addition of ingredient C, the mixture must be cooled and
carried into tank T-502.

This problem definition is a control recipe specified at phase level.
In this case, MACHINE solves the problem exploring about 6000
nodes. However, with this new hierarchical approach the problem
may be described as a recipe at operation level whit only one oper-
ation: Mix the ingredients in REACTOR. Then the hybrid planning
process will obtain first a phase level recipe and, afterwards, the set
of control activities of lowest level agents.

These examples show the usefulness of this approach from the

Figure 14. Layout of Problem2.



Figure 15. Compared search results for Problem1 and Problem2.

view point of a control engineer and its expressiveness and search
complexity benefit (see Figure 15). In the next section we describe
how to extend this architecture in order to obtain truly realistic solu-
tions.

8 FUTURE WORK

This approach is a step forward in the building of an architecture able
to face real world control problems and to obtain fully applicable
solutions. However, there are still some steps which must be faced
to reach that goal. These steps come up closely related with some
of the features that control programs are expected to have, such as
robustness or safety.

In a factory, sensory information is a source of uncertainty about
the state of the system which forces control engineers to introduce
decision and alternative operation steps in a control program, accord-
ing to the different states of a given sensor. The knowledge represen-
tation presented here allows for describing sensors and sensory infor-
mation but the planning algorithm must still be extended in order to
manage the ”a priori” uncertainty about states of sensors. This means
that the final result of the planning process should be a modular con-
trol program with conditional decision structures[9, 17].

This implies that the underlying search space will grow exponen-
tially due to the combinatorial complexity induced by the introduc-
tion of conditional branches in a plan. However, it must be said that
the effect of this combinatorial explosion can be reduced since the
scope of conditional branches can be focused, or isolated, on the ba-
sis of a top-down hierarchical process like the one described in this
work.

Finally, this approach is being developed within the framework of
assisted development of control programs. This means that human
operators could interact with the planner and impose their decisions
at certain points during the search in a mixed-initiative planning pro-
cess. The reason for such an interaction is that, in many real world
problems, the vast amount of knowledge required for obtaining a
solution would produce unrealistically large planning domains and
this knowledge can not be completely included. Therefore a plan-
ning process must always be open to a possible human interaction
which could provide that missing knowledge, what could be seen as
a control heuristic to guide the search or to obtain optimal solutions.

The approach presented here follows this direction and it intends
to approach these problems in the near future.

9 CONCLUSIONS

We have presented a hybrid architecture which mixes hierarchical
planning and POCL techniques, in order to build modular and hier-
archical control programs for manufacturing systems.

This architecture is based on a hierarchy of agents by levels of ab-
straction in such a way that the information granularity of agents,
literals and actions increases as the level of abstraction decreases

(Figure 3). This representation leads to define different alternatives
to existing abstract plan refinement techniques (reduction methods
in HTN or plan refinement in ABSTRIPS), the activity expansion
process presented is one of them.

The application of hierarchical problem solving techniques results
in a lower time and space complexity of this architecture with respect
to the system it is based on. However, though the hierarchical domain
representation model and planning can reduce the benefit of using
these techniques in some cases [2, 3, 4, 10], it has clear advantages
from the point of view of computer aided design of control programs.

On the one hand, this approach provides an easy entry-level for
end users (control engineers). The hierarchy of agents of a domain
accepts SP88 standard descriptions, usually handled by control engi-
neers, so the knowlege can be introduced painlessly.

On the other hand, plans are designed and represented following
a top-down process which makes them easier to understand by a hu-
man user.

In conclusion, this hierarchical representation and planning pro-
cess provides a greater efficiency with respect to the non-hierarchical
previous version, but, and this is more important for a real world
planner, it closes the gap between the planner and their end-users
providing a higher degree of integration with them by means of a
friendly input level for incorporating knowledge and a more under-
standable output level.
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