
On the Instantiation of ADL Operators Involving
Arbitrary First-Order Formulas

Jana Koehler1 and Jörg Hoffmann2

Abstract. The generation of the set of all ground actions for a given
set of ADL operators, which are allowed to have conditional effects
and preconditions that can be represented using arbitrary first-order
formulas is a complex process which heavily influences the perfor-
mance of any planner or pre-planning analysis method.

The paper describes a sophisticated instantiation procedure that
determines so-called inertia in a given problem representation and
uses them to perform simplifications of formulas during the instanti-
ation process. As a result, many inapplicable actions are detected and
ruled out from the domain representation yielding a much smaller
search space for the planner.

1 Introduction

A planning system that handles a more expressive language than
STRIPS requires sophisticated algorithmic solutions to quite a num-
ber of problems, which have nothing to do with the actual search
process for a plan. One of these problems concerns the computation
of the set of actions as all ground instances of a given set of operators.

The aim of the instantiation process is to generate all those ground
instances of the planning operators that are applicable in some legal
world state. This means, that the precondition of the operator should
be satisfiable and its effects should be consistent. On one hand, a
naive instantiation procedure that simply expands logical quantifiers
and enumerates all possible instantiations of operator parameters will
quickly render even simple planning problems unsolvable. On the
other hand, a rather sophisticated instantiation procedure can rule out
many actions, which will never be applicable in any reachable world
state or that would—if applied—yield an inconsistent state. It should
also return the most simple syntactic representation of preconditions
and effects.

Many planning systems do generate the complete set of actions
before planning actually starts. They use this set either for the encod-
ing of the domain in other representation formalisms such as SAT
[4] or for the derivation of useful information that can help during
planning, e.g., distance heuristics [2, 3], symmetries [1], relevant ac-
tions [11], and goal orderings [5]. Today, this kind of precomputation
appears to be feasible for domains containing up to 100,000 ground
actions. But even if only a subset of the available operators is instan-
tiated, e.g., those that are applicable in a given state during a forward
search, there is the need for a reasonably well performing instantia-
tion algorithm.

When using the PDDL language [10] to represent ADL operators

1 Schindler Lifts Ltd., CH-6031 Ebikon, Switzerland, email:
jana koehler@ch.schindler.com

2 Institute for Computer Science, Albert Ludwigs University, D-79110
Freiburg, Germany, email: hoffmann@informatik.uni-freiburg.de

[12], quite complex descriptions of preconditions and effects are pos-
sible:

� arbitrary function-symbol free first-order logic formulas represent
preconditions,

� conditional effects have the form (when antecedent consequent)
where the antecedent can be an arbitrary precondition and the con-
sequent is a conjunction of literals, i.e., an atom either occurs pos-
itively or negatively in it. A conditional effect can also be univer-
sally quantified.

Given such an operator, the instantiation has to replace all occur-
ring variables, which are either quantified or occur as parameters of
the operator, by those type-consistent constants, which have been de-
clared in the planning problem. In order to replace all variables by
constants, the instantiation process proceeds in three phases:

1. The expansion of universal and existential quantifiers occurring in
the first-order formulas representing preconditions or antecedents
of conditional effects eliminates most of the quantified variables,

2. The expansion of universally quantified conditional effects elimi-
nates the remaining quantified variables,

3. the instantiation of operator parameters eliminates the variable pa-
rameters.3

In each phase, the following atomic instantiation task occurs:

Given a variable ?x, a constant c and an atomic formula p,
determine the resulting instantiation p[?x=c].

This is a trivial problem per se. But after having determined
p[?x=c] one can sometimes simplify this atomic formula to FALSE
or TRUE, which in turn often leads to a further simplification of the
operator representation. The paper addresses exactly this problem.
We describe what kind of atomic simplifications are performed in
IPP [7] under which conditions, how this process can be efficiently
implemented and how it affects the search space of the planning sys-
tem. The techniques have successfully been used in the 1998 AIPS
planning competition where IPP demonstrated a convincing perfor-
mance across a variety of STRIPS and ADL domains.

The paper is organized as follows: First, we give an overview of
the three phases of the instantiation process. Then we define the no-
tion of inertia predicates and describe how the knowledge about in-

3 In IPP the assumption is made that different operator parameters are in-
stantiated with different constants, i.e., the planner never generates actions
like move(a,a) because we consider this as a bad domain representation that
should be revised. In fact, in operators with identical constant parameters,
all but one of the constants are superfluous and can be skipped from the
representation without loss of information.

ertia is used to perform atomic simplifications. We prove their sound-
ness and describe how the underlying tests can be efficiently imple-
mented. In the second part of the paper we define how atomic sim-
plifications can be propagated over the operator description to further
simplify the operator representation. We show how unary inertia re-
lations can be encoded as types to speed up the instantiation process.
Finally, the impact of the instantiation process on the search space of
IPP is demonstrated.

2 Overview over the Instantiation Process

After having parsed the domain and problem file into some appro-
priate data structure, a basic preprocessing step renames all variables
in the logical formulas and assigns unique names to them. For exam-
ple, the formula (?x)^8 ?x'(?x) is equivalently transformed into
 (?x1)^ 8 ?x2 '(?x2). Then code tables are generated, which map
strings to unique numbers, i.e., we obtain one number for each pred-
icate name, variable name, and constant name. Internally, all subse-
quently described operations work over trees of numbers represent-
ing the formulas.

Figure 1 shows the precondition of the removeoperator from the
assembly domain [9] with the quantifiers in frames and the under-
lined requires predicate, which will be used throughout this paper to
illustrate the instantiation process. This predicate has two arguments,
the first one ?whole being an operator parameter of type assembly
and the second one ?res being a universally quantified variable of
type resource.

:action remove
:parameters (?part ?whole - assembly)
:vars (?res - resource)
:precondition
(and (forall (?res - resource)

(imply (requires ?whole ?res)
(committed ?res ?whole)))

(incorporated ?part ?whole)
(or (and (transient-part ?part ?whole)

(forall (?prev - assembly)
(imply (remove-order ?prev ?part ?whole)

(incorporated ?prev ?whole))))
(and (part-of ?part ?whole)

(not (exists (?prev - assembly)
(and (assemble-order ?prev ?part ?whole)
(incorporated ?prev ?whole)))))))

Figure 1. Precondition of the removeoperator from the assembly domain.

The schematic tree-like representation of this first-order formula is
shown in Figure 2. The leaves of the tree contain the atomic formulas.
IPP’s instantiation process traverses the tree top-down and expands
quantifiers one after the other, i.e., it reaches the first quantifier forall
(?res - resource) and extracts the variable ?res together with its type
resource. From the problem file, IPP knows all constants of this type.
These are now used to instantiate ?res.

The process considers all constants one after the other. For each
constant, a copy of the subtree representing the quantified formula
is generated. In the leaves of this tree, all occurrences of ?res are
replaced by the selected constant. As we will see below, this can lead
to so-called atomic simplifications, which replace an atomic formula
by either TRUE or FALSE. In turn, the whole tree can sometimes be
simplified to TRUE or FALSE, which yields a dramatic reduction in
the size of the formula.

AND

forall (?res - resource)

OR

NOT (committed ?res ?whole)

(incorporated ?part ?whole) OR

AND

(transient-part ?part ?whole) forall (?prev - assembly)

 OR

(incorporated ?prev ?whole)NOT

(remove-order ?prev ?part ?whole)

(requires ?whole ?res)

..........

Figure 2. Tree representation of ADL formulas. Note that formulas of the
form '! have been replaced with the equivalent :' _ already during

the parsing process.

In the case of a universal quantifier, the resulting trees are joined
by an AND. In the case of an existential quantifier, the trees are joined
by an OR. Figure 3 illustrates the result of the process.

forall (?res - resource)

?res

?res

exists (?res - resource)

a b

AND

k

OR

a b k.......

.......

Figure 3. Copies of trees generated during the expansion of quantifiers.
Obviously, if one of the subtrees resulting from the expansion of a universal
(existential) quantifier can be simplified to FALSE (TRUE), then the whole

formula can be simplified to FALSE (TRUE).

The expansion of quantified conditional effects proceeds in a sim-
ilar way. Figure 4 shows the tree representation of the move opera-
tor from the briefcase domain, whose conditional effect contains the
quantifier prefix forall (?x - object). The copied trees will now also
contain when nodes, i.e., numerous partially instantiated copies of
the conditional effect are generated.

The process for instantiating the parameters of an operator fits into
the same scheme. In each step, it takes a variable parameter together
with the set of type-consistent constants. For each of these constants,
a copy of the tree representing the operator is generated, and each
occurrence of the parameter in this tree is replaced with the constant.
Then, the operator tree is simplified. If, for example, it’s precondi-
tion simplifies to FALSE, the whole partially instantiated operator
can be skipped and removed from the domain. After all parameters
have been instantiated, each tree represents a ground instance (i.e., an
action) of the operator.

3 Identification of Inertia and their Use during the
Instantiation

The tree-copying process takes a variable ?x and a constant c as in-
put and traverses the subformula represented in the tree. Whenever it
reaches an atomic formula p, it gets replaced with p[?x=c]. In many
situations, it is worthwhile to invest some more effort at this point

move

(?from ?to - location)

precondition

parameters

(briefcase-at from)

effect

AND
(briefcase-at from)

(briefcase-at ?to)

NOT

WHEN

AND

NOT

(at ?x ?to)

(in ?x)

(at ?x ?from)

forall (?x - object)

Figure 4. Tree-Representation of an operator with a quantified conditional
effect. Expanding the quantifier forall (?x - object) results in copies of the

tree starting in the when node.

and have a closer look at the result of the instantiation. Under certain
conditions, namely if p represents an inertia relation, one can deter-
mine that p[?x=c] must either always be TRUE or FALSE. This can
even be the case if p[?x=c] is not yet fully instantiated. Let us con-
sider an example from the assembly domain. The object declaration
introduces a list of objects followed by their types:

:objects doodad valve frob sprocket socket plug - assembly
charger voltmeter battery - resource

The specification of the initial state contains the following instances
of the requires relation:

:init (requires frob charger) (requires sprocket charger)
(requires socket voltmeter) (requires doodad voltmeter)
(requires plug voltmeter)

Given the number of declared constants for the two types, the re-
quires relation can be instantiated with 6 � 3 = 18 different type-
consistent tuples, where 5 of them occur in the initial state.

The expansion of the first universal quantifier that is shown framed
in Figure 1 generates three copies of the formula tree, each contain-
ing either the partially instantiated atom (requires ?whole voltmeter),
(requires ?whole charger), or (requires ?whole battery). Two obser-
vations can be made:

� If (requires ?whole ?res) never occurs as a positive effect of any
operator then the only instances of this predicate, which can hold
in any state, are those that are specified in the initial state. This,
for example, implies that (requires ?whole battery) can never hold
and is therefore equivalent to FALSE.

� If (requires ?whole ?res) never occurs as a negative effect of any
operator then the only instances that can be FALSE in any state
are those that are not contained in the initial state. Now, if the ini-
tial state contained all possible ground instances of, say, (requires
?whole voltmeter), then this partially instantiated predicate could
be replaced by TRUE. All of its instances would be initially true
and thus persist in all reachable states.

In the following, we will formalize these ideas and give a precise
notion of inertia.

3.1 Inertia Relations

IPP proceeds over the domain and problem description and collects
all used relation names. For each relation it checks if it satisfies one
of the following definitions:

Definition 1 A relation is a positive inertia iff it does not occur pos-
itively in an unconditional effect or the consequent of a conditional
effect of an operator.

Definition 2 A relation is a negative inertia iff it does not occur neg-
atively in an unconditional effect or the consequent of a conditional
effect of an operator.

Relations, which are positive as well as negative inertia, are sim-
ply called inertia. Relations, which are neither positive nor negative
inertia, are called fluents. The detection of inertia and fluents is easy
because in ADL, effects are restricted to conjunctions of literals. Fur-
thermore, this information can be obtained with a single pass over the
domain description, which takes almost no time at all. In the assem-
bly domain, the status of all relations can be inferred as shown in
Figure 5.

predicate name pos. effect neg. effect status
available yes yes fluent
requires no no inertia
part-of no no inertia
transient-part no no inertia
assemble-order no no inertia
remove-order no no inertia
complete yes no neg. inertia
committed yes yes fluent
incorporated yes yes fluent

Figure 5. Inertia Relations in the Assembly Domain.

3.2 Atomic Simplifications

In order to decide if an inertia can be replaced by TRUE or FALSE
one needs to determine and count all type-consistent ground in-
stances of an inertia predicate p that match a partially instantiated
occurrence of p.

Definition 3 Let � be some type name.

dom(�) = fc1; : : : ; cmg

denotes the domain of � , i.e., the set of constants having type � .

In PDDL, each constant is either explicitly declared as being of a
particular type or it has the default type object. The same applies to
all operator parameters or quantified variables. Each predicate must
be explicitly declared together with its arguments, for which type
names can be given or the default type is assumed.

Definition 4 Let p be a predicate of arity n. Let ~a = (a1; : : : ; an)

be the argument vector of some partially instantiated occurrence of
p where each ai is either a constant or variable. With

V (~a) = fi 2 f1; : : : ; ng j ai is a variableg

we denote the positions in ~a that are occupied by variables.

Definition 5 Let p be a predicate and let~a be the argument vector of
some partially instantiated occurrence of p. Let �i be the type name
of position i in predicate p. Then

MAX(p ~a) =
Y

i2V (~a)

jdom(�i)j

denotes the number of all possible type-consistent ground instances
of p that unify with the argument vector ~a. In contrast,

N(p ~a) = jf(p ~c) 2 I j (p ~c) unifies with (p ~a)gj

denotes the number of unifying ground instances of p that are con-
tained in the initial state I. Obviously, N(p ~a) � MAX(p ~a) holds.

It is worthwhile noticing here that IPP will remove all variables or
parameters that have an empty type. Therefore, we have jdom(�i)j 6=

0 for each position i of any partially instantiated occurrence of the
predicate p. Thus, for any (p ~a) we have MAX(p ~a) 6= 0. As an
example, let us consider (p ~a) =(requires ?whole voltmeter), for
which one obtains

V (~a) = f1g /* only one variable argument */
�1 = assembly
dom(assembly) = fdoodad, valve, frob,

sprocket, socket, plugg

MAX(requires ?whole voltmeter) = 6

/* 6 objects can instantiate ?whole */
N(requires ?whole voltmeter) = 3

/* 3 instances in the initial state contain voltmeter */

A partially instantiated atomic formula can be simplified to TRUE
or FALSE if it satisfies one of the conditions defined below.

Definition 6 Let (p ~a) be some partially instantiated atomic for-
mula constructed during the instantiation process.

If p is a positive inertia and N(p ~a) = 0

then (p ~a) is simplified to FALSE.

If p is a negative inertia and N(p ~a) = MAX(p ~a)
then (p ~a) is simplified to TRUE.

In all other cases (p ~a) cannot (yet) be simplified and remains in the
formula tree as it is.

From the treatment of empty types, we know that MAX(p ~a) 6= 0

holds for (p ~a). Therefore, obviously at most one of the above tests
can succeed. For example, (requires ?whole battery) is a positive in-
ertia. It can be simplified to FALSE because no requires instance
from the initial state matches the argument vector (?whole, battery),
i.e., N(requires ?whole battery)= 0 and the first test succeeds.

That an atomic formula can sometimes be simplified to TRUE is
best seen in the case when it is fully instantiated. Take, for exam-
ple, (requires plug voltmeter). This fact occurs in the initial state, so
N(requires plug voltmeter)= 1 6= 0 and the first test fails. How-
ever, MAX(requires plug voltmeter)=

Q
i2;

jdom(�i)j = 1 and
the second test succeeds. This reflects that (requires plug voltmeter)
is initially TRUE and will never be made FALSE because requires
is a negative inertia.

Theorem 1 (Soundness of Simplifications)
Given a planning domain and problem, if (p ~a) is simplified to

(1) FALSE, then no state s which is reachable from the initial state
satisfies any type-consistent ground instance of (p ~a).
(2) TRUE, then any state s which is reachable from the initial state
satisfies all type-consistent ground instances of (p ~a).

Proof:
(1) holds because if N(p ~a) = 0 then none of the type-consistent
ground instances of (p ~a) are contained the initial state. Since p is a
positive inertia, no other instances can be generated by any plan.
(2) holds because if N(p ~a) = MAX(p ~a) then all type-consistent
ground instances are contained in the initial state and will persist in
all reachable states because p is a negative inertia.

Atomic simplification requires to determine the number N(p ~a)
of all those ground tuples in the initial state that unify with a given
argument vector of arbitrary length, containing variables or constants
at arbitrary positions. Using a naive solution, this means to perform
a single pass over the initial state I, testing for each fact if it uni-
fies with (p ~a). Obviously, the time complexity is �(jIj � nmax)

where nmax denotes the maximum arity of the predicates. The test
for atomic simplification has to be done for every leaf of every tree
that is ever generated during the instantiation process. The number
of these leaves is likely to be enormous, so there is a strong need for
a highly efficient method to find N(p ~a). In the following, such a
method is described, which allows to retrieve the number of match-
ing initial facts in time linear in the length of ~a, i.e., in the arity of the
predicates, O(nmax).

3.3 Efficient Implementation of Atomic
Simplifications

In principle, the idea behind the implementation is as simple as this:
Before instantiation starts, perform a single pass over the initial state
and create tables in which the occurring tuples are documented. Then
later determine the proper table entry for (p ~a) and look up the cor-
rect value of N(p ~a). What makes the process complicated is that we
have to deal with partially instantiated argument vectors ~a.

Let us consider the requires predicate as an example. For its argu-
ment vector of length 2, four cases can occur:

(1) Both arguments are variables and thus ~a = (?x1; ?x2). One needs
to determine the total number of occurrences of requires (with
arbitrary arguments) in the initial state.

(2) The first argument is instantiated, but the second argument is a
variable and thus ~a = (c1; ?x2). We need the number of occur-
rences of requires where the first argument is c1.

(3) Only the second argument is instantiated and ~a = (?x1; c2). We
need to count the occurrences with c2 at the second position.

(4) Both arguments are instantiated and ~a = (c1; c2). The question is
whether the initial state contains (requires c1 c2).

For each of these four cases, a separate table is constructed. The
table entries are computed from the initial state. The dimension of
each table corresponds to the number of instantiated positions of the
argument vector. In Case (1), the table is therefore 0-dimensional and
simply consists of an integer counting the number of requires facts
in the initial state. For Cases (2) and (3), a 1-dimensional table is
needed, with one entry for each object that is type-consistent with the
instantiated argument. For each of these objects, the corresponding
entry counts the number of times that requires occurred in the initial
state instantiated with that object. In Case (4), a 2-dimensional table
is constructed. Its entries are indexed by all pairs of type-consistent

objects that can instantiate the requires predicate. For each such pair,
the entry is set to 1 iff requires occurred in the initial state instantiated
with that pair. All tables are shown in Figure 6.

;

5

f1g

doodad 1
valve 0
frob 1

sprocket 1
socket 1
plug 1

f2g

charge 2
voltmeter 3

battery 0

f1; 2g

charger voltmeter battery
doodad 0 1 0
valve 0 0 0
frob 1 0 0

sprocket 1 0 0
socket 0 1 0
plug 0 1 0

Figure 6. The tables to represent those facts from I that match a given
argument vector for the requires predicate. Given the set of instantiated

positions as ;, f1g, f2g or f1; 2g, the corresponding tables are shown from
left to right and down.

Let p be a predicate of arity n. For each subset C � f1; : : : ; ng,
a table T(p C) has to be constructed. The table is jCj-dimensional
and lists one entry T(p C)(~c) for each type-consistent tuple ~c of
constants that can possibly instantiate p at exactly the positions in C.
All entries are initially set to zero.

Note that although the number of tables is exponential in the arity
of the predicates, planning domain representations rarely use pred-
icates with more than 3 or 4 arguments. We also argue that it is
rather unlikely that significantly more arguments will be required
even when more complex domains are modeled. First, the clarity of
the representation is affected, which would make it hard for a human
user to understand the domain model. Second, it is hard to imagine
that an expert in planning domain modeling would set up such a com-
plicated representation. Finally, the few representations of real-world
domains, which have been published so far, e.g., [14, 8] show that
sources of complexity do not occur necessarily in terms of operator
arguments.

Definition 7 Let ~a = (a1; : : : ; an) be an argument vector of size n,
each ai being either a variable or a constant. Let C = fi1; : : : ; ikg
be a set of possible positions, i.e., C � f1; : : : ; ng, where the
i1; : : : ik are ordered increasingly. With

~ajC := (ai1 ; : : : ; aik)

we denote the restriction of ~a to the positions in C.

Intuitively, the restriction of a vector to some set C � f1; : : : ; ng
is obtained by simply skipping all those positions that are not in C,
but preserving the order of the arguments.

Now for each ground atom (p ~c) that occurs in the initial state, the
following is done:

forall sets C � f1; : : : ; ng do
increment T(p C)(~cjC)
endfor

(1)

Performing process (1), we count for all instances of p in the initial
state how often each combination of constants occurs for arbitrary
sets C of positions.

Definition 8 Let p be a predicate of arity n. Let ~a = (a1; : : : ; an)
be the argument vector of some partially instantiated occurrence of
p. With

C(~a) := fi 2 f1; : : : ; ng j ai is a constantg

we denote the positions where ~a is instantiated.

During instantiation, given a partially instantiated predicate (p ~a),
we determine the set C(~a) of positions where the argument vector
is occupied by constants. The appropriate table T(p C(~a)) is the
one corresponding to that set. The entry in this table that we want to
access is the one indexed by the constants in the current argument
vector ~a, i.e., by the restriction ~ajC(~a) of ~a to its constants.

Theorem 2 (Soundness of Tables)
Let the tables T be the result of performing process (1) for each fact
in the initial state. Then we have for each partially instantiated pred-
icate (p ~a):

N(p ~a) = T(p C(~a))(~ajC(~a)):

Proof:
Per definition, N(p ~a) = jf(p ~c) 2 I j (p ~c) unifies with (p ~a)gj.
We will show for each fact (p ~c) 2 I: When process (1) works on
(p ~c),

T(p C(~a))(~ajC(~a)) gets incremented , (p c) unifies with (p ~a)(�)

As process (1) is performed for each fact in I, the proposition follows
directly from (�), which remains to be shown.

): We prove the contraposition. Let (p0 ~c 0) be a fact in I that does
not unify with (p ~a). If p0 6= p, process (1) never even considers
the table T(p C(~a)). Otherwise, one entry in this table gets incre-
mented when the process reaches C = C(~a). But, as ~c 0 does not
unify with ~a, there is at least one constant in ~c 0jC(~a) that is different
from the corresponding constant in ~ajC(~a). Therefore, the table en-
try in T(p C(~a)) that gets incremented is different from the one for
~ajC(~a).

(: Let (p ~c) 2 I be a fact that unifies with (p ~a). When process (1),
working on (p ~c), reaches C = C(~a), the entry T(p C(~a))(~cjC(~a))

gets incremented. As ~c is a ground instance that unifies with ~a, we
have ~cjC(~a) = ~ajC(~a), so this entry is exactly T(p C(~a))(~ajC(~a)).

During the instantiation process it remains to find the correspond-
ing table entry in order to determine the correct value of N(p ~a).
Since constants are internally kept as numbers they can in principle
be used as indices into a table. However, to directly index into the ta-
bles, one would need to define tables of arbitrary dimension. Instead,
the implementation uses an implicit representation of the tables. The
appropriate address is computed by performing a sweep over the ar-
gument vector, which takes time O(nmax). As arities are usually
small, this running time is very close to constant anyway.

3.4 Ground Level Inertia

So far we have only considered the predicates which are never made
true or false by a planning operator. These were used to constrain the
instantiation process. Once the set of all actions has been determined,
one can similarly define the ground facts that are never made true or
false by one of the actions.

Definition 9 A ground fact is a positive ground inertia iff it does not
occur positively in an unconditional effect or the consequent of a
conditional effect of an action.

Definition 10 A ground fact is a negative ground inertia iff it does
not occur negatively in an unconditional effect or the consequent of
a conditional effect of an action.

An initial fact, which is a negative ground inertia, is never made
FALSE and thus always satisfied in all reachable world states. It can
be removed from the state description. All its occurrences in the pre-
conditions of actions and in the antecedents of conditional effects can
be simplified to TRUE.

A fact, which is a positive ground inertia and not contained in the
initial state, is never satisfied in any reachable world state. All its
occurrences in the preconditions of actions and in the antecedents of
conditional effects can be simplified to FALSE.

The remaining facts are fluents that, roughly speaking, can pos-
sibly change their truth value during the planning process. They are
therefore relevant to the representation of the planning problem.

Definition 11 A ground fact is relevant iff

1. it is an initial fact and not a negative ground inertia, or if
2. it is not an initial fact and not a positive ground inertia.

Using the table which corresponds to the fully instantiated case of
the process described in the previous section, one can find all rele-
vant facts by performing a single sweep over the initial state and the
effects of all actions.

The simplified actions and the set of all relevant facts are then used
by IPP to generate a bitvector representation for all states and ac-
tions, where each relevant fact corresponds to a position in a bitvec-
tor.

4 Simplification of Operator Representations

As we have already mentioned in the beginning, the instantiation
process creates copies of trees representing formulas and operators.
These trees can be simplified if one of their subtrees has been simpli-
fied to TRUE or FALSE, which can result from the atomic simplifi-
cations performed during the instantiation process. As soon as such
an atomic simplification has replaced an atomic formula by TRUE or
FALSE, the subsequently described non-atomic simplification oper-
ations are performed.4

:TRUE � FALSE

TRUE ^ ' � '

FALSE ^ ' � FALSE

TRUE _ ' � TRUE

FALSE _ ' � '

:FALSE � TRUE

' ^ ' � '

' _ ' � '

' ^ :' � FALSE

' _ :' � TRUE

Figure 7. Implemented Simplifications for First-Order Formulas.

4 They are also performed once directly after having parsed the domain and
problem file.

The first-order formulas which represent the preconditions of op-
erators and the antecedents of conditional effects are simplified based
on the well-known tautologies as shown in Figure 7. Besides this,
IPP implements the following simplifications:

1. If a quantified variable does not occur in the quantified formula,
the quantifier is removed, i.e., 8 ?x '(?y) is simplified to '(?y).5

2. If a quantified variable ?x has an unknown type, which has not
been declared in the :types field of the domain file or if it has an
empty type, for which no constant has been declared in the prob-
lem file, then the quantified formula is replaced by TRUE in the
case of a universal quantifier and by FALSE in the case of an ex-
istential quantifier.

3. An equality between two identical variable names, ?x =?x, is
simplified to TRUE. An equality between two identical constants,
c1 = c1, is also simplified to TRUE. If the constants are different,
i.e., c1 = c2, the equality is simplified to FALSE. In a fully instan-
tiated formula, all occurrences of equalities have been replaced by
TRUE or FALSE.

The simplification of first-order formulas can reduce a whole pre-
condition, antecedent or consequent to TRUE or FALSE. In this
case, the operator description can be simplified:

1. If the antecedent of a conditional effect becomes FALSE, the con-
ditional effect is removed from the operator. In this case, the effect
is never applicable because it requires FALSE to hold, i.e., the
state must be inconsistent.

2. If the antecedent of a conditional effect becomes TRUE, the con-
ditional effect becomes unconditional.

3. If the consequent of a conditional effect becomes TRUE, the con-
ditional effect is removed because it does not lead to any state
transition.

4. If the precondition or the unconditional effect of an operator be-
comes FALSE, the whole operator is removed from the domain.

5. If an operator has only TRUE as its unconditional effect and no
conditional effects, then the whole operator is removed.6

In the final set of actions, to which no simplifications can be applied
anymore, all unconditional effects are merged into a single conjunc-
tion of literals and all conditional effects with identical antecedents
are merged into a single conditional effect.
IPP also implements various syntax checks that help to develop
proper domain representations:

1. An operator is removed (a warning is issued, but planning con-
tinues) if an operator parameter is declared using an unknown or
empty type.

2. A parameter is removed from the operator description (a warning
is issued, but the operator remains in the set) if it is declared, but
nowhere used in the preconditions or effects.7

IPP aborts the instantiation process if it encounters one of the fol-
lowing situations:

5 Unused quantified variables will usually not appear in the initial domain
description. They can, however, appear as a result of atomic simplifications.

6 Removing effects or whole operators can possibly turn fluents into inertia,
i.e., one could repeat the whole analysis procedure again. However, such
a phenomenon was not observed in any planning domain and therefore it
seems not worth to invest the effort into such a fixpoint computation.

7 Just like unused quantifiers, this can also happen as a result of simplifica-
tions.

1. A predicate symbol is overloaded. PDDL requires the declaration
of predicates, their arity and the types of their arguments. When
parsing the domain and problem files, IPP verifies that all occur-
rences of a predicate meet the declaration.

2. An equality statement occurs in an unconditional effect or in the
consequent of a conditional effect.

3. An equality statement has less or more than two arguments.
4. A variable occurs that is neither declared as a parameter nor bound

by a quantifier.
5. A constant occurs that has not been declared in the problem file.

5 Encoding Unary Inertia as Types

Many domains, in particular all STRIPS domains used in the 1998
AIPS planning competition contain unary inertia. These are predi-
cates of arity one, which satisfy Definitions 1 and 2 and thus do not
occur in any of the effects. In other words, the set of constants c that
can ever (and will always) satisfy (p c) is exactly the set of constants
occurring as the arguments of the instances of p in the initial state.

Obviously, this set can be seen as the encoding of type information
because the single variable argument of p can only be instantiated
with one of these constants if we want to obtain a possibly satisfiable
atomic formula. As a matter of fact, in the STRIPS domains from
the planning competition, all unary inertia where intended to provide
implicit type information, as there are no explicit types given in clas-
sical STRIPS, see Figure 8 for an example.

One can easily make this implicit type information explicit and re-
move all unary inertia from the domain description. The previously
described instantiation process that identifies and simplifies inertia
will also achieve the desired simplification of unary inertia, because
they are simply a special case wrt. the length of the argument vec-
tor. However, doing it this way, the algorithm repeatedly generates
copies of formula trees, only to find out that it can remove them im-
mediately afterwards because they use the “wrong objects” in some
unary inertia. For example, when instantiating the set of actions for
the problem strips-log-x-9 from the logistics domain used in
the competition, 55088 actions are generated for which the instanti-
ation procedure needs 527 seconds.

:action load-truck
:parameters (?obj ?truck ?loc)
:precondition (and (obj ?obj) (truck ?truck)

(location ?loc) (at ?truck ?loc)
(at ?obj ?loc))

:effect (and (not (at ?obj ?loc)) (in ?obj ?truck))

Figure 8. The load-truck operator from the logistics domain. Note the
untyped parameters and the underlined unary inertia predicates that

implicitly encode the type information.

Consequently, there is the need for a further optimization of the
instantiation process, which can be achieved through a separate treat-
ment of unary inertia. The optimization, which is described in detail
in this section, encodes all the unary inertia obj, city, truck, airplane,
location and airport directly as types, which restrict the instantiation
possibilities for the arguments of the operators. Running time for this
example decreases down to 63 seconds.8

8 The instantiation procedure implemented in IPP 3.3 that has been used
in the competition is still a bit faster: It needs only 52 seconds for this

We now give a precise notion of how implicit type information
can be made explicit. First, for each unary inertia predicate p the new
type symbol �p for the type corresponding to p is introduced.

Definition 12 Let p be an inertia predicate of arity 1. The type �p
corresponding to p is defined as the type whose domain comprises
all constants c for which (p c) holds in the initial state I:

dom(�p) = fc j (p c) 2 Ig

New types can be constructed from other types by intersecting or
subtracting from each other the corresponding sets of constants.

Definition 13 Let �1 and �2 be type names. Then �1 \ �2 and �1 n �2
are new type names. Their domains are defined as:

dom(�1 \ �2) = dom(�1) \ dom(�2)

dom(�1 n �2) = dom(�1) n dom(�2)

After having extracted all types �p for unary inertia p from the
initial state, the type structure of the domain representation is refined
with the types �p and types that can be constructed from them.

Definition 14 Let o be some operator and ?x be one of its parame-
ters. Let p be a unary inertia. If (p ?x) occurs in the preconditions of
o or in the antecedent of one of its conditional effects, o is replaced
by two new operators o1 and o2:

� In o1, the type � that has been declared for ?x is restricted to
� \ �p and all occurrences of (p ?x) are replaced with TRUE.

� In o2, the type � that has been declared for ?x is restricted to � n�p
and all occurrences of (p ?x) are replaced with FALSE.

Similarly, quantified formulas in preconditions or antecedents of
conditional effects are replaced.

Definition 15 Let ' = 8 ?x : � be some universally quantified
formula containing a unary inertia p with argument ?x of type � . The
formula ' is replaced with '0 defined as

'0 = 8 ?x : � \ �p [(p ?x)=TRUE] ^

8 ?x : � n �p [(p ?x)=FALSE]

Let ' = 9 ?x : � be some existentially quantified formula con-
taining a unary inertia p with argument ?x. Then ' is replaced with
'0

'0 = 9 ?x : � \ �p [(p ?x)=TRUE] _

9 ?x : � n �p [(p ?x)=FALSE]

In the definition above, [(p ?x)=TRUE] and [(p ?x)=FALSE]

denote the formulas, which are obtained from if all occurrences of
(p ?x) have been replaced with TRUE and FALSE, resp.

The soundness of the replacements follows from the observation
that under the restriction � \ �p the atomic formula (p c) is always
TRUE because only constants c are considered which are also in
dom(�p). Under the restriction � n �p only constants c 2 dom(�)

are considered that are not members of dom(�p) and thus (p c) is
always FALSE.

We formally state the soundness of the replacements for univer-
sally quantified formulas.

example. However, this procedure uses a specialized algorithm which is
only capable of handling conjunctive preconditions, and it generates a total
of 62261 actions because no test for ground inertia is performed.

Theorem 3 (Soundness of Type Encodings)
Let p be a unary inertia predicate. Let ' = 8 ?x : � be a formula
with (p ?x) being a subformula of . Let '0 be the formula ' gets
replaced with according to Definition 15. Then, for any state s that
is reachable from the initial state holds

s j= ' , s j= '0

Proof:
From the definition of �p we know that all constants c 2 �p occur
as arguments of p in the initial state, i.e., N(p c) = 1. For those
constants c 62 �p, we have N(p c) = 0. With Definition 6 and Theo-
rem 1, we get for all states s that are reachable from the initial state:

(1) s j= (p c) for c 2 �p

(2) s 6j= (p c) for c 62 �p

From this, we can immediately conclude for all states s that are
reachable from the initial state:

(3) s j= , s j= [(p ?x)=TRUE] for c 2 �p

(4) s j= , s j= [(p ?x)=FALSE] for c 62 �p

Thus, for any such state s

s j= 8?x : � , for all c 2 � : s j= [?x=c]

, for all c 2 � \ �p : s j= [?x=c] and
for all c 2 � n �p : s j= [?x=c]

(3) and (4) , for all c 2 � \ �p : s j= [(p ?x)=TRUE] and
for all c 2 � n �p : s j= [(p ?x)=FALSE]

, s j= 8 ?x : � \ �p [(p ?x)=TRUE] ^
8 ?x : � n �p [(p ?x)=FALSE]

As the last formula is exactly '0 as defined in Definition 15, the
proposition follows.

The soundness of the type encoding follows from the fact that the
modified operator set with the newly introduced types has exactly the
set of ground instances, which is generated by the instantiation pro-
cedure using inertia and performing atomic simplifications that we
described in the previous section. The soundness of the replacement
of existentially quantified formulas follows with similar arguments
as in the universally quantified case.

As an example, let us consider the operator from Figure 8 again.
As there is no explicitly defined type for any of the three parameters
they are assigned the default type object. When examining the first
parameter ?obj, IPP finds that it is used in the unary inertia predicate
obj. Therefore, it generates two copies of the operator, restricts the
parameter types according to Definition 14, and performs the cor-
responding atomic simplification of the unary inertia. The result is
shown in Figure 9.

In the first operator, the atom TRUE can obviously be removed
from the conjunction, which leads to a simplified precondition. As all
constants in the STRIPS logistics problems are defined to be of type
object, the domain dom(object \ �obj) = dom(�obj) comprises
exactly those constants c for which (obj c) is contained in the initial
state.

In the second operator, the first atomic precondition has been re-
placed by FALSE as no constant in dom(object n �obj) can satisfy
(obj c). Thus, the whole precondition of this operator simplifies to
FALSE and it can be removed from the operator set as it will never be

:action load-truck (1)

:parameters (?obj - object \ �obj ?truck ?loc)
:precondition (and (TRUE)

(truck ?truck) (location ?loc)
(at ?truck ?loc) (at ?obj ?loc))

:action load-truck (2)

:parameters (?obj - object n�obj ?truck ?loc)
:precondition (and (FALSE)

(truck ?truck) (location ?loc)
(at ?truck ?loc) (at ?obj ?loc))

Figure 9. Parameters and preconditions of the two new load-truck
operators, which result from the encoding of the unary inertia predicate obj

as a type.

applicable. Note that in the case of arbitrary first-order preconditions
one cannot usually expect that operators can be removed immediately
just after they have been generated.

Repeating this process for the other two parameters, always the
second copy is removed immediately after it has been generated and
thus IPP obtains the final representation of the load-truck operator,
which is shown in Figure 10.

:action load-truck
:parameters (?obj - object \ �obj

?truck - object \ �truck
?loc - object \ �location)

:precondition (at ?truck ?loc) (at ?obj ?loc))
:effect (and (not (at ?obj ?loc)) (in ?obj ?truck))

Figure 10. The new operator load-truck , which results from the encoding
of all unary inertia as types and which replaces the original operator

representation. This operator is identical with the one that is used in the
typed version of this domain.

The encoding of unary inertia as types is one possibility of how
type information can be used to reduce the search space of a planner.
TIM [1] implements additional sophisticated type analysis methods,
but currently limited to STRIPS. The extension of this work to ADL
and its combination with the instantiation method that is described in
this paper remains a subject of future work.

6 Empirical Results

Many examples could be presented, which nicely illustrate the bene-
fits of an instantiation procedure that takes inertia into consideration.
For example, in the movie domain used in the planning competition,
5 operators are declared to get snacks: get-chips, get-dip, get-pop,
get-cheese, get-crackers. Each of them has a similar description, of
which we only exemplify the get-chips operator:

get-chips
:parameters (?x - chips)
:precondition
:effect (have-chips).

One observes that the parameter ?x is not used anywhere in the op-
erator description. If for example, 9 different constants are declared

for each kind of snack, one obtains 9 ground instances of each oper-
ator, which are all identical and spam the search space of the planner.
In all movie problems, the goals are reachable at time step 1, but a
plan can only be extracted at time step 2, i.e., a permutation of all
actions at time step 1 is performed by the complete search algorithm.
Not very surprisingly, this takes almost 3 s in IPP 3.3 on a Sun Ul-
tra 1/170 because 250973 actions must be tried before a solution is
found. In contrast to this, when detecting the unused parameter, only
one instance is generated for each operator, which dramatically re-
duces the search space down to 29 actions and thus a plan is found in
only 0.06 s.

In the assembly domain, operators can be dramatically simplified
because they contain so many inertia. For example, the complex pre-
condition shown in Figure 1 uses 7 different predicates, but 5 of them
are inertia. This means that each precondition must simplify to a for-
mula only mentioning the fluents incorporated and committed. For
many actions, the precondition reduces to a single atomic formula
using only the incorporated predicate. IPP 4.0 is thus able to solve
some assembly problems, while previous versions failed already dur-
ing the instantiation, see Figure 11 for selected results.

problem actions cpu sec. search space
assem-x-1 114/760 1742.43 64 673 043
assem-x-2 84/882 18.03 848 829
assem-x-3 190/1248 0.83 108
assem-x-6 118/1800 46342.80 1 283 078 957

Figure 11. Performance of IPP on assembly problems on a Sun Ultra
1/170.

Column 2 shows the number of generated actions using the in-
stantiation process with inertia compared to the number of all possi-
ble actions using naive enumeration. The search space is measured
in the number of actions IPP tries until it finds a plan. The solution
plans involve between 31 and 38 actions, but require only between 10
and 18 time steps, i.e., they involve quite some parallelism. Several
other problems from this domain can be proven as unsolvable.

The determination of ground inertia helps IPP to discover infor-
mation that it would not be able to find if only inertia predicates were
analyzed. An interesting example of this behavior occurs in the tower
of Hanoi domain. Given the operator

move(?disc,?from,?to: disc)
:precondition (and (smaller ?to ?disc)

(on ?disc ?from) (clear ?disc) (clear ?to))
:effect (and (clear(?from) (on ?disc ?to)

(not (on ?disc ?from)) (not (clear ?to))

which describes a legal move of discs, one notices that only a
smaller disc can be moved onto a larger disc. IPP discovers that
smaller is an inertia predicate and only generates the appropriate ac-
tions. But the action set also contains moves, which take a disc from a
smaller disc and put it on a smaller disc. Indeed, the operator descrip-
tion says nothing about the relationship between the disc ?from and
the moving disc ?disc, i.e., a move that takes a disc from a smaller
disc and puts it on another smaller disc seems to be a legal action.

When performing the analysis of inertia on the ground level, IPP
is able to find out that such moves are impossible. It detects that all
instances of (on ?disc ?from), where ?disc is larger than ?from are
never made true by any action, i.e., they are positive inertia, and they

do not hold in the initial state. Thus, these facts are unsatisfiable and
all preconditions using them can be simplified to FALSE. Since all
actions with FALSE as a precondition are removed from the action
set, a further reduction of the size of the planning graph is achieved.
For example, in the case of 3 discs, 10 out of 48 actions are elimi-
nated. In the case of 8 discs, 140 out of 468 actions are removed. A
search space of only 295.535 actions results and the plan of 255 steps
is found in only 16 seconds.

7 Conclusion

The generation of the set of all ground actions for a given set
of expressive ADL operators is a complex process which heav-
ily influences the performance of any planner or pre-planning
analysis method. The implementation comprises more than 5000
lines of C code and is available from the IPP webpage at
http:www.informatik.uni-freiburg.de/˜ koehler/ipp.html in the re-
lease of IPP 4.0. We hope that the instantiation procedure will be-
come a useful part of reusable code that helps other researcher teams
in setting up their own planners more quickly and without dealing
with the burden of reimplementing the same preprocessing proce-
dures again and again.

REFERENCES
[1] M. Fox and D. Long, ‘The detection and exploitation of symmetry in

planning problems’, in Proceedings of the 16th International Joint Con-
ference on Artificial Intelligence, pp. 956–961. Morgan Kaufmann, San
Francisco, CA, (1999).

[2] H. Geffner. HSP: A heuristic search planner. web documentation, 1999.
[3] J. Hoffmann, ‘A heuristic for domain independent planning and its use

in an enforced hill-climbing algorithm’, in 12th International Sympo-
sium on Methods for Intelligent Systems, (2000).

[4] H. Kautz and B. Selman, ‘Pushing the envelope: Planning, proposi-
tional logic, and stochastic search’, in Proceedings of the 14th National
Conference of the American Association for Artificial Intelligence, eds.,
D. Weld and B. Clancey, pp. 1194–1201. AAAI Press, (1996).

[5] J. Koehler, ‘Solving complex planning tasks through extraction of sub-
problems’, in Proceedings of the 4th International Conference on Ar-
tificial Intelligence Planning Systems, ed., J. Allen, pp. 62–69. AAAI
Press, Menlo Park, (1998).

[6] J. Koehler and J. Hoffmann, ‘Handling of inertia in a planning system’,
Technical Report 122, Albert-Ludwigs-University, (1999). available at
http://www.informatik.uni-freiburg.de/˜ koehler/ipp.html.

[7] J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos, ‘Extending
planning graphs to an ADL subset’, In Steel [13], pp. 273–285.

[8] J. Koehler and K. Schuster, ‘Elevator control as a planning problem’,
in Proceedings of the 5th International Conference on Artificial Intelli-
gence Planning and Scheduling, eds., S. Chien, S. Kambhampati, and
C. Knoblock, pp. 331–338. AAAI Press, Menlo Park, (2000).

[9] D. McDermott. Planning competition benchmark problems. web doc-
umentation, http://www.cs.yale.edu/users/mcdermott.hmtl, 1998.

[10] D. McDermott et al., The PDDL Planning Domain Definition Lan-
guage, The AIPS-98 Planning Competition Comitee, 1998.

[11] B. Nebel, Y. Dimopoulos, and J. Koehler, ‘Ignoring irrelevant facts and
operators in plan generation’, In Steel [13], pp. 338–350.

[12] E. Pednault, ‘ADL: Exploring the middle ground between STRIPS and
the Situation Calculus’, in Proceedings of the 1st International Con-
ference on Principles of Knowledge Representation and Reasoning,
eds., R. Brachman, H.J. Levesque, and R. Reiter, pp. 324–332, Toronto,
Canada, (1989). Morgan Kaufmann.

[13] S. Steel, ed. Proceedings of the 4th European Conference on Planning,
volume 1348 of LNAI. Springer, 1997.

[14] B. Williams and R. Nayak, ‘A reactive planner for a model-based ex-
ecutive’, in Proceedings of the 15th International Joint Conference on
Artificial Intelligence, pp. 1178–1185. Morgan Kaufmann, San Fran-
cisco, CA, (1997).

