
An accessibility graph learning approach for task

planning in large domains

Emmanuel Gu�er�e and Rachid Alami

LAAS-CNRS,

7 avenue du colonel Roche,

31077 Toulouse, France,
fguere, rachidg@laas.fr

Abstract. In the stream of research that aims to speed up practical plan-
ners, we propose a new approach to task planning based on Probabilistic

Roadmap Methods (PRM). Our contribution is twofold. The �rst issue

concerns an extension of GraphPlan[1] specially designed to deal with \lo-
cal planning" in large domains. Having a reasonably e�cient \local plan-

ner", we show how we can build a \global task planner" based on PRM

and we discuss its advantages and limitations. The second contribution
involves some preliminary results that allow to exploit to domain symme-

tries and to reduce in drastic manner the size of the \topological" graph.

The approach is illustrated by a set of implemented examples that exhibit
signi�cant gains.

1 Introduction

Even though task planners have made very substantial progress over the last years,

they are still limited in their use. This is the case with large domains where nu-

merous facts and a huge number of possible actions instantiations are not relevant

- a posteriori - for solving a given problem.

There are also domains, like in robotics, where the environment has a given

topology; learning such a structure will certainly help in building an e�cient plan-

ner in a given domain. However, the structure of the environment (at least the

\useful" one) heavily depends not only on the environment but also on the actions

that can be performed. Our aim is to develop a generic planner that will exhibit

and learn the \structure" of a given domain. This is the reason why we propose

to investigate approaches based on Probabilistic Roadmap (PRM). PRM basically

\captures" the space \topology" through random state generation and connec-

tivity tests between states using a local planner. PRM obtains good results in

robot path planning because it is relatively easy to test the validity of a randomly

generated con�guration and because there exist good metrics and numerous very

e�cient local planners in the con�guration space. PRM can even obtain excellent

results when careful techniques are devised in order to construct a compact graph

and to \direct" the search toward non-explored regions[12].

We propose an extension of these notions to task planning. Our contribution is

twofold. The �rst issue concerns an extension of GraphPlan[1] specially designed

to deal with \local planning" in large domains. Having an reasonably e�cient

\local planner", we show how we can build a �rst \global task planner" based on

PRM and which builds a \topological" graph approximation of the task space.

2

We also discuss its advantages and limitations. The second contribution involves

some preliminary results that allow to exploit domain symmetries and to reduce

in a drastic manner the size of the \topological" graph. Both contributions are

illustrated through a prototype implementation. The results are very promising.

2 Probabilistic Roadmap Method (PRM) background

2.1 Learning and Using

PRM [9] have been successfully used in path planning. A PRM planner performs

in two steps: i) topology learning and ii) using the learned topology to search a

solution of a given problem.

PRM builds a graph, G = (V;E), which \captures" the con�guration space

topology. The vertices V correspond to randomly generated con�gurations, and

the edges E to the possible connections between vertices. A local planner L is used

to test such a connection. Table 1 shows a basic version of PRM algorithms. The

predicate connect(v; q) means that con�gurations q and v are already connected

by the graph. This test allows PRM to avoid cycles; indeed, G is limited to a tree

in order to allow a signi�cantly faster solution search.

To illustrate PRM algorithm,we develop a toy example in �gure 1 withMAX =

5: PRM chooses randomly the con�gurations c1 and c2. In our example, the local

planner L simply tests the existence of a collision-free straight line between two

con�gurations. L can not �nd a path between c1 and c2. A new con�guration c3
is randomly generated; PRM creates a connection a between c1 and c3 because of

L(c1; c3). Adding c4 creates a new connection b with c3. Then, c5 allows to connect

c1 (c) and c2 (d). When the learning step is stopped, one can use the graph to

search for a global solution to a path planning problem. The initial S and goal S0

states are �rst connected to the graph G with the local planner. A search is then

performed and obtains a collision-free path (S ! c3 ! c1 ! c5 ! c2 ! S0)1.

2.2 A visibility based algorithm

There is clearly a need to limit the size of the graph while maintaining the best

possible \coverage". To do so, Move3D[12] proposes a PRM that computes \visibil-

ity" roadmaps which consist of two classes of nodes: the guards and the connectors.

When a new valid con�guration is randomly found, three cases may arise:

{ either it is not visible from any existing guard2; it is then added as a new

guard to the graph,

{ or it is visible by guards belonging to distinct connected components of the

current graph; it is then added as a new connector, and the corresponding

connected components are merged,

{ otherwise, it is visible only by guards belonging to a same connected compo-

nent; in such case, it is rejected.

1 We can note that PRM sacri�ces optimisation to e�ciency. However, once a path is

found, various smoothing and optimisation techniques can be used to improve the

solution path
2 A guard [8] corresponds to a node that is able to access all neighbours by L.

3

V � ; E �

CardE 0
While CardE < MAX do

q Random()

If q 2 CSfree Then
V V [fqg
CardE CardE + 1

Vc fv 2 V; v neighbour of q g
For each v 2 Vc(ordered with increasing distance) do

If :connect(v; q) ^ L(v; q) Then
E E [f(v; q)g

End For each

End While

Table 1. PRM basic algorithm

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

4

1

5

a

b

d

3
S

2

S’
c

Fig. 1. A PRM sequence example

With such algorithm, c3 and c4 of �gure 1 would not have been added because

of their visibility from c1.

Following the PRM framework, there is clearly a need for a \very e�cient"

method for testing states connectivity. There is no need here to have a complete

planner. Completeness will be ensured by the global planner (PRM approach).

The next section proposes an adaptation of GraphPlan that ful�lls such a need.

3 Adapting GraphPlan to local task planning in large

domains
In this section, our aim is to develop a \local task planner" to deal with large

problem. This local planner will allow to de�ne the \neighbourhood" notion used

in PRM. GraphPlan[1] plans with STRIPS operators and uses a constraint prop-

agation method. It performs in two steps: �rst, it builds a constraint graph ex-

pansion; and then it searches for the plan with a constraint resolution extraction.

One limitation comes from the number of possible action instantiations and mutex

disappearing for large problems3.

3 For this section, we assume that the reader is familiar with GraphPlan algorithms.

4

For instance, RIFO [10] allows IPP to keep only \relevant" facts and to reduce

the state size and possible action instantiations. With such state cuts, IPP is able

to plan in quite large domains. Our solution is di�erent: we keep the total state

description. However in order to deal with the combinatorial explosion due to

action instantiation in large domains, we propose to perform a graph expansion

based on partial instantiation and we limit the number of levels. This is reasonable

since we are interested in developing a fast local planner (in large domains).

To do so we have de�ned speci�c tools for forward expansion and backward

search in partial instantiated action context.

3.1 Partial action instantiation

In STRIPS formalism [4], a state is de�ned by a set4 S of positive facts S = ffig. To

apply a totally instantiated action B to the state S, its precondition set P = fpig

must be included in S (P � S)5.

Our goal is to reduce the number of developed actions at each level. We de-

compose each action B in n partially instantiated actions Bi where n = Card(P).

De�nition 1 (Partially instantiated action Bi). Let B(�) be the STRIPS

de�nition of an action B and let � its arguments (in �rst order logic) and P (�)

its preconditions. Let �i a partial instantiation of � such that pi(�i) is totally

instantiated. We call B(�i) (noted Bi) a partial instantiation of B.

Note that preconditions and e�ects of Bi are partially instantiated (except for

pi). For instance, table 2 shows a pick-and-place action and a partial instantiation

by its �rst precondition.

pick-and-place(x, y, z) pick-and-place(block1, block2, z)

Precond.: On(x,y), Clear(x) Precond.: On(block1,block2), Clear(block1)

Clear(z) Clear(z)

E�.: On(x,z), Clear(y) E�.: On(block1,z), Clear(block2)

: On(x,y), : Clear(z) :On(block1,block2), : Clear(z)

Table 2. (a) An example of STRIPS action in block-world domain. (b) A partially
instantiated action (by the �rst precondition On(x,y)).

De�nition 2 (Bi Applicability). Bi is applicable to state S if and only if

pi(�i) 2 S and 8j 6= i; 9�j (a total instantiation of �i) pj(�j) 2 S.

3.2 Mutex propagation

The GraphPlan mutex de�nition is based on the notion of independence between

two actions. Two totally instantiated actions B1 and B2 are independent if B1 �

B2 , B2 �B1. The independence relation can be de�ned by Table 3a properties.

We can extend this independence relation to partially instantiated actions. B1
i and

B2
� are independent if B1

i �B
2
� , B2

� �B
1
i with relations de�ned in Table 3b. Note

that the independence relation of partially instantiated actions is weaker than the

relation between totally instantiated actions; indeed if 9i; � such that B1
i is mutex

with B2
� then B1 is mutex with B2 but not the converse.

4 To simplify the notation, we consider states as set of facts instead of conjunctions.
5 In addition, we have the following properties: i) D � P and ii) D \ A = � with D

(resp. A) the set of facts that become false (resp. true) after applying action B.

5

P 1 � S P 2 � S 8j; p1j(�j) 2 S 8k; p2k(�k) 2 S
P 1 \D2 = � P 2 \D1 = � 8j9k; p1j (�j) 6= D2

k(�k) 8k9j; p2k(�k) 6= D1
j (�j)

A1 \D2 = � A2 \D1 = � 8j9k;A1
j(�j) 6= D2

k(�k) 8k9j; A2
k(�k) 6= D1

j (�j)

Table 3. (a) Independence between B1 and B2 in S. (b) Independence between B1
i and

B2
� (�j (resp. �k) is a total instantiation of �i (resp. ��))

Find Plan(G,P,Einit)
If G = � Then

Return OK

Unstack (X; lX) from G
If lX = 0 Then

If 9� an instantiation of X; � 2 Einit Then
Return Find Plan(G,P,Einit)

Else Return Fail
Else

Given � the set of partially instantiated action that

supports X and with l� � lX
Result Fail

While Result = Fail do

Choose fBi 2 �gsuch that X is totally instantiated and
Bi compatible with Bj; (i 6= j) and with P (non-mutex)

Add composition of Bi preconditions to G
Add fBig to P
Result Find Plan(G,P,Einit)

Return Result

Table 4. Plan extraction algorithm for partially instantiated GraphPlan. (X corresponds

to a partially or totally instantiated fact, lX to the level in which we need X and l� the
level of � appearance.)

Nevertheless using partially instantiated actions allows us to generalise the

mutex relation between two facts. In GraphPlan, two facts P and Q are mutex if

P = :Q or if all actions that support P are mutex with all actions that support

Q. As we already mentioned, some e�ects of a partially instantiated action are

partially instantiated, and so we can create mutex between two \classes" of facts.

For instance, consider the pick-and-place action and a no-op action on fact

Clear(block3). The pick-and-place action instantiated by the third precondition

(Clear(block3)) deletes Clear(block3) and adds On(x; block3), whereas no-op main-

tains Clear(block3). These two actions are mutex, and so we can conclude that

8x 2 fblock1; : : : ; blockmg, On(x; block3) is mutex with Clear(block3).

3.3 Solution extraction

Our planner uses the partial action instanciation to expand the mutex graph start-

ing from the initial state. As in GraphPlan, we try to extract a solution as soon as

we reach a level that includes the goal. During backward, the planner must �nd

total instantiations for the selected actions. Such a problem has strong similarities

with the extensions of GraphPlan to conformant planning (see CGP[13] and [6]).

Indeed, we have adapted the algorithm presented in [6] to deal with partially in-

stantiated actions. Table 4 provides a high level description of the plan extraction

procedure.

6

Block-world domain

IPP-v4.0 Our planner (PIGP)

Problem Level CPU Time Memory Level CPU Time Memory

4 blocks 6 0.1 s 0.4 Mb 6 0.3 s 2.4 Mb
5 blocks 8 0.2 s 0.6 Mb 8 2.4 s 2.5 Mb

6 blocks 10 0.3 s 0.8 Mb 10 6.5 s 2.7 Mb

10 blocks 3 5.8 s 5.7 Mb 3 0.2 s 2.9 Mb

20 blocks 3 269.3 s 95 Mb 3 2.9 s 5.1 Mb

30 blocks - >1000 s >200 Mb 3 5.3 s 7.9 Mb
100 blocks - - - 3 37.8 s 15 Mb

Table 5. Results from IPP-v4.0 and our local task planner. The problems (10-100) are

de�ned by: at initial state, all blocks are on table; the goal is to obtain several three block

towers.

Results Table 5 compares IPP-v4.0 with our GraphPlan adaptation on block-

world domain.We note that IPP is signi�cantly faster than our algorithm on small

domains. On the other hand our planner can elaborate plans in larger domains

when the number of levels necessary to reach the goal is small. Indeed, while the

partial instantiation reduces drastically the combinatorial explosion of the graph

expansion phase, it is expensive for plan extraction.

This is acceptable in our case since we are interested in developing a fast local

planner in large domains.

4 Task planning with PRM

In this section, we describe our adaptation of PRM to task planning. It makes

use of the local planner de�ned in the previous section to compute a \topological

graph" of the task space. This is done by randomly generating states and trying

to connect them to the graph using the local planner.

The process is stopped when we consider that we have a su�cient coverage of

the task space. The result is a domain \skeleton", that will be used as a roadmap.

4.1 Adaptating PRM to task planning

Locality and accessibility Evaluating the distance between two states d(S; S0)

is NP-Hard. All what we need is an estimation � of d with �(S; S0) � d(S; S0)6.

In our case, to approximate �, we use the mutex propagation phase of Graph-

Plan. Indeed the number of developed levels to possibly obtain a state S0 from

S represents the minimal number of independent action set, and so the minimal

number of action.

De�nition 3 (Accessibility). State S0
is accessible from S (noted A(S0; S)), if

and only if there exists an action sequence � such that S0 = � (S). The direct

accessibility corresponds to the existence of a local plan L(S0; S).

6 [2] proposes in HSP to evaluate � with the minimal number of actions to obtain S0

from S without delete-liste. In [3], he estimates cost from the initial state and uses it

to de�ne an heuristic from any state.

7

We note that the accessibility relation is re
exive (i.e. A(S; S)), transitive (i.e.

A(S; S00) ^ A(S00; S0) ! A(S; S0)) but not necessarily symetric (i.e. A(S; S0) 6�

A(S0; S)).

A �rst algorithm: basic PRM Table 6 describes the incremental construction

of the roadmap. The local planner L is implemented with a partially instantiated

GraphPlan (see previous section) and the distance corresponds to the minimal

number of graph levels (here we set the neighboorhood to 3 levels).

For instance, given G1 and G2 two disjoint components of the graph G and a

state S. If S is accessible from G1 (i.e. 9g 2 G1;A(S; g)) and S is not accessible

from G2 (i.e. :9g 2 G2;A(S; g)) then we assume that state S does not provide

any new information about the task space topology7.

Following [12], we de�ne the notion of Accuracy; it corresponds to the current

number of uninteresting states (since the last interest state). The number 1 �

1=Accuracy corresponds to an estimation of the probabilistic coverage of the task

space.

State validity Our algorithm is based on a random generation of states. While

it is quite easy to verify the validity of a given con�guration in the path plan-

ning domain (no overlapping with obstacles), this is not the case, in general,

for task planning. For instance, in the blockword domain, we can not authorize

On(block1; block2)^On(block2; block1). Our planner is not able to check state va-

lidity. We assume, that we are able to randomly generate all valid states.

First results with basic PRM Figure 2a shows a graph obtained in 7-block-

world with a 95% coverage. The program took 727.2 s to build a graph composed

of 1867 nodes (3.1 Mb). In this �gure, each state is represented by a dot. Two

connected dots mean that there exists a local plan between the corresponding

states. The position of a given in the diagram depends on the size of highest stack

of the state (radius of the circles from 1 to 7) and the number of the �rst block of

the stack (angle of the supporting segment). We note that the �gure is strongly

symmetric, especially because of the 7 possible �rst blocks. Indeed, in block-world

domain, for a tower of n blocks, there are n! possible con�gurations.

Figure 2b presents a graph built for the 3-mail problem with a 95% coverage:

a robot must move letters from a table to another in a complex environment. In

this example, the environment contains 400 cells which are connected with 160000

facts (e.g. connect(c1;1; c1;2)). Tables are represented by grey cells and walls by

black cells. Our algorithm used 18 Mb and took 386.4 s to build a graph composed

of 131 nodes. Note that the position of the nodes depends only on robot position

and not on the position of the letters (letters can be left on tables or on the robot).

This is the reason why there are a number of neighbour nodes on the �gure which

are not connected.

From these two (non trivial) examples, we can make two observations. First, our

algorithm successfully \captured" a topological structure of the task space derived

7 We assume that S will again be randomly generated, in the future, to test again

possible connections between connected components of G. That is the reason why, we

can say that the probabilistic completeness of the method is ensured.

8

G f�g
Accuracy 0
While Accuracy < MAX do

S RandomV alidState()

foundG � ; foundg EmptyState()
foundnb 0

For each G 2 G (ordered with increasing distance) do

If 9g 2 G;A(S; g) Then
If foundnb = 0 Then

foundG G ; foundg g

foundnb 1
Else

If foundnb = 1 Then

Connect S to foundG by foundg
G G �G

Connect S to G by g

foundnb foundnb + 1
End For each

If foundnb = 0 Then

G G [fS; �g
If foundnb = 1 Then

Accuracy Accuracy + 1

Else

Accuracy 0

End While

Table 6. Accessibility based algorithm

from accessibility by local plans. Second, in both domains there are symmetries

and possible permutations which unusefully increase the graph.

4.2 A PRM that deals with permutations

Due to all possible permutations between di�erent states, the previous method to

build a task topological graph is not able to capture the domain topology with

a polynomial number of states (see for instance the symmetry that appears in

�gure 2a). To solve this problem, we propose an extension that deals explicitly

with permutations.

For example, when there is a permutation between two states S1 (On(block1;

block2)^OnTable(block2)) and S2 (On(block2; block1)^OnTable(block1)), we will

try to learn the task space topology for only one permutation. In this case, the

environment \skeleton" is On(X;Y) ^ OnTable(Y) and there are two possible

substitutions �(S1; S2) fX=block1;Y=block2g and �(S2; S1) fX=block2;Y=block1g.

We de�ne A+ the accessibility relation A augmented by substitution which

is transitive: Given S1, S2 and S0

1 three states such that A(S1; S2), A(S2; S1)

and �(S1; S
0

1). In that case, there is a plan � to connect S2 to S1. Given � 0, the

plan � modi�ed by the substitution �(S1; S
0

1), and S
0

2 the result of the substitution

9

Fig. 2. (a) Learned (95%) graph in 7-block-world domain. (b) Learned (95%) graph in
3-Mail domain.

�(S1; S
0

1)(S2) ; we have S
0

1 = � 0(S0

2) and we conclude that the accessibility relation

A(S0

1; S
0

2) is valid. So if we have A(S0

2; S2) then we can deduce A(S0

1; S1) (via the

path S1 ! S2 ! S0

2 ! S0

1).

Consider for instance the 3-block-world domain.Given S1 = fOn(block1; block2),

On(block2; block3),On table(block3) g, S
0

1 = fOn(block3; block1),On(block1; block2),

On table(block2) g and S2 = fOn(block2; block3),On table(block3),On table(block1)

g. We note that :L(S1; S
0

1), L(S1; S2) and L(S2; S1). In addition, we can reach S0

2

from S2 in two steps, so we can conclude that A+(S0

1; S1; �(S1; S
0

1))
8

A+(S01; S1; �1!10)

If L(S1; S
0

1) Then

return OK

For each S2 such that L(S1; S2) ^ L(S2; S1) do
S02 �1!10 (S2)

If A+(S02; S2; �1!10) Then

return OK
End For each

return Fail

Table 7. Accessibility based on permutation

This property allows an extension of the basic PRM algorithm that takes into

account substitution. The new algorithm is similar to the algorithm presented in

table 6 but, instead of using A to test the accessibility of a new random state

S1, we test if it corresponds to a permutation between two components G1 and

G2 of the graph G (S2 2 G2 such that �(S1; S2)). If it is the case, we store S1,

S2 and �(S1; S2) and use such permutation to try to connect G1 and G2 in the

8 We note that A(S01; S1) is false because our local planner L is limited to three steps.

10

0

2

1

3

0’

2’

5’

0

2

4

5

4

1

3

0’

2’

5’

0

2

4

5

4

1

3

0

2

44

1

3

0

2

4

5

1

3

0

2

4

5

3’

4

STEP 1 STEP 2 STEP 3

STEP 6STEP 5STEP 4

3’

5’

4

Fig. 3. A PRM sequence exemple

subsquent steps. Besides, if the connection is established, we check the graph in

order to eliminate redundancies (see step 6 of �gure 3).

The following example illustrates the overall process9 (see �gure 3). At step 1,

there are two components in our graph (S0�S2 and S1�S3). Solid line represent

accessibility. At step 2, we randomly generate S4. S4 is accessible from S0 because

of L. In addition, we note that there is a substitution �(S4; S1). Dashed curve

denote a substitution. So the question is: can we connect components S4�S0�S2
and S1�S3? At this step, it is impossible because of: :A(S1; S4), :A(S3; S4) and

not connected at step 1, then we deduce :A+(S1; S4). Now we store �(S4; S1) to

check if further states can connect the two components via A+ (this is the case

with S5 and S50). At step 3, we randomly generate S5. S5 is accessible from S50

(S50 is created with �(S4; S1). In this case (see step 4)), S4 is accessible from S1
(indeed we have S1 � S00 � S20 � S50 � S5 � S2 � S0 � S4). Dashed line means

that states are already connected in the other substitution. Now, we can reduce

the graph and create only one component without substitution. At step 5, we use

�(S4; S1) to create S30 from S3. At step 6, we delete S1 (resp. S3) which is now

accessible from S4 (resp. S30) via S5.

Block-world results Figure 4a shows a learned graph for the 7-block-world, with

a 99% coverage, domain with permutation method. Our algorithm uses 4.0 Mb

during 7.9 s to �nd 14 nodes Each dot is labelled by a state number described

9 In order to simplify the explanation we assume that a state accessible from only one

component is added to G. For instance in step 1, nodes 2 and 3 are added. We also

assume that A is symmetric.

11

State 1

State 6

State 11 State 12 State 13 State 14

State 2 State 3 State 4 State 5

State 10State 9State 8State 7

Fig. 4. Learned (99%) graph with substitution method in 7-block-world domain

in �gure 4b. We note that for 7 blocks our graph contains only 14 states. These

states correspond, in fact, to \classes" of states; indeed because of the permutation

reasoning a state of this graph is not really instantiated but represents a whole

class of states obtained by substitution.

4.3 Solution search

The solution extraction method is similar to the insertion of one state during

the learning phase. Indeed, we must connect the initial state Sinit to Si 2 G,

connect the goal Sgoal to Sg 2 G and then �nd a path10 between Si and Sg when

A+(Si; Sg)
11.

Table 8 shows some results on block-world domain (with permutation). Results

from 7-block-world express permutation reasoning capabilities: 7.9 s / 14 nodes

with 99% vs. 727.2 s / 1827 nodes with 95%. In addition, we remark that if we

remove the average time spent to connect initial and goal state to the graph from

the average time to extract a solution, the spent time to �nd a path is about 0.1 s.

5 Conclusion and future work

We have proposed an extension of probabilistic Roadmap Methods (PRM) to task

planning. Such an extension can not be reasonably attempted without an e�cient

local planner which may answer quickly to \connections" requests.

This is why we have developed an extension of GraphPlan[1] specially designed

to deal with \local planning" in large domains. It is essentially based on the con-

struction of mutex between partially instantiated facts.

10 We note that the planner is sound. Indeed the solution is extracted from the graph

and the connection between the initial and �nal state; all connections are built by the

GraphPlan extension (sound too); so if a path exists, it is consistent.
11 If we can not connect Si or Sg we can use a classical planner (e.g. IPP-v4.0).

12

Graph learning Solution search

Problem nbnode CPU Time Memory CPU Time (average)

7 blocks 14 7.9 s 4.0 Mb 0.07 s

10 blocks 31 44 s 4.8 Mb 0.31 s

15 blocks 86 492.5 s 5.6 Mb 1.9 s

20 blocks 253 4186.8 s 6.6 Mb 5.4 s

Table 8. Learn and solution extraction phase on block-world domain

Another key feature is the development of techniques that allow to reduce as

much as possible the size of the learned graph without \losing" the probabilistic

completeness.

This research is still preliminary.However, the obtained results are very promis-

ing. Our future work will concern further investigations on the following aspects:

i) improvement of the local planner e�ciency (for example, can we introduce some

heuristics [3]? ii) improvement of the topological structure identi�cation by adding

more general symmetry analysis[5], or extending re-using methods ([11], [7], . . .).

References

1. A.L. Blum and M.L. Furst. Fast planning through planning graph analysis. Arti�cial

Intelligence, pages 281{300, 1997.
2. B. Bonet and H. Ge�ner. Hsp: Planning as heuristic search.

http://www.ldc.usb.ve/ hector, 1998.
3. B. Bonet and H. Ge�ner. Planning as heuristic search: New results. 5th European

Conference on Planning (ECP'99), 1999.
4. R.E. Fikes and N.L. Nilsson. Strips: A new approach to the application of therom

proving to problem solving. Arti�cial Intelligence, 2:189{208, 1971.
5. M. Fox and D. Long. The detection and exploration of symmetry in planning prob-

lems. Proc. 16th Inter. Joint Conf. on Arti�cial Intelligence (IJCAI'99), 1999.
6. E. Gu�er�e and R. Alami. A possibilistic planner that deals with non-determinism

and contingency. Proc. 16th Inter. Joint Conf. on Arti�cial Intelligence (IJCAI'99),

1999.
7. S. Kambhampati and J.A. Hendler. A validation-structure-based theory of plan

modi�cation and reuse. Arti�cial Intelligence, 55:193{258, 1992.
8. L. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan. Randomized query pro-

cessing in robot path planning. Journal of Computer and System Sciences, 57:50{60,

1998.
9. L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilistic roadmaps

for path planning in high dimensional con�guration spaces. IEEE Transaction on

Robotics and Automation, 12:566{580, 1996.
10. B. Nebel, Y. Dimopoulos, and J. Koehler. Ignoring irrelevant facts and operators in

plan generation. In 4th European Conference on Planning (ECP'97), 1997.
11. B. Nebel and J. Koehler. Plan reuse versus plan generation: A theorical and empirical

analysis. Arti�cial Intelligence, 76:427{454, 1995.
12. T. Simeon, J.P. Laumond, and C. Nissoux. Visibility-based probabilistic roadmaps

for motion planning. (Submitted to Advanced Robotics Journal) A short version

appeared in IEEE IROS, 1999.
13. D. Smith and D. Weld. Conformant graphplan. In Proc. 15th Nat. Conf.

AI.(AAAI'98), 1998.

