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Preface

The areas of planning, scheduling, and design are
sharing methodologies and often use the same or
similar Al based techniques. However, the
communities do not overlap and joint meetings are
rather rare. The workshop therefore aims to provide a
platform for the exchange of ideas, concepts, and
problems between researchers and practitioners from
the areas of planning, scheduling, design and
configuration.

The workshop will be held from 21. - 22. August
2000 in Berlin as one of the workshops at the
European Conference on Artificial Intelligence (ECAI
2000). It is aso the 14th in a series of workshops of
the specia interest group on planning, scheduling and
design (PuK) of the German Gesellschaft fir
Informatik. The workshop will also be organized as a
PLANET related meeting and receive special support
by PLANET (the european network of excellence in
planning (link: http://planet.dfki.de/)).

Within the workshop researchers and practitioners
present and discuss new approaches, systems and
problem areas in planning, scheduling, design and
configuration. Traditionally, the focus is on Al related
topics including knowledge representation and
problem solving as well as system design.

Topics of interest include but are not limited to:

» Applications and architectures:
empirical studies of existing systems; new and
prototypical systems, modeling of planning/
scheduling/ design systems; user interfaces.

* Knowledge representation and problem solving
techniques:
domain-specific techniques; heuristic techniques;
distributed problem solving; constraint-based

techniques, iterative improvement; integrating
reaction and user-interaction.
e Learning:

learning in the context of planning, scheduling and
design.

From the papers submitted the international program
committee has selected 18 for presentation in the
workshop. The papers provide a good mix of planning
and scheduling as well as design related topics. We
hope that the ideas and approaches presented in the
papers and presentations will lead to a fruitful
discussion and will inspire research and development
in all of the participating research directions.

Berlin, August 2000

Jurgen Sauer, Jana Kohler
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A hybrid hierarchical/operator-based planning approach
for the design of control programs

L. Castillo and J. Fdez-Olivares and A. Gonzilez!

Abstract.

The design of a control program is a complex process whose re-
sult must satisfy very restrictive constraints imposed by new man-
ufacturing systems needs as flexibility, quick response, correctness
and low-cost building process. Current Al Planning approaches for
the synthesis of control programs are proving to be very useful to
satisfy these needs. But they have to be extended in order to build ef-
ficient and realistic systems which obtain truly real world solutions.
Thiswork presents an approach in this direction which mixes hierar-
chical and POCL techniques in order to build an architecture closer
to the way that control engineers reason in order to design a control
program. The utility of this approach is shown along this paper.

1 INTRODUCTION

The design of a correct and complete industrial control program is
a process which involves different sources of knowledge and whose
final result is a sequence of control actions [6]. Concurrency, condi-
tional branches, soundness, security and flexibility are some of the
features that these sequences are expected to have.

The design process of a control program with these features is
very complex, even for human programmers. Traditionally control
engineers use different methodologies, standards, formal tools and
computer utilitiesto carry out thistask. The | SA-SP88 [13] standard
(Figure 1) is one of such methodologies used to hierarchically de-
sign control programs for manufacturing systems. This standard al-
lows for a hierarchical specification of physical, process and control
models of a manufacturing system.
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Figure 1. Physical, Process and Control Model of SP88.

1 Departamento de Ciencias de la Computacion e Inteligencia Artificial,
E.T.S. Ingenieria Informética. Universidad de Granada, 18071 Granada,
SPAIN, email: L.Castillo,Faro,A.Gonzalez@decsai.ugr.es

Starting from a hierarchical physical model and from a process
specification (recipe) at the higher abstraction level, a control engi-
neer obtains a modular control program at different levels of granu-
larity. There are formal tools as GRAFCET [12] for the representa-
tion and specification of such programs.

These methodologies used by control engineers to develop con-
trol programs are useful and necessary, buy they are not sufficient
if we take into account reguirements as flexibility and quick re-
sponse in new generation manufacturing systems [7]. The applica
tion of Al Planning techniques for the synthesis of control programs
or operating procedures in manufacturing systems is a promising
technology that meets these requirements. Although at present it is
in an initial stage [5], interesting approaches have been carried out
([1, 6, 14, 20Q]). These techniques are proving to be very useful, al-
lowing for an error-free, fast and low-cost building process of control
programs.

Not all of these approaches are based on hierarchical planning
techniques [8, 10, 18], which are useful to represent the hierarchical
structure of devices and their operation in manufacturing systems. In
addition, hierarchical techniques are closer to the way in that control
engineers

e represent a control program (modular and hierarchically), and
e reason in order to find the sequence of instructions of the control
program.

In this sense, this work presents a planning approach which em-
ploys hybrid POCL and hierarchical planning techniques in order to

e Represent anindustrial plant asadevice hierarchy at different lev-
els of granularity, which accepts SP88 descriptions, providing a
friendly input level for control engineers, and

e autonomously develop control programs for manufacturing sys-
tems following a hybrid planning process (POCL +hierarchical),
which resultsin a hierarchy of control sequences (plans) at differ-
ent levels of detail, closer to the way that humans develop modu-
lar industrial control programs and, thus, providing a more under-
standabl e output.

In the next section we will show some related work and, after-
wards, we will describe our approach.

2 RELATED WORK

Apart from the partial-order planning approaches mentioned in pre-
vious section, one of the more recent hierarchical approaches can
be found in [20]. It is a general planning framework for the syn-
thesis of operating procedures following a top-down methodology.
The knowledge representation scheme is a trandlation of the SP88



Figure 2. A Manufacturing System.

standard, which allows for creating a procedural knowledge base at
different abstraction levels. The planner then applies basic HTN [8]
techniques in order to find a low level procedure which meets the
process of products introduced as problem.

In this system the user has to introduce a great deal of knowledge
to solve aproblem, and the main role iseft to the representation and
management of the procedural knowledge base. Therefore, the plan-
ner, and thus the autonomy of the approach, isonly avery small part
of the whole system, and its operation lies on a static combination of
procedures at different abstraction levels where problems as detec-
tion of conflicts, preservation of invariants, and even order relations
(between procedure steps) must be hand coded by end users.

However, in order to obtain a efficient and realistic system that
applies hierarchical planning techniques, it is necessary to reduce the
amount of work that a control engineer has to do in order to describe
amanufacturing domain, and in order to find a program that control
its operation.

In addition, the control program obtained must have a sufficient
level of detail such that it incorporates every necessary action to carry
out a correct execution. Present approaches for the synthesis of op-
erating procedures [1, 14] or machining process [16] do not obtain
complete and realistic solutions in this sense because plans obtained
are operation procedures intended to be executed by human opera-
tors, thus they lack of the necessary level of detail to be considered
control programs and executed by a computer, or they are only fo-
cused in asmall part of the overall manufacturing system.

The approach we present mixes hierarchical knowledge and rea-
soning aspects with POCL techniques in order to reduce the user
effort in the domain description and problem solving phases, and
aso, in order to obtain complete plans so that they can be consid-
ered hierarchical control sequences, which can be easily trandated
into standard representations of control programs.

Next sections describe in detail our approach. Section 3 is devoted
to describe how to represent a manufacturing domain as a hierarchy
of agents, and how the knowledge about the behavior and properties
of agents is inherited between different abstraction levels. In sec-
tions 4 and 5 we show the problems and plans representation of our
approach. Section 6 introduces the planning algorithm and the re-
maining sections show the future work and conclusions about this
approach.

3 DOMAIN REPRESENTATION

Our planning architecture conceives a plant as a multi-agent domain
(see Figures 2 and 3) where every agent represents the knowledge
about the relevant properties and behavior of every factory device.

Some aspects of the knowledge representation and planning algo-
rithm here presented are based on a previous system (MACHINE
[6]), which uses anon-hierarchical agent centered domain model for
representing a manufacturing system. In MACHINE the behavior of
every agent is described as an automaton and every transition of the
automaton is represented as a control activity (Figure 4), using an
expressive and rich language in order to represent actions as inter-
vals and, in addition, to manage different kinds of conflicts and in-
terferences which may arise in complex domains like manufacturing
systems.

ACTIVITY
PROPERTIES
: ARGS: Motor1
NAME:Motor1 REQUIREMENTS EFFECTS

VARS:?PROD,?FROM,?TO
SENSORS: None
BEHAVIOR

STATES: On1, Off1, On2, Off2
CONTROL ACTIVITIES:

ON1, OFF1, ON2, OFF2

PREVIOUS: (STATE MOTOR1 OFF1) |(STATE MOTOR1 ON1)
(LOC ?PROD ?FROM) (LOC ?PROD ?TO)
SIMULTANEOUS: (NOT (STATE MOTOR1 OFF1)

) ki
STATE MOTOR2 OFF2) (NOT (LOC 7PROD 7FROM)
LATER: (STATE MOTOR1 OFF1)

Figure 4. Structure of a primitive Agent.

In this approach, aplanning domain is a hierarchy of agents where
the root (a "dummy” agent) represents the whole plant (Figure 2),
leaf nodes are primitive agents corresponding to the field devices of
the plant and intermediate nodes are aggregate agents, i.e., agents
whose structure and behavior are described at higher abstraction lev-
els and which represent a composition of a set of agents at lower
levels of abstraction.

Hence, a manufacturing domain is structured at different abstrac-
tion levels. Lowest level agents are represented as shown in Figure 4
and its actions are called primitive activities intended to be executed
by adevice.

An aggregate agent isrepresented as shown in Figure 5. An aggre-
gate activity is represented as a primitive one but with an additional
property called expansion. An example of an aggregate agent and its
components can be seen in Figure 6.

The expansion slot of an aggregate activity is used to specify dif-
ferent ways to carry out that activity. These alternative ways are de-
scribed as a set of different methods 2 where every method is rep-
resented by a set of literals (which can be ordered) representing a

2 Not in the strict sense of HTN.
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Figure 5. Structure of an Aggregate Agent.

problem to be solved by the agents of the next abstraction level (see
Figure 7).

o

Handler
L] ]
Grasp
Motor1 Motor2

Figure 6. The Handler Aggregate Agent.

In the next section we show how relations between agents and
activities at different levels of detail are represented.

Figure7. The Expansion Slot of an Aggregate Activity.

3.1 Levelsof abstraction and knowledge
inheritance

Every aggregate agent of a hierarchical domain is composed of a set
of agents at alower level of abstraction (or higher level of granular-
ity [11]) and it is part of another agent at a higher abstraction level.
Hence, properties, activities, states and literals of every agent have
an abstraction level associated with them.

Properties and behavior of agiven aggregate agent arerelated with
those of its components by means of the interface of the aggregate
agent. The interface is actually a set of constraints inheritance rules
which defines how variables of every component agent inherit their
domains and constraints from the ancestor agent (Figure 8).

The aggregate activities of an aggregate agent (its behavior) are
represented at a greater grain size than the activities of its compo-
nents. For example, the activities of the agents UpDown, LeftRight
and Grasp (see Figure 3) have a lower grain size than the activities
of the agent Handler. The effects of activity H-RIGHT of the agent
Handler are

(LOC Handler Position2),(STATE Handler Carried).

These literals have avery low level of granularity, and they corre-
spond with the real situation in which the Handler agent is up and
over the Truck, it grasps a piece and it moves to its right. The effects
of activity LR-RIGHT of the agent LeftRight are

(LOC Handler Position2), (LOC LeftRight Position2),(STATE
LeftRight Right),
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Figure8. Properties and constraints inheritance.

which have a higher level of granularity and which mean that the
LeftRight agent is at the same position of the Handler agent and,
sinceit is a different agent, its state is moving to itsright.

As can be seen, the literals of the requirements and effects of an
aggregate activity of an agent may have a different granularity level
than the ones of its component agents, and also it is possible that
literals of a given granularity level may be different from literals of
higher or lower granularity levels.

So, in order to maintain the coherence between different granular-
ity levels activities and literals at different levels must be associated
somehow.

The correspondence between a given aggregate activity of an ag-
gregate agent and the activities of its components, and between their
different granularity literals, is based on an activity expansion pro-
cess where the aggregate agent’sinterface and also the expansion slot
of the aggregate activity play the key role. The process is described
asfollows:

e The expansion slot of an aggregate activity of an aggregate agent
is represented as a set of methods, where every method is a set of
literals at the aggregate granularity level which represents a prob-
lem to be solved by the activities of its component agents.

e The literals of these activities have a different granularity, so the
activity expansion process applies the rules of the interface of the
aggregate agent to every literal in order to articulate the change
of granularity. Hence, the interface works as an articulation func-
tion [11], between abstraction levels, as follows: every subgoal
of a method of an aggregate activity a, of an aggregate agent g
is represented as a literd (f1 z1 ... z,) where every argument
x; has a domain and constraints at the abstraction level of ay,
then applying the function to this literal will result in anew literal

(foy1 - ym)

(fi @1 ... Tp) i'f;)(fg Y1 e Ym)

at a higher level of granularity where every argument v; isanew
argument whose domain and constraints must be consistent with

the new granularity level. Thisliteral represents a new subgoal to
be solved by the activities of the components of g.

(Loc
Handler
Position2),

HANDLER
INTERFACE

H-RIGHT
(HANDLER)

o DEFAULT
METHOD

(STATE
Handler
Carried)

(STATE
LeftRight
Right)

Figure9. Expansion of Aggregate Activity.

Following this process we obtain a set of literals of lower granu-
larity that represent a problem which must be solved by the activities
of the component agents of g by means of a generative process.

In addition, the expansion has aways at least a default method
whose literals are the set of effects of the activity. So, a default and
domain independent expansion process can always be applied for ev-
ery aggregate activity. Figure 9 shows an example of expansion using
a default method. The effects of the activity H-RIGHT of the agent
Handler are the subgoals of the method, and they are mapped by its
interface and translated into aset of different literalsat ahigher level
of granularity. These new literals must be solved by the activities
of the agents LeftRigh, UpDown and Grasp at the lower abstraction
level.

In addition to this model, the architecture provides a predefined
hierarchy of generic classes of aggregate and primitive agents in or-
der to simplify the task of building planning domains, in such away
that every specific agent of the domain is described as an instance of
aclass of agents (like adrag & drop operation).

Thismodel of agents and actions differs of HTN [8] techniquesin
that expansions (reductions) are not predefined and static substitution
rules but a domain independent and dynamic generative process. It
also differs from hierarchies of abstraction spaces since sets of oper-
ators and literals may be different from an abstraction level to each
other. This is because abstraction levels of the proposed hierarchy
are based in an increasing semantic granularity instead of in literal
dropping asin[15, 18].

It possibly looks like models of action in SIPE [21] and OPlan
[19], however, their decomposition of actions is defined by the user
(plots in SIPE), while in our model the use of an interface between
an aggregate and its components and also the expansion of aggregate
activities allows for a well defined decomposition by means of the
articulation function and default methods, without any participation
of the user.

In next sections we will describe the problems and plans represen-
tation used in this architecture.

4 PROBLEMSREPRESENTATION

A problem description is a specification of process on products, i.e.,
arecipe. In our architecture, a problem is represented as an ordered
set of literals which represents the process to be carried out by ag-
gregate agents of highest abstraction level. As can be seen at the top
of Figure 11 (Step 0) the set of literalsreceived asinput by the algo-
rithm represents the ordered set of operations (in SP88 a procedure



HYBRID (Domain, Level, Agenda, H—Plan)
It Agenda is Empty
Then
If PrimitivePlan?( H—Plan [Level])
Return H—Plan
Else
1. RefAlternatives = How ToR€&ine? (Donmain, H-Plan)
2. Wiile Ref Alternatives is not Empty
2.1 How= Extract (Ref Aternatives)
2.2.REFINE (Dormain, How Level, Agenda, H—Plan)
2.3.Result = HYBRID (Domain, Level, Agenda, H—Plan)
2.4.1f Result # FAIL
Then Return Result
3. Return FAIL
Else
Result = GENERATE (Domain, Level, Agenda, H—Plan)
I Result = FAIL
Then Return FAIL

Else Return HYBRID (Domnain, Level, Ajenda, H—Plan)

Figure 10. The hybrid planning process

recipe) to be carried out by the highest level agents of the manufac-
turing system represented in Figure 3, that is, a piece must be located
in the truck, then it is heated and, finally, it is pressed.

5 PLANSREPRESENTATION

A plan obtained by this architecture is a hierarchy of control se-
guences (plans) at different levels of granularity, that is, a hierarchi-
cal plan. Every level in a hierarchical plan is a sequence of control
activities to be carried out by agents at the same or higher abstrac-
tion level. Thelast level of the plan is asequence of primitive control
activities (Figure 11).

Every aggregate activity a of an aggregate agent g in a plan level
has associated a set of lower level activities of the components of g,
which have a causal relation between them and which solves the ex-
pansion of a. Hence, aplan can be seen asamodular control program
that can be easily translated into standard representations of modular
control programs like GRAFCET [12] .

The architecture obtains such a plan following the planning pro-
cess described in the next section.

6 PLANNING PROCESS

The planning process is a generative and regressive planning algo-
rithm at different levels of detail such that single level plans at higher
granularity are refined into lower granularity plans, until no aggre-
gate activities exist on the lowest abstraction level of a hierarchical
plan. The generative process is based on a previous non-hierarchical
planner [6].

The input to this process is a hierarchical domain and a recipe at
the highest abstraction level (aprocedure level recipein SP88, Figure

1). That recipe is preprocessed in order to build a hierarchical plan
H-Plan with a single abstraction level, containing a set of literals
which represent the problem stated by the recipe. As can be seen
in Figure 10, the hierarchical domain Domain, theinitial abstraction
level Level (the highest one is 1), an initialized task agenda Agenda
and the initial hierarchical plan H-Plan are passed as inputs to the
hybrid algorithm. Then it proceeds as follows:

e First, by means of a generative process it obtains a sequence of
control activities to be carried out by the highest level agents.

e Second, if the sequence obtained is only composed by primitive
activities then the problem is solved. Otherwise, the sequence is
hierarchically refined, that is, the algorithm expands every aggre-
gate activity, according to itsagent interface and its default method
or any other method specifically defined, obtaining a new lower
level problem.

e Third, the algorithm recursively proceeds to solve the new prob-
lem by the agents at the next level.

Thisisavery general description of the algorithm but, the follow-
ing describes some important details about the more relevant func-
tions and procedures involved in the al gorithm.

HowToRefine?. The result of this function is alist of refinement
aternatives of activities which actually represents a heuristic for re-
fining a hierarchical plan H-Plan, given a hierarchical domain Do-
main. Depending on the returned heuristic, the behavior of the hy-
brid algorithm may vary between an ABSTRIPS and an HTN-like
behavior. Although many heuristics may exist, the function may re-
turn always a default heuristic. This default heuristic is represented
by alist with a single element, and its application by the procedure



REFINE resultsin the expansion of all activities of a given abstrac-
tion level, in H-Plan, by means of their default method.

REFINE. This procedure applies the above described activity ex-
pansion process to the aggregate activities of a hierarchical plan H-
Plan, according to the refinement alternative How returned by Ex-
tract, and taking into account that activities with a lower or equal
granularity level than Level may be expanded. When HowToRefine?
returns a unique aternative, representing the default heuristic, it is
worthy note that this heuristic applied by REFINE turns the HY -
BRI D procedure into an Any Time hierarchical planning algorithm,
becauseit is ableto obtain aplan with no pending subgoals at agiven
abstraction level (see Figure 11). Additionally, if the refinement pro-
cess requires it, REFINE may introduce a new granularity level in
the hierarchical plan, and aso may switch to the next abstraction
level (increasing Level).

GENERATE. Thisprocedure isagenerative and regressive plan-
ning algorithm based on MACHINE, which is able to represent and
reason about actions asintervals and to manage others different kinds
of conflicts and interferences which arise in complex domains. How-
ever, itsfeatures has been extended in order to manage the knowledge
inherited by lower level plans from previous abstraction levelsin a
hierarchical plan (as activities order constraints, established intervals
between abstract activities, or the ownership of an activity to the ex-
pansion of a more abstract one).

This algorithm solves all of the single-level flaws registered in an
agenda Agenda, taking into account that, although inherited order
relations must be maintained, it is possible to interleave activities
belonging to different expansions. These flaws are solved at the
next abstraction level of the hierarchical plan. GENERATE finally
returns a hierarchical plan whith no single-level flaws, but which
may contain unexpanded activities.

The agorithm ends when all activities of the lowest abstraction
level in H-Plan are primitives and there are no pending flaws in
Agenda. Therefore, thefinal plan obtained by thisalgorithmisahier-
archy of control sequences at different granularity levels (See Figure
11 (Step 5)).

As can be seen, the hybrid algorithm here introduced mixes hi-
erarchical and POCL techniques in such a way that the knowledge
hierarchy guides the hierarchical reasoning process. Thus, as the hi-
erarchical domain contains a fixed number of abstraction levels, the
number of hierarchical refinement levelsis also fixed.

6.1 Comparison with other approaches

This approach presents important advantages with respect to previ-
ous hierarchical approaches due to the introduction of new issuesin
the general framework of hierarchical planning [15, 18, 22]. Next we
describe the more important ones:

e The default expansion method, defined as the set of effects of an
aggregate activity, allows for conceiving the expansion of an ac-
tivity as a domain independent process. In addition, asit is possi-
ble to define alternative expansion methods, the expressiveness of
HTN techniques is maintained.

e |t is possible to represent a domain as Abstraction Hierarchies
[15, 18] and to follow a reasoning process similar to the one used
in ABSTRIPS-like approaches. However, the concept of interface
and the expansion process here introduced allow for articulating

the abstraction levelsin a more general way, with a more expres-
sive language and, as we will see, with areasoning process ableto
obtain real solutions.

e Unlike HTN [22] techniques, the expansion process of an activity
is dynamic and flexible. This means that there not exist a previ-
ously fixed reduction of activities, on the contrary, the expansion
process of every activity poses a set of lower abstraction goals
which have to be dynamically achieved by the agents activities
of the next abstraction level. Thus, the generative process of the
hybrid algorithm dynamically stablishes the set of lower level ac-
tivities that solves the posed problem, in such a way that the ex-
pansion process is independent from lower abstraction levels and,
therefore, accesible solutions at a given level of the hierarchy are
not completely fixed.

In the next section we will discuss some aspects to take into ac-
count about the correctness and completeness of this algorithm.

6.2 Correctness and completeness issues

In order to preserve the completeness and correctness of the planning
process it is necessary to establish a set of constraints about the way
agents and their activities inherit the knowledge of higher abstrac-
tion agents. In particular, one of these constraints states that goals
with not achieving activity, at a given abstraction level, turn the hi-
erarchical plan unsolvable. Additional completeness constraints are
defined in aggregate agents’ interfaces and others are” guidelines’ on
the domain definition in order to represent requirements and effects
of activities at different granularity levels. These constraints must
be satisfied in the domain elaboration phase of problem solving and
must be checked in the action expansion process.

However, athough these constraints maintain several established
conditions between levels, the Downward Refinement Property
(DRP)[15, 22] cannot be satisfied. This property states that the exis-
tence of aground-level solution implies the existence of an abstract-
level solution. The contrapositive of this property states that unsolv-
ableconflictsat higher levels always appear in lower ones. Therefore,
if this property holds, it is not necessary to refine a plan with an un-
solvable conflict. Thus, in this case backtracking between levels is
allowed and preserves the algorithm completeness.

Hierarchical planning approaches as [15, 18, 22] are examples
about how this property can be satisfied by imposing syntactic con-
straints in the definition of a domain. However, these constraints re-
duce the expressiveness of the domain description language.

In abstraction hierarchies [15] levels of abstraction are built from
bottom to up by dropping literals from a set of ground operators (not
reducing the granularity of operators, but relaxing its conditions). In
this approach, the set of literals of a given abstraction level contains
all literals of the previous level, so lower abstraction levels directly
inherit al previous level literas and, hence, every conflict that ap-
pears at higher levels also appearsin lower levels.

In HTN hierarchies [22], the DRP does not hold in general, but it
is possible to establish syntactic constraints in the definition of hier-
archical operators in order to satisfy it. However, as can be seen in
[22], the syntactic constraints impose that every non-primitive oper-
ator has an unique sub-operator which inherits all preconditions and
effects of the parent. Therefore, these constraints maintain the grain
size of operators between levels.

In our approach, the DRP does not hold because abstraction lev-
elshave an increasing size of grain. The states of the automaton that
describes the behavior of an aggregate agent are not directly inher-
ited by its components, because they are different states at different
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Figure1l. A hierarchical plan obtained by HY BRI D applying the default refinement heuristic.




granularity levels. This means that there exist literals established in
higher levelsthat disappear in lower levels, so unsolvable conflictsin
higher levels may not be inherited by lower levels.

Therefore, we have to face new problems which arise with the
application of hybrid planning techniques in a domain representation
based on granularity levels:

1. If the DRP does not hold, the algorithm is forced to refine a plan
with an unsolvable conflict. The refinement stops when the plan-
ner discovers, at alower level, that the conflict is solved or when
the conflict is definitely unsolvable at the lowest level.

2. The activities involved in an unsolvable conflict have to be ex-
panded in order to test the conflict at a lower level. This means
that a plan may contain activities and literals at different levels of
abstraction (or granularity)

3. Thetime efficiency of the planner may be reduced if it expands ac-
tivitiesup to the lowest level every timethat an unsolvable conflict
arises.

The second problem has an inmediate solution because the pro-
posed domain representation allows for several levels of abstraction
inaplan. For every literal and activity, an unique associated abstrac-
tion level aways exists, so the harmful effects of the hierarchical
promiscuity [21] are avoided.

However, a solution to the first and third problem is complex and
may be found by extending the heuristics and plans representation
currently used in order to manage heterogeneous plans and to offer
a correct solution in a reasonable time. At present we are working
in this direction but, as can be seen in the next section, the results
presented, comparing to the system this approach it is based on, are
very promising.

7 EXAMPLES

This section shows the performance of this architecture with respect
tothe non-hierarchical planner it isbased (MACHINE) in the solving
of two manufacturing problems.

Thelayout of thefirst problem is shown in Figure 12. The problem
in this toy plant consistsin carry out water from TANK1 to TANK3
and acid from TANK2 to TANK4, but taking into account that they
cannot be mixed and that there is only one pump. The plant is rep-
resented at two abstraction levels, the circuits are represented in the
highest level and the valves in the lowest one. The hierarchical plan
obtained is shown in Figure 13 and the performance of the hybrid
planning process is shown in Figure 15.

The batch plant of Figure 14 is the configuration of the second
problem. In this batch problem there are three types of raw products:
an ingredient A, stored into tank T-501, an ingredient B, stored into
tank T-505 placed somewhere out of the system, and an ingredient
C stored into tank T-504 also out of the system. The hierarchical
domain is represented at two granularity levels. The agents of the
highest level are represented by aggregating the properties and the
behavior of lowest level agents as can be seen in Figure 14

The manufacturing problem for the lowest hierarchical level isde-
fined by the following sequence of transformations:

1. STEP1. Add ingredient B to ingredient A in reactor R-501. Dur-
ing this operation, the mixture must be in agitation.

2. STEP 2. Heat the mixture.

3. STEP 3. Add ingredient C to the mixture maintaining the agi-
tation. During this mixing operation a residual gas is generated
which must be evacuated through the scrubber S-501. Part of this

] |
T
Tank1 Tank2 V5| Ve X
acid water
vax Ve > 0z Tank3 Tank4
V1 Circuit!  Bump1

Figure12. Layout of Probleml.

Open Circuit2 Shut Circuit2

START (Open| Open| (Open| Open| | PSer —» p%p I—» |Shut| |Shut | |Shut| |Shut
Val2| |Val3 || Val4| |Val6 Val6 | |Val4 | |Val3| | Val2

Open Circuit! Shut Circuitt

(Open| [Open| Open| Open| —»| PS,:D > PS,:p {——»{ |Shut| |Shut| |Shut| | Shut| —| END
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Figure13. A hierarchical plan for Probleml.

gasis condensed and it precipitates at the bottom of S-501. Once
the mixing operation ends, thisresidual liquid must be carried into
the external tank T-503.

4. After the addition of ingredient C, the mixture must be cooled and
carried into tank T-502.

This problem definition isa control recipe specified at phase level.
In this case, MACHINE solves the problem exploring about 6000
nodes. However, with this new hierarchical approach the problem
may be described as a recipe at operation level whit only one oper-
ation: Mix the ingredients in REACTOR. Then the hybrid planning
process will obtain first a phase level recipe and, afterwards, the set
of control activities of lowest level agents.

These examples show the usefulness of this approach from the
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Figure 14. Layout of Problem2.
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EXPLORED NODES
HYBRID
MACHINE ARCHITECTURE
PROBLEM 1 400 200
PROBLEM 2 6000 800

Figure15. Compared search results for Probleml and Problem?2.

view point of a control engineer and its expressiveness and search
complexity benefit (see Figure 15). In the next section we describe
how to extend this architecture in order to obtain truly realistic solu-
tions.

8 FUTURE WORK

Thisapproach isastep forward in the building of an architecture able
to face real world control problems and to obtain fully applicable
solutions. However, there are still some steps which must be faced
to reach that goal. These steps come up closely related with some
of the features that control programs are expected to have, such as
robustness or safety.

In a factory, sensory information is a source of uncertainty about
the state of the system which forces control engineers to introduce
decision and aternative operation stepsin acontrol program, accord-
ing to the different states of a given sensor. The knowledge represen-
tation presented here allowsfor describing sensors and sensory infor-
mation but the planning algorithm must still be extended in order to
manage the "apriori” uncertainty about states of sensors. This means
that the final result of the planning process should be a modular con-
trol program with conditional decision structures[9, 17].

Thisimplies that the underlying search space will grow exponen-
tially due to the combinatorial complexity induced by the introduc-
tion of conditional branches in a plan. However, it must be said that
the effect of this combinatorial explosion can be reduced since the
scope of conditional branches can be focused, or isolated, on the ba-
sis of a top-down hierarchical process like the one described in this
work.

Finally, this approach is being developed within the framework of
assisted development of control programs. This means that human
operators could interact with the planner and impose their decisions
at certain points during the search in a mixed-initiative planning pro-
cess. The reason for such an interaction is that, in many real world
problems, the vast amount of knowledge required for obtaining a
solution would produce unredlistically large planning domains and
this knowledge can not be completely included. Therefore a plan-
ning process must always be open to a possible human interaction
which could provide that missing knowledge, what could be seen as
acontrol heuristic to guide the search or to obtain optimal solutions.

The approach presented here follows this direction and it intends
to approach these problems in the near future.

9 CONCLUSIONS

We have presented a hybrid architecture which mixes hierarchical
planning and POCL techniques, in order to build modular and hier-
archical control programs for manufacturing systems.
Thisarchitecture is based on a hierarchy of agents by levels of ab-
straction in such a way that the information granularity of agents,
literals and actions increases as the level of abstraction decreases

(Figure 3). This representation leads to define different alternatives
to existing abstract plan refinement techniques (reduction methods
in HTN or plan refinement in ABSTRIPS), the activity expansion
process presented is one of them.

The application of hierarchical problem solving techniques results
in alower time and space complexity of thisarchitecture with respect
tothe system it isbased on. However, though the hierarchical domain
representation model and planning can reduce the benefit of using
these techniques in some cases [2, 3, 4, 10], it has clear advantages
from the point of view of computer aided design of control programs.

On the one hand, this approach provides an easy entry-level for
end users (control engineers). The hierarchy of agents of a domain
accepts SP88 standard descriptions, usually handled by control engi-
neers, so the knowlege can be introduced painlessly.

On the other hand, plans are designed and represented following
atop-down process which makes them easier to understand by a hu-
man user.

In conclusion, this hierarchical representation and planning pro-
cess provides agreater efficiency with respect to the non-hierarchical
previous version, but, and this is more important for a real world
planner, it closes the gap between the planner and their end-users
providing a higher degree of integration with them by means of a
friendly input level for incorporating knowledge and a more under-
standable output level.
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Structure and Complexity in Planning with Unary
Operators

Carmel Domshlak and Ronen |. Brafman'!

Abstract. In this paper we study the complexity of STRIPS plan- is a tree, it is easy to determine a serializability ordering over any set
ning when operators have a single effect. In particular, we show howf sub-goals, and consequently, obtain a plan in polynomial time.
the structure of the domain’s causal graph influences the complexity An important byproduct of Williams and Nayak’s work is its

of planning. Causal graphs relate between preconditions and effeattemonstration that unary operator domain are of practical interest.
of domain operators. They were introduced by Williams and Nayak|nterestingly, unary operator domains show up naturally in another
who studied unary operator domains because of their direct applicapplication — answering dominance queries in CP-networks [4].
bility to the control of NASA's Deep-Space One spacecraft. Williams  Our work continues Williams and Nayak’s study of unary opera-
and Nayak's reactive planner can be trivially extended into a polytor domains, concentrating on the relationship between the domain’s
nomial time plan generator in the context of tree-structured causalausal graph and the complexity of plan generation and plan exis-
graphs. In this paper, we treat more complex causal graph structurgence. In particular we prove the following results:

such as undirected polytrees, singly-connected networks, and general

DAGs. We show that a polynomial time plan generation algorithm® YWhen the undirected graph induced by the causal graph is singly
exists for graphs that induce an undirected polytree. More generally, cONnected, plan existence and plan generation can be performed
we show that a certain relation exists between the number of paths in O(e) time (wheree is the number of edges in the causal graph).
in the causal graph and the complexity of planning in the associate®! \'Gvgen the causal graph is singly connected, plan generation is in

domain.
e When the causal graph has more than three paths between two

variables, plan generation is NP-hard.
1 INTRODUCTION e In general, the complexity of plan generation can be bound by a

Generating plans in the context of the STRIPS representation lan- function of the number of paths within the causal graph.

guage is known to be a difficult (P-SPACE complete) problem [S]. g rest of this paper is devoted to a more formal presentation of
Thus, various authors have explored the existence of more CORese results and their proofs.

strained problem classes for which planning is easier. For example,

Bylander showed that STRIPS planning in domains where each oper-

ator is restricted to have positive preconditions and one postconditod COMPLEXITY RESULTS

only is tractable. Backstrom and Klein [1] considered other types O(Ne now show how, by bounding the structural complexity of the
local restrictions, but using a more refined model in which two types !

f dit i | diti hich ’~“causal graph, we can bound the complexity of plan generation. Re-
of preconditions are considereghevail conditions, which are vari- call that we use a propositional language to describe the state of the

q t affected by th i aconditi hich %orld, and that our operators are described by a set of prevail condi-
and are not afiected by the operator, gmeconditions, which are tions —i.e., a set of literals that must hold in a world for the operator

affected by the operator. For example, [1] have shown that when %R be applicable, a single precondition, and a single post-condition

erators have_a single effect, no two operators have the same eﬁef&r effect). The precondition and the post-condition are represented
and each variable can be affected only in one context (of prevail cor’By single literals, one the negation of the other.

ditions) then the planning problem can be solved in polynomial time.
However, these restrictions are very strict, and it is difficult to find )
reasonable domains satisfying them. 2.1 Undirected Polytrees

More recently, Williams and Nayak [3] studied planning prob- . . . . .
lems where all operators affect a single variable, in the context o'fo‘ polytree is a singly connected graph, i.e., a graph in which there

. . \ Is a single path between two nodes. Here, we consider the case of
their work on controlling NASAS Deep-Space One spacecraft, Ir]a causal graph in which there is a single path between every pair of
this context, they defined the notion otausal graph which relates grap gle p yp

the causal structure of the domain, i.e., how different variables IanOdeS In the inducedndirected graph. For this class of problems we
o Pl present a polynomial time planning algorithm. We will rely on

a role in our ability to affect other varlable_s. A causg_l graph is a %]’s formulation of the POP algorithm, and we will assume that the
directed graph whose nodes are the domain propositions. An ed . y . .
ceader is familiar with that algorithm.

\(/I; ]32; 3?pke1§?amrt:veai(lz ?:lcj)i?ili t?éi?gvglifnmevsﬁggifé (t:r;its(;]a?ges theOur algorithm proceeds in two stages: First, we perform a forward
q P 2 9PN check step. Following this step, which takes time linear in the size of

1 Dept. of Computer Science, Ben-Gurion University of the Negev, P. O. Boxhe input, we can answer the question whether or not a plan exists.
653, Beer-Sheva 84105, Israel, e-m4idrcarmel, brafmap@cs.bgu.ac.il If the answer if positive, we run a particular instantiation of the POP
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algorithm which generates the plan without backtracking in lineal
time.

The forward checking procedures, described in Figure 1, works
as follows: we perform a topological sort of the causal graph and

start processing each node (=variable) from top to bottom. At eac|
point, a set of operators is associated with each variable, i.e., th
set of operators that can change the value of that variable. Initially
this would be the set of all such operators. Now, for each variabls
v, we check whether its value in the initial stat8, differs from its
value in the goal state;". If this is the case and there is no operator
transformingv® to v* we returnfailure. If v = »* then we first
check whether there are two operators associated witiat have
both its values as effects. If this is the case, then, intuitively, this
implies that we can changes current value and still regain the value
needed in the goal state. Otherwise, we malkticked and we extract
all operators in which the negation 0% current value appears as a
prevail condition — it is clear that we will never be able to apply these
operators in a valid plan.

It is apparent that the procedure Forward-Check’s running time i
linear in the number of operatofs.

Procedure Forward-CheckI({, A, G)
1. Topologically sort all variable¥ based on the the causal graph.

2. For each variables € V, call Recursive-Lockind(, A, v, G), re-
specting the above ordering.

3. If all calls to Recursive-Locking return success, then return sucfess.

Algorithm: POP-UPC (A4, O, L), agenda, A)
1. Termination: If agenda is empty, return(.A, O, L)

2. Goal selection: Let (9;, A,ceq) be arightmost pair on theagenda
(by definition, A,..q € A andd; is one of the preconditions g
Aneed)'

Operator selection:

»]

h
€.

1

(@) Ifv = v} andd; = vt

7

i. Ifthere are no items on the agenda requiring andA;” ¢ A’,
orif Apeeq = A7 thenAg g = A9,
ii. Otherwise,Agqq = A}
(b) Ifv? =7 andy; # v} thend,qq = A7 .
(©) 1fv? # v} andd; # v} thenA,qq = A?.
(d) If v9 # v7 andy; = v} thenAggq = A7

. Plan updating: Let £’ = £ U {4444 Ll Apeed}, and let®’
O U {Agqq < Anecea} If Agqq is newly instantiated, thent!
AU {Aggq} andO’ = O U {A? < Aggqq < A}} (otherwise let
A" = AandO’ = 0O).

. Update goal set: Let agenda’ = agenda - {(¥;, Apeea)}- If Agda
is newly instantiated, then for each of its preconditigh add
(Q, Agqq) to agenda’.

. Threat prevention: If A,qq = Aj‘, then, for eacd € A, s.t.—w}
belongs to the preconditions ef add{A < A, 44} t0 O'.

. Recursiveinvocation: POP-UPC(A', O', L'}, agenda’, A), where
agenda is topologically ordered (based on the causal graph wit

Otherwise return failure.
Procedure Recursive-Lockind(, , A, v;, G)
1. If 'U? # vy then

(a) Ifno operatorAi+ in A hasv; as post-condition, return failure.
(b) Otherwise return success.

0 _
2. Ifv) = vy then

(@) Ifthere are two operators;” andA;r in A, that have-v} andv;
as their post-conditions respectively, return success.

(b) Otherwise, mark the variabte locked and remove from\ all op-
erators that havev; as a precondition or prevail condition. (Ng
that this requires considering operators affecting the children

only.)

te

Figurel. Forward checking procedure

Lemmal Forward-Check returns successf and only if a plan ex-
ists.

Clearly, if Forward-Check fails, then no plan exists. To prove th

opposite direction we proceed as follows: We define a partial order .
PP b P &: There are no threats in the output of POP-UPC.

k@. The ordering constraints {1 are consistent.

planning algorithm POP-UPC (partial-order planner for undirecte
polytree causal graph) and show that it will succeed without bac
tracking if Forward-Check succeeds. POP-UPC is described in det
in Figure 2. In its description, we assume that a minimal number o

spect to the precondition part of each pair).

Figure2. POP-UPC algorithm

if it requires achieving some value forthat differs from its initial
value, we add an operator to the plan with the desired effect. Other-
wise, we need the same value for v as that which appears in the
initial state. If no operator was added which has the oppositg of

as a prevail condition, we will use the initial state (or in POP ter-
minology, the operator®) to achieve this value (i.e., we simply do
not change this value throughout the plan). If we added an operator
which negatesi,, we must re-establish it, and we add an operator
with that effect. No threats arise in POP-UPC, and the ordering con-
straints are consistent.

Lemma 2 If Forward-Check was successful then POP-UPC will re-
turn avalid plan.

Proof The Lemma will follow from the following claims:

el' For every agenda item, there exists an operator that has it as an

effect.

.!L) The first claim follows from the success of the Forward-Check
rocedure. It implies that for every variableif v's initial value

operators exists, i.e., if we remove a single operator from the domairyitrers from its final value, there is an operator for achieving that

Forward-Check would no longer return success.

value. For any other variable, we can always use the initial state as

Intuitively, POP-UPC works as follows: it maintains a goal agendaihe gource of its value. i's initial and final value are the same and
sorted_based on the causal graph_structure: parent vaﬁlable.s appeangkre are no two operators that can changevalue in both direc-
ter their descendents. At each point, the next agenda item is selectqq)'nsl then because of the locking mechanism, we will not allow any

2 This assumes some appropriate indexing is used. This indexing should gperator that relies on the valuewthat differs from its initial value.

performed once for each planning domain.

12

Hence, the need for an appropriate precondition will not arise.



(2) Suppose that some operatbrthreatensd, 2% A, i.e., 2.2 Polytrees

In this section we provide an upper bound on the complexity of plan
generation when the causal graph is a polytree. In particular, we show
that this problem is in NP. However, the question of the exact place-
ment of this problem in the computational complexity hierarchy is
left open.

e OU{A, < A; < A.}is consistent, and
e A, has—d; as an effect.

For a given variable;, only three operators can have an effect per-
ini - + - -
taining tov;: Ao, A", and4; . POP-UPC forces these operators to First we make the following observation, upon which we base our

be ordered as followsd, < A7 < A, soA. can only be an oper- o . . :
ator withd; as a prevail condition. There are two cases to considerprOOf' The central claim will follow using an induction on the number

_ - A T of variables.
Ap = Ao, Ay = A" and4, f_ll Ae = A X Consider an arbitrary planning problem instabteith a variable
Suppose thatl, = Ao, A; = A; . Inthat case); = v], but the only .
. Co L setV, and an operator sét. Denote byMust(v) the maximal num-
A for which Ay suppliesv; is A; .

Suppose thatl, — A~, A, = A*. In that caseg; # v7, and step 6 ber of times that a variable must change its value in the course of

i . execution of a valid plan for this problem. For the type of problems
guarantees thal. < A. Hence, again, no threat occurs. we deal with, for all variables iy Must(v) satisfies:

(3) The ordering cons_trair_ns are consistent if no two operatrs Must(v) < 1 + Z Must(x) 1)
andA; are such tha® implies{{A4; < A;}, {4; < 4;}}. Inwhat
follows, A; will be used to denote an arbitrary operator affecting
variablev;. where Sons(v) denote the immediate successorsvah the corre-

First note that each ordering constraint added in Step 4 or Step 6 &Ponding causal graph. That is, a variable must change its value at
between operators affecting a variable and its child (with respect t§10st once for each requested change of its successors (in order to
the causal graph). In particular,4f;, < A; was added in Step 4 then satisfy necessary prevail conditions), and then at most once in order
v; is a parent of;, whereas ifA; < A; was added in Step 6; is 0 accept the value requested by the goal state.

Sons(v)

a parent ofy;. In particular, this means that if; < A; is implied Let MinPlanSize(IT) denote the size of the minimal plan for the
by O then there is a path betweenandu; in the undirected graph ProblemIL. Using theMust property of the state variables, the fol-
induced by the causal graph. lowing upper bound foMinPlanSize(II) is straightforward:
Assume, to the contrary th& implies A; < A; and A; < A;. .
From the argument above, we know that there is a path between MinPlanSize(Il) < Zv Must(v) @)

vE

andv; in the undirected graph induced by the causal graph. By our
structural assumption, we know that there is a unique path between This bound holds for all unary operator domains whose causal graph
andv; . Thus, the situation is as follows: We have a chain of operatorss acyclic. We will use this bound to prove the following lemma.

A = Ay < Ay < < A4, =A;implying A; < Aj, and a
chainA; = Aj > A}, >---> A; | > A; = A; implying
A; > A;. Without loss of generality, the internal;, and A;, are

Lemma 3 Plan generation for propositional planning problems in
domains whose underlying causal graph isa polytreeisin NP.

different (otherwise, we can reduce the chain and dedljce A;, Proof In order to prove this claim it is sufficient to show that for
andA; > A;). any solvable problem instand&e = (V, A, Init, Goal) for domains
We know thatd}, < A;, < A;;: whose causal graph is a polytree, the length of the minimal (optimal)

(1) If v, is a parent ob;, thenA], < A;, canonly stem from Step 6  solution will be polynomial in the size of input. Since the verification
because-wv;; is a precondition ofd;, andA;, = Ajo. A;g < A of the solution takes time linear in its length, the bound follows. We
can only stem from Step 4 becaus§ is a precondition ofd;, . will show that the length of the minimal solution is less than or equal
Hence,A;, andA;, must be different operators. Given the algorithm to n?, wheren is the number of variables . Our proof does not
we must haved;, = A; and4;, = AI. (Otherwise, we have both rely on the particular initial or goal state, and so we will ignore them,
Al < A} andA} < A which implies conflicting preconditions ~ from now on.
for A1) The proof is by induction om, and is based on the previously
(2) If v;, is a parent ofv;, then A;, < A;, can only stem from ac_:hieved upper bound dvinPlanSze. Forn = 1, Equation 1 im-
Step 6,4;, = A}, and—w;, is a precondition of4;,. In that case ~ Plies that ‘
A}, mustbed and, againd;, and Aj, are different. > Must(v) < Must(v1) <1 =17
Continuing with the next variable;, we know thatAQ2 < Ai‘1 and vey
A} < A;,. We claim thatd], # A;,. More specifically, we claim Now, suppose that whe’| = n — 1 then
thatAj, = A;, andA;, = A}. Z Must(v) < (n — 1)°.
First, suppose that, is the parent ofi, . In that cased;, < 4; is ey
i i ) 3 + )
impossible. Henceys, must+be th? parent QI.”' FromA4;, < Ai, Let I’ be some problem instance for whifW | = n. Suppose that
we can deduce that;, = A} . Asin the previous case, the fact that the variables i/ — {v va } are topologically ordered based

, N ) L _ 1y U pologically ordered base
Ai, # Aj, follows easily, and hencd;, = A;; . on the domain’s causal graph. Cleanly, is a leaf node (i.e.Sons
Having established thatl;, = A7 and thatd;, = Af,itis  (,,) = ). We will denote byIl the problem instance obtained by
apparent that an inductive argument will allow us to show that for a”removingvn from the domain, and the corresponding variable set by
n > 0 we have thatd;, = A; andA;, = Af . This contradicts ) According to Equation 1, for each immediate predecesswi,,
our assumption that;,, = A4; . in the causal graph,
|

newMust(v) < Must(v) + newMust(v,) < Must(v) + 1

13



wherenewMust(v) denotesMust(v) with respect tall’. Generally,
for each variable € V,

Must(v) + 1,
Must(v),

if there is a path from v to v,

<
newMust(v) < { otherwise

©)

Now,

> newMust(v) < n+» Must(v) < n+(n-1)7 < n’
veY’! vEY

and thus, according to the upper bound\dimPlanS ze,

MinPlanSize(IT') < newMust(v) < n’
vey’

Lemma 3 shows that any propositional, “polytree-structured”

planning problem, is inVP. Moreover, the size of the minimal so-
lution is bounded by low polynomial ifV|, which does not depend
on the size of the whole inpuf)| + |A|. Following subsection will

Now we show an example, for which such an exponential upper
bound can be achieved. This particular example was used in differ-
ent context by Backstrom and Nebel in [2]. Consider a propositional
planning problem witjV| = n, andParents(v;) = {v1,...vi—1}

for 1 < i < n. The operator set\ consist of 2n operators
{4, A41,... Ay, A}, } where

pre(A;) = posi(4;)
post(4;) = pre(4;)

prv(A:)[j] = prv(AL)j] = {

=0
=1
0 ifj<i—1
1ifj=i—1

Easy to see that the causal graph of this problem forms a DAG, and
an instance of this planning problem with the initial stéie. . . , 0)

and the goal statéy,...,0,1) have a uniqgue minimal solution of
length2™ — 1 corresponding to a Hamilton path in the state space.

The analysis of the proof of Lemma 4 was performed in order to
point out the reason for this potential exponential escalation of the
solution’s size. An immediate conclusion of Lemma 4 is that there

highlight the significance of structural properties in the unary operass 3 significant class domains with an acyclic causal graph for which

tor planning problems.

2.3 General DAGs

planning is inN P.

Definition 1 A causal graph iscalled §-path-restrictedf the number
of different paths between every two nodes is bounded by 6.

The polytree structure of the causal graph turns out to be crucial for

guaranteeing reasonable solution times. As we now show, there af&mma 5 Plan generation for (STRIPS unary operator) planning

solvable propositional planning problems with an arbitrary acyclicygplemswith an underlying causal graph that is §-path-restricted is
(DAG) causal graph that have minimal solutions of exponential sizey, Np

Analysis of this class of problems points to the reason for such inher-
ent intractability. This allows us to characterize an important paramp, oof Based on the observations above
eter of the causal graph affecting planning complexity and to extend

the class of problems which are in NP. However, we also show that

most of these restricted problems are NP-complete.

Lemma4 Plan generation for STRIPS planning problems with a
unary operator domain whose causal graph is acyclic is inherently
intractable.

Proof We prove this claim simply by showing the supporting ex_golanning problems s N P-complete.

ample. However, we will perform more detailed analysis, postponin

MinPlanSize(II) < dn”
Again, we have found a class of planning problems that is in NP. But

is it NP-hard? The following Lemma shows that in most cases, this
is indeed the case.

Lemma6 Plan generation for propositional, 4-path-restricted

the example to the end of the proof. Our analysis is based on the fact

that the upper bound fdvlinPlanSze, presented in Equation 2 can
be exponential in the size of input. First, we prove this claim, the
we show by example that this upper bound can be achieved.

The escalation of the complexity,
VY grows, can be shown by boundimgwMust(v) using a differ-

ent method than that of Equation 3. For the problems considered ihetF = C1 A

Lemma 4,
newMust(v) < Must(v) + pyv,

Proof The proof is by polynomial reduction from 3-SAT to the

pcorresponding propositional, 4-path-restricted plan generation prob-

lems. 3-SAT is the problem of finding a satisfying assignment to a

when the number of variables ifProrPositional formula in conjunctive normal form in which each con-
junct (clause) has at most three literals.

...\ Cy, be a propositional formula belonging to 3-
SAT, and let andX1, . .., X,,, be the variables used iA. An equiv-
alent propositional, 4-path-restricted planning problem can be con-
structed as follows:

wherep,,..,; denotes the total number of different, not necessary

disjoint, paths fromy; to v;. This means that for a given propositional

planning problem with acyclic causal graph, with variables num-

bered according to a topological sort induced by the causal graph,

n
MUSt(Ui) < Z Pvi~v;
j=it1

4)

Thus, the upper bound foinPlanSize, presented in Equation 2 can
be exponential in the size of the problem description.
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V={ABX,...,Xn,Ci,...

Parents(A) = Parents(B) = {0}

Parents(X:) = ... = Parents(X,,) = {4, B}

Pa.rents(C’i) = {A, B7 Xi1 s Xi2 s Xi3 }, WhereXil s Xi2, andXi3
are the variables that participate in thie clause ofF.

Init - consist of false assignments to all variable®’i(w for each
Vevw).

Goal - consist of true assignments to all variabled/ifw for each
Vevw).

7Cn}



Let every operatorA € A be presented as a three-tuple (i.e. the assignment opA, B} becomens, b), eachX;, that still has

({pre}, {post}, {prv}) of pre-, post-, and prevail conditions respec-

tively. Then, the corresponding operator Aas specified as follows:

Aa ={ {ah{a},{}) }

AB = { <{B}7 {b}v {}> }

AXl- = { ({ _i}v{xi}v{_vl;}):
({zi}, {zi}, {a,b}) }

Ac;, ={

({@}, {ei} {a, b,a1}),

({@}, {ei} @, b,ai}),
({@}, {ei} {a, b, a1}),

(et fed fa,balh)

the valuez; can be changed tg;, but noC; can change its value
(the truth values of the formula’s clauses depends only on previously
locked values of the formula’s variables).

Clearly,Goal is reachablel{ is solvable) if and only if a satisfying
assignment forF can be found. Likewise, the maximal number
of paths between pairs of vertices in the causal graph is achieved
between each locking variablel (@and B), and each clause variable
(C1,...,C), and is equal to 4. Thus, plan generation for proposi-
tional, 4-path-restricted planning problemsN&P-hard, and from
Lemma 5, we know that it i&v P-complete.

]

3 SUMMARY

We have shown that the structure of the causal graph for unary op-
erator STRIPS domains is an important factor in determining the
computational complexity of plan generation. In particular, we have
shown that a polynomial time algorithm exists for graphs in which
there is at most one undirected path between nodes, and that in poly-
trees the maximal plan length is a low order polynomial. More gener-
ally, we have shown a relation between the number of path between
variables in the causal graph and the computational complexity of
the corresponding planning problem.

wheread, . .. a};l_ are all possible truth assignments on the variableSACK NOWLEDGEMENTS

Xi,, Xi,, Xi;, that satisfy theth clause ofF. Easy to see, that the
described planning problem have all propositional variables, singl
effect operators and an acyclic causal graph (see figure 3).

Figure3. Causal graph of 3SAT satisfaction planning problem

eWe would like to thank Samir Genaim for his assistance in one of the
proofs, and the anonymous referee for useful remarks.

REFERENCES
(1]

Christer Backstrom and Inger Klein, ‘Planning in polynomial time: The
SAS-PUBS class’ Computational Intelligence, 7(3), 181-197, (Aug
1991).

Christer Backstrom and Bernhard Nebel, ‘Complexity results for'SAS
planning’, Computational Intelligence, 11(4), 625-655, (1995).
B.C.Williams and P.P.Nayak, ‘A reactive planner for model-based exe-
cution’, in Proceedings of the Fifteen International Joint Conference on
Artificial Intelligence (IJCAI-97), (August 1997).

C. Boutilier, R. Brafman, H. Hoos, and D. Poole, ‘Reasoning with Condi-
tional Ceteris Paribus Preference StatementsProteedings of the Fif-
teenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-
99), (1999).

Tom Bylander, ‘The computational complexity of propositional STRIPS
planning’, Artificial Intelligence, 69(1-2), 165-204, (1994).

Daniel S. Weld, ‘An introduction to least commitment planning,
Magazine, (Summer 1994).

[2
(3]

(4]

(5]
(6]

First, we note that the resulting graph has at most 4 directed paths
between any pair of nodes. Clearly, there are no paths between nodes
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Now we describe the dynamics of the problem. As longlas: a,
and B = b, eachX; can change its value from to z;, and noC;
can change its value. After either the value Afis changed taz,
or the value ofB is changed td, no X; can change its value (the

assignment on the formula’s variables is locked), but some variables

fromC,, ..., C, can change their values frofto c;. Finally, after
the remaining variable fronfA, B} changes to its positive value,

15



Heuristic Search Planning with BDDs

Stefan Edelkamp
Institut f Gr Informatik
Am Flughafen 17
D-79110 Freiburg
edelkamp@informatik.uni-freiburg.de

Abstract. In this paper we study traditional and enhanced BDD-
based exploration procedures capable of handling large planning
problems. On the one hand, reachability analysis and model checking
have eventually approached Al-Planning. Unfortunately, they typi-
caly rely on uninformed blind search. On the other hand, heuris-
tic search and especially lower bound techniques have matured in
effectively directing the exploration even for large problem spaces.
Therefore, with heuristic symbolic search we address the unexplored
middle ground between single state and symbolic planning engines
to establish algorithms that can gain from both sides. To thisend we
implement and evaluate heuristics found in state-of-the-art heuristic
single-state search planners.

1 Introduction

One currently very successful trend in deterministic fully-automated
planning is heuristic single-state space search. The search space in-
corporates states as lists of instantiated predicates (also called atoms
or fluents). The success of the heuristic search correlates with the
quality of the estimate; the more informed the heuristic the better
the achieved results. Heuristic search planners have outperformed
other approaches on a sizable collection of deterministic domains.
In the fully automated track of the AIPS-2000 planning competitiort
chaired by Fahim Baccus the System FF (by Hoff mann) was awarded
for outstanding performance while HSP2 (by Geffner and Bonet),
STAN (by Fox and Long), and MIPS (by Edelkamp and Helmert)
were placed shared second.

The only available information on the implementation of remain-
ing awarded planner System R (by Lin) isthe contributed description
by the author, reading as follows. System R is based on regression,
and solves agoal one at atime. Briefly, given a conjunctive goal G,
it chooses the first subgoal g that has not been satisfied yet in the cur-
rent state, and work onit. Once it isachieved, say by P, it progresses
the current state through P to a new current state, moves g to the
end of G, and recursively tries to find a plan for the new G. When
working on g, it regresses g over an action to a conjunctive goal G,
and triesto achieve G recursively. Subsequently, the solution quality
in System Ris not as good as for the other planners and has difficul -
ties with some domains, where the goals were not serializable, but
in some domains (like Logistics and Block's World) the system can
cope with very large problem instances.

Historically, the first heuristic search planner was Bonet, Loerincs
and Geffner's HSP [4], which also competed in AIPS-1998. HSP

L Seehttp://ww. cs. t oronto. edu/ ai ps2000 for details.
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computes the heuristic values of a state by summing (or maximizing)
depth values for each fluent for an overestimating (or admissible)
estimate. These values are retrieved from the fix point of a relaxed
exploration. Since the technique is similar to the first phase of build-
ing the layered graph structure in Graphplan (developed by Blum
and Furst [2]), HSPr [6] (the suffix indicates a regression/backward
search engine) has been extended to exclude so called mutuals sim-
ilar to the origina planning graph algorithm. In opposite to the par-
alel solutions obtained in Graphplan, HSP(r) produce sequential

solutions. In the most recent extension to the planner, Haslum and
Geffner [27] generalize the (admissible) estimator by dynamic pro-
gramming parameterized with an order value m. For large values of
m the estimate h™ converges to the optimal heuristic estimate h™.

In case m = 1 the new estimator reduces to maximizing the flu-
ent values, for m = 2 the authors introduce the max-pair heuristic
computing a distance value to the goal for each pair of atoms. This
isthe heuristic incorporated in Geffner and Bonet's planner HSP2 at

competition time. The underlying search algorithm isaweighted ver-
sion of IDA* [42], scaling the heuristic with respect to the generated
path length with afactor of two for a better performance by the cost
of non-optimal solutions. Due to the observed overhead at run-time,
high-order heuristics have not been applied yet. As a straight for-
ward extension to the max-pair heuristic it might be conjectured that
for pairs of fluents and their corresponding relaxed solution length a
weighted bipartite minimum-matching algorithm (available in cubic
time) as applied in Sokoban [31] might lead to a better lower bound
approximation.

The success of HSP has inspired the planners GRT by Refanidis
and Vlahavas [43] and FF by Hoffmann [28] and influenced the de-
velopment of the planners STAN and MIPS.

GRT abbreviates a heuristic search planner based on greedy re-
gression tables to trace the responsibility of a fact being achieved.
The inference of a heuristic value for each state is thus found in a
backward analysis of the fluent space. Theregression table isclosely
related to regression-match graphs [40] estimating the goal distance
of a state. This approach ignores any conflict and then counts the
minimal number of steps. Despite new ideas such as Exploiting Sate
Constraints [27], in AIPS-2000 the heuristic of GRT was too weak
to compete with the improvements applied in HSP2 and in FF.

The winner FF (for fast-forward planning) solves arelaxed plan-
ning problem for every encountered state in a combined forward and
backward traversal. Therefore, the FF-Heuristic is an elaboration to
the HSP-Heuristic, since the latter only considers the first phase.
The effortsin computing avery accurate heuristic estimate correlates
with data in solving single agent challenges like the 24-Puzzle [37],



Sokoban [31], and Rubik's Cube [36] and suggests that even involved
work for improving the heuristic pays off. With enforced hill climb-
ing it further employs another search strategy and drastically reduces
the explored portion of search space. It makes use of the fact that
phenomena like big plateaus or local minima — with respect to the
heuristic described above — do not occur very often in benchmark
planning problems.

STAN's success is due to building a hybrid of two strategies: The
original GRAPHPLAN-based STAN agorithm and a forward plan-
ner using a heuristic function based on the length of the relaxed plan
(asin HSP and FF). STAN makesisthe use of domain analysis tech-
niques to select automatically between these strategies. Therefore,
the major contribution is the automatic synthesis and use of generic
types to choose an appropriate algorithm for the specified problem
instance at hand [39].

An orthogonal approach in tackling huge search spacesis a sym-
bolic representation of sets of states. The SATPLAN approach by
Kautz and Selman [32] has shown that representional issues can be
resolved by parsing the planning domain into a collection of Boolean
formulae (one for each depth level). The system BLACKBOX (ahy-
brid planner based on merging SATPLAN with GRAPHPLAN [33])
performed well on AIPS-1998, but failed to solve as many problems
as the heuristic search planners on the domains in AIPS-2000. How-
ever, it should be denoted that the results of SATPLAN (GRAPH-
PLAN) are optimal in the number of sequential (parallel) steps, while
heuristic search planners tend to overestimate in order to cope with
state space sizes of 10%° and beyond.

Although efficient satisfiability solvers have been developed in the
last decade, the blow-up in the size of the formulae even for smple
planning domains calls for a concise representation. This leads to
reduced ordered binary decision diagrams (BDDs) [7], an efficient
data structure for Boolean functions. Through their unique repre-
sentation BDDs are effectively applied to the synthesis and verifi-
cation of hardware circuits [8] and incorporated within the area of
model checking [9]. Nowadays BDDs are a fundamental tool in var-
ious research areas of computer science and very recently BDDs are
encountering Al-research topics like heuristic search [21] and plan-
ning [25]. The diverse research aspects of traditional STRIPS plan-
ning [22], non-deterministic planning [10], universal planning [12],
and conformant planning [11] indicate the wide range of BDD-
related planning.

Our planner MIPS uses BDDs to compactly store and maintain
sets of propositionally represented states. The concise state repre-
sentation isinferred in an analysis prior to the search and, by utiliz-
ing this representation, accurate reachability analysis and backward
chaining are carried out without necessarily encountering exponen-
tial representation explosion. MIPS was originally designed to prove
that BDD-based exploration methods are an efficient means for im-
plementing a domain-independent planning system with some nice
features, especially guaranteed optimality of the plans generated. If
problems become harder and information on the solution length is
available, MIPSinvokes itsincorporated heuristic single state search
engine (similar to FF), thus featuring two entirely different planning
algorithms, aimed to assist each other on the same state representa-
tion. Note that implementation issues of MIPS are discussed in [20].

The other two BDD planners in AlPS-2000, BDDPLAN by
Stor [29] and PROPPLAN by Fourman [24], lack the precompiling
phase of MIPS, therefore, weretoo slow for traditional STRIPS prob-
lems. Moreover asingle state extension to their plannersis not being
provided. In the generalized ADL settings PROPPLAN has proven
to be competive even with the FF approach, which solves more prob-
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lemsin lesstime, but failsto find optimal solutions.

This paper extends the idea of BDD representations and explo-
ration in the context of heuristic search. The heuristic estimate is
based on subpositions (called patterns) calculated prior to the search
representing all (stateestimate)-pairs in one BDD. Therefore, the
heuristic is aform of a pattern database with planning patterns cor-
responding to (one or a collection of) fluents. This heuristic will be
integrated into a previously published BDD-based version of the A*
algorithm [26], called BDDA* [21]. Moreover, we alter the concept
of BDDA* to pure heuristic search which seems to be more suited at
least to some planning problems. Thereby, we allow non-optimistic
heuristics and sacrifice optimality but succeed in searching larger
problem spaces.

We have structured the paper as follows: First of al, we give a
simple planning example and briefly introduce BDDs basics. There-
after, weturn to the exploration algorithms, starting with blind search
then turning to the directed approach BDDA*, its adaption to plan-
ning, and its refinement for pure heuristic search. We end with some
experimental data and draw conclusions.

2 BDD Representation

Let us consider asimple example of aplanning problem for atruck to
deliver one package from Los Angeles to San Francisco. The initial
state (in STRIPSlike notation) isgiven by ( PACKAGE package),
(TRUCK truck),(LOCATI ON | os- angel es),( LOCATI ON
san-franci sco), (AT package | os-angel es),and (AT
truck | os-angel es) while the goa state is specified by ( AT
package san-franci sco) . Wehavethreeoperator schemasin
the domain, namely LOAD (for loading atruck with acertain package
at a certain location), UNLOAD (the inverse operation), and DRI VE
(acertain truck from one city to another). The operator schemas are
expressed in form of preconditions and effects.

The precompiler to infer a small state encoding consists of three
phases [19]. In afirst constant predicate phase it observes that the
predicates PACKAGE, TRUCK and LOCATI ONremain unchanged by
the operators. In the next merging phase the precompiler determines
that at and i n should be encoded together, since a PACKAGE
can exclusively be at a LOCATI ON or in a TRUCK. By fact space
exploration (a simplified but complete exploration of the planning
space) the following fluent facts are generated: ( AT package
| os-angel es), (AT package san-francisco), (AT
truck | os-angeles), (AT truck san-francisco),
and (1 N package truck).Thisleadsto atotal encoding length
of three bits. Using two bits zo and z; the fluents (AT package
| os- angel es), (AT package san-francisco),and (I N
package truck) are encoded with 00, 01, and 10, respec-
tively, while the variable z» represents the fluents (AT truck
| os-angel es) and (AT truck san-francisco).

Therefore, a Boolean representation of the start state is given by
To A T1 A Tz while the set of goa states is simply formalized
with the expression zo A x1. More generally, for a set of states S
the characteristic function ¢s(a) evaluates to true if a is the binary
encoding of one state z in S. As the formulae for the start and the
goa states indicate, the symbolic representation for a large set of
statesis typically smaller than the cardinality of the represented set.

Since the satisfiability problem for Boolean formulae is NP hard,
binary decision diagrams are used to for their efficient and unique
graph representation. The nodes in the directed acyclic graph struc-
ture are labeled with the variables to be tested. Two outgoing edges
labeled true and false direct the evaluation process with the result



found at one of the two sinks. We assume a fixed variable ordering
on every path from the root node to the sink and that each variable
istested at most once. The BDD size can be exponentia in the num-
ber of variables but, fortunately, this effect rarely appearsin practice.
The satisfiability test is trivial and given two BDDs Gy and G, and
a Boolean operator ®, the BDD G4 can be computed efficiently.
The most important operation for exploration is the relational pro-
duct of avector of variables v and two Boolean functions f and g. It
isdefined as 3v (f A g). Since existential quantification of one vari-
able z; inaBoolean function f isequal to digunction 5 V f.,, the
quantification of v results in a sequence of subproblem disjunctions.
Although computing the relational product is NP-hard in general,
specialized agorithms have been developed leading to an efficient
computation for many practical applications.

An operator can also be seen asan encoding of aset. Thetransition
relation T' is defined as the disjunction of the characteristic functions
of al pairs («', ) with =’ being the predecessor of z. For the exam-
ple problem, (LOAD package truck | os-angel es) corre-
sponds to the pair (00]0,10|0) and (LOAD package truck
san-franci sco) to (011, 10|1). Subsequently, the UNL QAD op-
erator is given by (10]0, 00|0) and (10|1, 10|1). The DRI VE action
for the truck is represented by the strings (00|, 00]%) (01|x, 01|x),
and (10%, 10]=) with % € {0, 1}. For a concise BDD representation
of the transition relation (cf. Figure 1) the variable ordering is cho-
sen that the set of variable in 2’ and = are interleaved, i.e. given in
aternating order.

Figure 1. Thetransition relation for the example problem. For the sake of
clarity, the false sink has been omitted. Dashed lines and solid lines indicate
edges labeled false and true, respectively.

The weighted transition relation T'(w, ', =) is astraight-forward
extension to weighted problem graphs and evaluatesto 1 if and only
if the step from 2’ to « has costs w (encoded in binary).

3 BDD-Based Blind Search

Let S; bethe set of states reachable from the initial state s in i steps,
initialized by Sp {s}. The following equation determines ¢s;
given both ¢5,_, and the transition relation:

¢s; () = 3’ (¢5,_, (") AT (2", 2)).

The formula calculating the successor function is arelational prod-
uct. A state z belongsto S; if it has apredecessor =’ inthe set S;_;
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and there exists an operator which transforms 2/ into z. Note that on
theright hand side of the equation ¢ depends on 2/ compared to 2 on
the left hand side. Thus, it is necessary to substitute z with 2/ in ¢,

beforehand, which can be achieved by a simple textual replacement
of the node labels in the diagram structure.

In order to terminate the search, we successively test, whether a
state is represented in the intersection of the set S; and the set of
goal states G by testing the identity of ¢s; A ¢ with thetrivial zero
function. Since we enumerated Sp, . . ., .S;—1 theiteration index i is
known to be the optimal solution length.

Let Open be the representation of the search horizon and Succ the
BDD for the set of successors. Then the algorithm can be realized as
the pseudo-code Figure 2 suggests.

procedure Breadth-First-Search
Open <+ ¢y
do

Succ + 3z’ (Open(z') A T(z', ))
Open + Succ
while (Open A ¢ = 0)

Figure 2. Breadth-first search implemented with BDDs.

This simulates a breadth-first exploration and leads to three itera-
tions for the example problem. We start with the initial state repre-
sented by aBDD of three inner nodes for the function@o A Z1 A 73.
After the first iteration we get aBDD size of four representing three
states and the function (To A T1) V (zo A Tr A T2). The next
iteration leads to four statesin a BDD of one internal node for zy,
whilethe last iteration resultsin aBDD containing agoal state.

3.1 Bidirectional Search

We start with the goal set By = G and iterate until we encounter
the start state. In backward search we teke advantage of the fact
that T has been defined as arelation. Therefore, we iterate accord-
ing to the formula ¢, (z') = 3z (¢,_, (z) A T(z',x)). In bidi-
rectional breadth-first search forward and backward search are car-
ried out concurrently. On the one hand we have the forward search
frontier Fy with Fy = {s} and on the other hand the backward
search frontier B, with By = G. When the two search frontiers
meet (¢r; A ¢, # 0) we have found an optimal solution of length
f +b. With the two horizons fOpen and bOpen the algorithm can be
implemented as shown in Figure 3.

The choice of the search direction (function call f or war d) iscru-
cial for asuccessful exploration. There arethree simplecriteria: BDD
size, the number of represented states, and smaller exploration time.
Since the former two are not well suitable to predict the computa-
tional efforts of the next iteration the third criterion is preferred.

3.2 Forward Set Simplification

Theintroduction of alist Closed containing all states ever expanded
is a very common approach in single state exploration to avoid du-
plicates in the search. Usually, the memory structure isrealized as a
hash table, which in this context is referred by the term transposi-
tion table. For symbolic search this technique is called forward set
simplification (cf. Figure 4).



procedure Bidirectional Breadth-First-Search
fOpen < ¢,1; bOpen <+ ¢
do
if (forward())
Succ + 3z’ (fOpen(z’) AT (2, z))
fOpen + Succ
else
Succ + Iz (bOpen(z) A T(z', x))
bOpen + Succ
while (fOpen A bOpen = 0)

Figure 3. Bidirectional Breadth-first search implemented with BDDs.

procedure Forward Set Smplification
Closed < Open <— ¢y}
do
Suce « 3z’ (Open(z') AT (', x))
Open «+ Succ A — Closed
Closed + Closed v Succ
while (Open A ¢¢ = 0)

Figure 4. Breadth-first search with forward set simplification implemented
with BDDs.

The effect in the given example is that after the first iteration the
number of states shrinks from three to two while the new BDD for
(ToA TiA x2) V (o A T1 A T2) hasfiveinner nodes. For the sec-
ond iteration only one newly encountered stateisleft with threeinner
BDD nodes representing o A Z1 A T». Forward set simplification
is also used to terminate the search in case of failure in a complete
planning space exploration. Note that any set in between the succes-
sor set Succ and the simplified successor set Succ — Closed will be
avalid choice for the horizon Open in the next iteration. Therefore,
one may choose a set R that minimizes the BDD representation in-
stead of minimizing the set of represented states. Without going into
involved details we denote that such image size optimizing operators
are availablein several BDD packages [14].

4 BDD-Based Directed Search

Before turning to the BDD-based algorithm for directed search we
take a brief look at Dijkstra's single-source shortest path algorithm,
Dijkstra for short, which finds a solution path with minimal length
within aweighted problem graph [17]. Dijkstra differs from breadth-
first search in ranking the states next to be expanded. A priority queue
is used, in which the states are ordered with respect to an increasing
f-value. Initialy, the queue contains only the initial state s. In each
step the state with the minimum merit f is dequeued and expanded.
Then the successor states are inserted into the queue according to
their newly determined f-value. The algorithm terminates when the
dequeued element is a goal state. The f-value of this state is the
length of the minimal solution path.

As said, BDDs allow sets of states to be represented very effi-
ciently. Therefore, the priority queue Open can be represented by a
BDD based on tuples of the form (value, state). The variables should
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be ordered in away which allows the most significant variables to be
tested at the top. The variables for the encoding of the value should
have smaller indices than the variables encoding the state, since this
encoding leads to small BDDs and allows an intuitive understanding
of the BDD and its association with the priority queue.

procedure Symbolic-Version-of-Dijkstra
Speﬂ(ﬁ z)  (f=0) Adso(z)
o}
fmin = min{f | f A Open # 0}
Min(z) < 3f (Open A f = fumin)
Rest(f,z) < Open A = Min
Suce(f, x) + 3z’ w (Min(z') A
T(w7 $,, x) A add(fmin, w, f))
Open + Rest vV Succ
while (Open A ¢¢ = 0)

Figure 5. Dijkstras single-source shortest-path algorithm implemented
with BDDs.

The symbolic version of Dijkstra (cf. Figure 5) now reads as fol-
lows. The BDD Open isset to the representation of the start statewith
value zero. Until we find agoa state in each iteration we extract all
states with minimal f-value fmin, determine the successor set and
update the priority queue. Successively, we compute the minimal f-
value fmin, the BDD Min of all statesin the priority queue with value
fmin, and the BDD of the remaining set of states. If no goa state
is found, the variables in Min are substituted as above before the
(weighted) transition relation T'(w, =, ) is applied to determine the
BDD for the set of successor states. To attach new f-valuesto this set
we havetoretaintheold f-value finin andtocalculate f = fmin+w.
Finally, the BDD Open for the next iteration is obtained by the dis-
junction of the successor set with the remaining queue.

It remains to show how to perform the arithmetics using BDDs.
Sincethe f-values are restricted to afinite domain, the Boolean func-
tion add with parametersa, b and ¢ can be built being trueif c isequal
to the sum of @ and b. A recursive calculation of add(a, b, ¢) should
be prefered:

add(a,b,c) = ((b
3b, ¢ (ine(®',b) A inc(c',c) A add(a,b’,c)),

0)A(a=c))V

with inc representing all pairs of the form (i, + 1). Therefore,
symbolic breadth-first-search (with forward set simplification) can
be applied to determine the fixpoint of add (subject to a certain pre-
defined finite domain of the variables).

4.1 Heuristic Pattern Databases

For symbolically constructing the heuristic function a simplification
T' to the transition relation T that regains tractability of the state
space is desirable. However, obvious simplification rules might not
be available. Therefore, in heuristic search we often consider relax-
ations of the problem that result in subpositions. More formally, a
state v is subposition of another state « if and only if the character-
istic function of « logically implies the characteristic function of v,
e.g., (b{u} =T1 ANx2ANx3 ANTa A x5 and ¢{u} =22 Ax3 results
iN¢guy = Py Asasimple example take the Manhattan distance



in sliding tile solitaire games like the famous Fifteen-puzzle. It isthe
sum of solutions of single tile problems that occur in the overall puz-
zle. The improvement of the Manhatten distance incorporates linar
conflicts due to the interplay of two tiles has lead to solutions to ran-
dom instances of the 24-Puzzle with a state space of 25!/2 ~ 10°°
states.

More generally, a heuristic pattern data base is a collection of
pairs of theform (estimate, pattern) found by optimally solving prob-
lem relaxations that respect the subposition property [15]. The solu-
tion lengths of the patterns are then combined to an overall heuristic
by taking the maximum (usually leading to an admissible heuristic)
or the sum of the individual values (in which case we get an overes-
timization).

Heuristic pattern data bases have been effectively applied in the
domains of Sokoban [31], to the Fifteen-Puzzle [15], and to Rubik's
Cube [36]. In single-state search heuristic pattern databases are im-
plemented by hash table, but in symbolic search we have to con-
struct the estimator symollically, only using logical combinators and
Boolean quantification.

Since heuristic search itself can be considered as the matter of
introducing lower bound relaxations into the search process, in the
following we will maximize the relaxed solution path values. The
maximizing relation max(a, b, ¢), evaluates to 1 if ¢ isthe maximum
of a and b and is based on the relation greater, since

max(a, b, c) = (greater (a,b) A (a =c)) V
(—greater (a,b) A (b=c))

The relation greater (a, b) itself might be implemeted by existen-
tial quantifying the add relation:

greater (a,b) = 3t add(b, t, a)

Next we will find a way to automatically infer the heuristic es-
timate. To combine n fluent pattern p1, . . ., p, with estimated dis-
tancesds, . .., d, tothe goa we usen + 1 additional slack variables
to, ..., t, Which are existenially quantified later on. We define sub-
functions H; of the form

Hi(ti,tiy1,state) = (mpi A (ti =tit1))V
(pi A maz(di,ti,tit1)),

with H;(¢;, ti+1, State) denoting the following relation: If the ac-
cumulated heuristic value up to fluent  is t;, then the accumulated
value including fluent i is¢;41. Therefore, we can combine the sub-
functions to the overall heuristic estimate as follows:

H(estimate,state) = A t1,...,t, (to = 0)A H(t,, estimate,state) A

n—1

/\ Hi(ti, ti+1, state)

=0

In some problem graphs subpositions or patterns might constitute
afeature in which every position containing it is unsolvable. These
deadlocks are frequent in directed search problems like Sokoban and
can belearned domain or problem specifically. Deadlocks are heuris-
tic patterns with a infinite heuristic estimate. Therefore, a deadlock
table DT isthe digjunction of the characteristic functions according
to subpositions that are unsolvable.

The integration of deadlock tablesin the search algorithm is quite
simple. For the BDD for DT we assign the new horizon Open as

Open A =(Open = DT)

which isequivalent to

Open < Open A =DT

4.2 Two Different Heuristics

Patternsin planning are fluents. The estimated distance of each single
fluent p to the goal isa heuristic value associated with p. We examine
two heuristics.

421 HSP-Heuristic:

In HSP the values are recursively calculated by the formula h(p) =
min{h(p),1 + h(C)} where h(C) isthe cost of achieving the con-
junct C, whichin case of HSPr isthelist of preconditions. For deter-
mining the heuristic the planning space has been simplified by omit-
ting the delete effects. The algorithmsin HSP and HSPr are variants
of pure heuristic search incorporated with restarts, plateau moves,
and overestimation.

The exploration phase to minimize the state description length in
our planner has been extended to output an estimate h(p) for each
fluent p. Since we avoid duplicate fluents in the breadth-first fact-
space-exploration, with each encountered fluent we associate a depth
by adding the value 1 to its predecessor. The quality of the achieved
distance values are not asgood asin HSPr since we are not concerned
about mutual exclusions in any form. Giving the list of value/fluent
pairs a symbolic representation of the sub-relations and the overall
heuristic is computed.

In the example we compute that ( AT bal | | os-angel es)
and (AT truck | os-angel es) have a distance of zero from
the initial state (AT truck san-francisco) (IN ball
truck) haveadepth of oneand (AT bal | san-franci sco)
has depth two. Figure 6 depictsthe BDD representation of the overall
heuristic function for the example.

Figure 6. The BDD representation for the heuristic function in the example
problem. In this case the individual pattern values have been maximized.



4.2.2 FF-Heuristic:

Themainideaof FFisfairly simple: Solvetherelaxed planning prob-
lem (delete-facts omitted) with GRAPHPLAN on-line for each state,
i.e., build the plan graph and extract a simplified solution by count-
ing the number of instantiated operators that at least haveto fire. This
is the heuristic value. By relaxed forward and backward search one
state can usually be evaluated in less than ten milliseconds.

Since the branching factor is large (one state has up to hundreds
of successors) by determining helpful actions, only a relevant part
of all successors is considered. The overall search phase is entitled
enforced hill-climbing. Until the next smaller heuristic valueisfound
abreadth first search isinvoked. Then the search process iterateswith
one state evaluating to this value.

In our planner we have (re-)implemented the FF-approach both to
have an efficient heuristic single-state search engine at hand and to
build an improved estimate for symbolic search. Since the FF ap-
proach is based on states and not on fluents, we cannot directly infer
a symbolic version of the heuristic. We have to weaken the state-
dependent character of the heuristic down to fluents. Moreover, sim-
plifying the start state to a fluent may give no heuristic value at all,
since the goal will not necessarily be reached by the relaxed ex-
ploration. Therefore, the estimate for each fluent is calculated by
partitioning the goal state instead. Since we get improved distance
estimates with respect to the initial state, we obtain a heuristic for
backward search. However thisis no limitation, since the concept of
STRIPS operators can be inverted, yielding a heuristic in the usual
direction.

In case of Block's World, any heuristic based on fluent values is
misleading, since if the block at the bottom is not correctly placed
even stateswith all but one satisfied subgoals are far off from the goal
state. To cope with hat problem Hoffmann proposes two different
god ordering strategies, both based knowledge-gathering based on
exploration [35].

4.3 BDDA*

In informed search with every state in the search space we associate
alower bound estimate k. By reweighting the edges the algorithm of
Dijkstra can be transformed into A*. The new weight w is set to the
old one w minus the h-value of the source node «/, plus the value of

the target node = resulting in the equation (2, z) = w(z',x) —

h(z") + h(z). The length of the shortest paths will be preserved and
no new negative weighted cycle is introduced [13]. More formally,
if we denote 4(s, g) for the length of the shortest path from s to a
goal state g in the original graph, and (s, g) the shortest path in the
reweigthed graph then w(p) = (s, g) if and only if @(p) = (s, g).

The rank of anode isthe combined value f = g + h of the gener-
ating path length g and the estimate h. The information h allows us
to search in the direction of the goal and its quality mainly influences
the number of nodes to be expanded until the goal is reached.

In the symbolic version of A*, called BDDA*, the relational pro-
duct algorithm determines all successor statesin one evaluation step.
It remains to determine their values. For the dequeued state 2/ in A*
we have f(z') = g(z') + h(z"). Since we can access f, but usually
not g, the new value f(x) of asuccessor z hasto be calculated in the
following way

f(@) = g(z) + h(z) = g(z') + w(z', ) + h(z) =

f@") +w(z' ) — h(z") + h(z).
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Theestimator H can be seen asarelation of tuples (estimate, state)
which is true if and only if h(state)=estimate. We assume that H
can be represented as a BDD for the entire problem space. The cost
values of the successor set are calculated according to the equation
mentioned above. The arithmetics for formula(h', b, w, f’, f) based
on the old and new heuristic vaue (%' and h, respectively), and the
old and new merit (' and £, respectively) are given as follows.

formula(h’, b, w, f', f) = I t1,t2 add(t1, b, f') A
add(t1,w,t2) A add(h,ts2, f).

The implementation of the algorithm BDDA* is depicted in Fig-
ure7.

procedure BDDA*
dOpen(f, z) « H(f,z) A ¢ps0()
(o}
fmin = min{f | f A Open # 0}
Min(z) < 3f (Open A f = fumin)
Rest(f,z) <+ Open A = Min
Suce(f, x) + Jw,x’ (Min(z') A T(w,x’,z) A
3w (H(K',2") A3h (H(h,z) A
form-jla(hla h, w, fmin, f))))
Open + Rest vV Succ
while (Open A ¢¢ = 0)

Figure 7. Hart, Nilsson and Raphael's A* algorithm implemented with
BDDs.

Since all successor states are reinserted in the queue we expand
the search tree in best-first manner. Optimality and completeness is
inherited by the fact that given an optimistic heuristic A* will find an
optimal solution.

Given a uniform weighted problem graph and a consistent heuris-
tic the worst-case number of iterations in BDDA* is O(f*?), with
f* being the optimal solution length [21].

Preliminary results of BDDA* even in handcoded traditional
single-agent search domains are promising.

In (amoderately difficult instance to) the Fifteen-Puzzle, the4 x 4
version of the well-known diding-tile (n* — 1)-Puzzles, a minimal
solution of 45 moves was found by BDDA* within 176 iterations
with a maxima BDD-size of 215.000 nodes representing 136.000
states. With a breadth-first search approach it was impossible to
find any solutions because of memory limitations. Already after 19
iteration-steps more than 1 million BDD-nodes were needed to rep-
resent more than 1.4 million states. Note, that the upper limit of (do-
main independent) planners are to solve some instances to the Eight-
Puzzle [41].

Sokoban was considered as a domain for AIPS-2000, but was in
favor of Freecell, the Window solitaire card game. To find the mini-
mal solution in Sokoban an efficient encoding is essential. There are
56 different fields available for the man, resulting in a binary encod-
ing of six bits. For the balls 23 positions are either not reachable or
the configuration becomes unsolvable. Therefore, 33 hits are suffi-
cient to specify for each considerable position if aball isplaced on it
or not. The BDDA* agorithm was invoked with a very poor heuris-
tic, counting the number of balls not on agoal position.

Breadth first search finds the optimal solution with apeak BDD of
75,000 nodes representing 8,400,00 states in the optimal number of



230 iterations. BDDA* with the heuristic leads to 419 iterations and
to a peak BDD of 68,000 nodes representing 4,300,00 states. Note
that even with such a poor heuristic, the number of nodes expanded
by BDDA* is significantly smaller than in a breadth-first-search ap-
proach and their representation is more memory efficient. The num-
ber of represented states is up to 250 times higher than the number
of necessary BDD nodes. Additionally, more bits are needed for the
encoding of a state than for the encoding of a BDD node.

4.4 Pure BDDA*

A variant of BDDA*, called Pure BDDA*, can be obtained by or-
dering the priority queue only according to the h values. In this case
the calculation of the successor relation simplifiesto 32" (Min(z') A
T(z',z) A H(f,z)) asshown in Figure 8.

procedure Pure BDDA*
Open«— H(f,x) A ¢go
do
fmin = min{f | f A Open # 0}
Min(z) < 3f Open A f = fmin
Rest(f,z) < Open A = Min
Suce « 3z’ (Min(z") AT (z',z) A H(f,x))
Open + Rest v Succ
while (Open A ¢¢ = 0)

Figure 8. Pure BDDA* agorithm implemented with BDDs.

The old f-value will be overwritten and need not to be provided.
Therefore, Pure BDDA* isagreedy hill climber.

Unfortunately, even for an optimistic heuristic the algorithm is not
admissible and, therefore, will not necessarily find an optimal solu-
tion. The hope is that in huge problem spaces the estimate is good
enough to lead the solver into a promising goal direction. Therefore,
especially heuristics with overestimizations can support thisaim.

On solution paths the heuristic values eventually decrease. Hence,
in Pure BDDA* we take advantage of the fact that the most promis-
ing states are in the front of the priority queue, have a smaller BDD
representation, and are explored first. This compares to BDDA* in
which the combined merit on the solution paths eventually increases.
The advantage of symbolic representation compared to single state
exploration isthat several paths are searched in parallel.

Note the similarity of considering a possibly large set of state in
enforced hill climbing as implemented in FF. A good trade-off be-
tween exploitation and exploration has to be found. In FF breadth-
first search for the next heuristic estimate consolidates pure heuristic
search for a complete search strategy.

Figure 9 depicts the different dequeued BDDs Min together with
their heuristic valuation in the exploration phase of Pure BDDA* for
the example problem.

5 Experiments

From given results on the different heuristic search planners [28] it
can be obtained that heuristics pay off best in the Gripper and the
Logistics domain. We add some data obtained in two model checking
planning problems.
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Figure 9. Backward exploration of the example problem in Pure BDDA*.
In each iteration step the BDD Min with associated h-value is shown. Note
that when using forward set simplification these BDDs additionally
correspond to a snapshot of the priority queue Open.

More experimental results on AIPS-1998 results are provided
in [20]. The performance on AIPS-2000 can be obtained at the of-
ficial homepage of the competition.

5.1 Gripper

The effect of forward set simplification and optimization can best be
studied in the scalable Gripper domain depicted in Table 2.

B abbreviates bhidirectional search, O BDD image optimization,
and F forward set simplification, respectively. When the problem in-
stances get larger the additional computations pay off. In Gripper
bidirectional search leadsto no advantage since due to the symmetry
of the problem the climax of the BDD sizes is achieved in the mid-
dle of the exploration. Thisis an important advantage to BDD-based
exploration: Although the number of states grows continuously, the
BDD representation might settle and become smaller. The data fur-
ther suggests that optimizing the BDD structure with the proposed
optimization is helpful only in large problems.

Solution Length BFS +B +BF  +BFO

-1 11 0.00 0.01 0.0I 0.0I
1-2 17 0.01 0.01 0.02 0.02
1-3 23 0.02 0.03 0.02 0.02
1-4 29 0.03 0.03 0.04 0.04
1-5 35 0.04 0.04 0.07 0.07
1-6 41 0.06 0.06 0.08 0.08
1-7 47 0.08 0.08 0.11 0.14
1-8 53 0.12 0.13 0.19 0.20
1-9 59 0.35 0.36 1.33 1.58
1-10 65 0.72 1.93 2.06 2.15
1-11 71 127 233 2.36 243
1-12 N4 1.95 321 3.05 313
1-13 83 2.80 391 3.48 3.49
1-14 89 3.80 5.04 4.28 4.36
1-15 95 4.93 6.26 5.29 5.43
1-16 101 6.32 721 6.41 6.07
1-17 107 772 8.94 7.26 752
1-18 113 9.82 | 1091 8.65 8.61
1-19 119 | 2473 | 2611 | 1528 15.35
1-20 125 | 3459 | 36.73 | 2041 20.08

Table 1. Searching the Gripper domain with breadth-first search, combined
with bidirectional search, forward set simplification and optimization.

2 The CPU-times in the experiments are given in seconds on a Linux-PC

(Pentium 111/450 MHz/128 MByte).




As we can see, Gripper is not a problem to BDD-based search at
al, whereasit ishard for Graphplan search engines.

5.2 Logistics

Due to the first round results in AIPS-2000 it can be deduced that
FF's, STAN'sand MIPS's heuristic single search engine are state-of -
the-art in this domain, but Logistics problems turn out to be supris-
ingly hard for BDD exploration and therefore a good benchmark do-
main for BDD inventions. For example Jensen's BDD-based plan-
ning system, called UMOR , failsto solve any of the AIPS-1998 (first-
round) problems [30] and breadth-first search in MIPS yields only
two domains to be solved optimally.

This is due to high parallelism in the plans, since optimal paral-
lel (Graphplan-based) planners, like IPP (by Kohler), Blackbox (by
Kautz and Selman), Graphplan (by Blum and Furst), Stan (by Fox
and Long) perform well on Logistics. Note, that heuristic search
planners, such as (parallel) HSP2 with an IDA* like search engine
loose their perfomance gains when optimality has to be preserved.

With Pure BDDA* and the FF-Heuristic, however, we can solve
11 of the 30 problem instances [20]. The dauting problem is that —
dueto the large minimized encoding size of the problems—thetransi-
tion function becomes too large to be build. Therefore, the Logistics
benchmark suitein the Blackbox distribution and in AIPS-2000 scale
better. In AIPS-2000 we can solve the entire first set of problems
with heuristic sybolic search and Table 2 visulizes the effect of Pure
BDDA* for the Logistics suite of the Blackbox distribution, in which
al 30 problems have encodings of less than 100 bits. We measured
the time, and the length of the found solution. HZ5F and HESF

abbreviate Pure BDDA* search according to the add and the max
relation in the HSP-heuristic, respectively. HEE and HEE, are de-
fined analogously. The depicted times are not containing the efforts
for determining the heuristic functions, which takes about afew sec-
onds for each problem. Obviously, searching with the max-Heuristic
achieves abetter solution quality, but on the other hand it takes by far
more time. The dataindicates that on average the FF-Heuristic leads
to shorter solutions and to smaller execution times. This was ex-
pected, since the average heuristic value per fluent in H*' ¥ islarger
thanin H75P e.g. inthefirst problem it increases from 2.96 to 4.43
and on the whole set we measured an average increase of 41.25 % of
the heuristic estimate.

The backward search component - here applied in the regression
space (thus corresponding to forward search in progression space) is
used as a breadth-first target enlargement. With higher search tree
depths this approach definitely profits from the symbolic representa-
tion of states.

In Pure BDDA* forward simplification is used to avoid recur-
rences in the set of expanded states. However, if the set of reachable
states from the first bucket in the priority queue returns with failure,
we are not done, since the set of goal states according to the minimal
heuristic value may not be reachable.

5.3 Model Checking Domains

The model checking problem determines whether a formulais true
in a concrete model and is based on the following issues (cf. F.
Giunchigliaand P. Taverso [25]):

1. A domain of interest (e.g, a computer program or a reactive sys-
tem) is described by aformal model.

BFS  mRST HEST mEL T,
1 25 0.66 30 0.06 25 1.05 30 0.92 25 0.49
2 24 121 27 533 24 129 31 1.27 26 3.52
3 - - 29 330 | 26 3598 | 28 118 | 26 30.22
4 - - 59 6.53 52 37.10 59 3.49 52 22.74
5 - - 52 564 | 42 4.56 51 3.11 43 341
6 4 72 63 7.22 51 67.18 64 2.45 52 11.37
7 - - 83 14.89 - 80 11.87 - -
8 - - 84 19.14 80 15.05 - -
9 - - 84 13.07 - - 80 8.94 - -
10 - - 47 13.93 40 484 45 8.15 40 421
11 - - 54 10.10 - - 52 7.30 - -
12 - - 37 1.19 36 3.90 - -
13 - - 77 15.18 78 9.89 - -
14 - - 74 18.58 83 13.36 - -
15 - - 64 17.16 - 68 10.08 - -
16 39 580 49 7.19 41 4.64 46 2.78 40 1.73
17 | 43 277 51 997 | 43 391 | 50 2.60 | 43 3.38
18 - - 56 21.53 - 54 15.76 - -
19 - - 53 12.85 57 8.01 - -
20 - - 101 20.42 95 13.58 - -
21 - - 73 16.16 69 10.47 - -
22 - - 94 18.45 87 14.54 - -
23 - - 72 13.95 71 10.81 - -
24 - - 79 14.18 75 9.50 - -
25 - - 73 14.81 66 9.03 - -
26 - - 60 14.23 61 9.35 - -
27 - - 81 15.31 80 12.72 - -
28 - - 87 27.15 89 23.74 - -
29 - - 51 21.58 52 16.70 - -
30 - - 59 13.41 59 9.61 - -

Table 2. Searching the Logistics domain with Pure BDDA*.

2. A desired property of finite domain (e.g. a specification of a pro-
gram, a safety requirement for a reactive system) is described by
aformulatypically using temporal logic.

3. Thefact that adomain satisfiesadesired property (e.g. thefact that
aprogram meetsits specification, e. g. that areactive system never
ends up in a dangerous state) is determined by checking whether
or not the formulaistruein theinitial state of the model.

The crucial observation is that exploring (deterministic or non-
deterministic) planning problem spaces is in fact a model checking
problem. In model checking the assumed structure is described as a
Kripke structure (W, Wy, T, L), where W isthe set of states, Wy the
set of initial states, T' the transition relation and L a labeling func-
tion that assigns to each state the set of atomic propositions which
evaluate to truein this state.

The properties are usually stated in atemporal formalism like lin-
ear timelogic LTL (used in SPIN) or branching timelogic CTL even-
tually enhanced with fairness constraints (used in PVS and SMV).
In practice, however, the characteristics people mainly try to verify
aresimple safety properties expressiblein all of the logics mentioned
above. They can be checked through asimple calculation of all reach-
able states. An iterative calculation of Boolean expressions has to be
performed to verify the formula EF Goal in the temporal logic CTL
which is dual to the verification of AG —Goal. The computation of a
(minimal) witness delivers a solution. Cimatti, Roveri and Traverso
present BDD-based planning approaches capable of dealing with
non-deterministic domains [12, 23]. Due to the non-determinism the
authors refer to plans as complete state action tables. Therefore, ac-
tions are included in the transition relation, resulting in a representa-
tion of theform T'(a, ', x). The concept of strong cyclic plansturns
out to check the formula AGEF Goal [16] which expresses that from
each state on a path agoal stateis eventually reachable.

When using BDDA* for model checking safety properties it
turned out that it is not a good choice to omit the set Closed. In dif-
ference to A*, however, the length of the minimal path to each state
is not stored. The closest corresponding single-state space algorithm
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is IDA* with transposition tables [45]. Unfortunately, even for opti-
mistic heuristics it is necessary to memorize the corresponding path
length to guarantee admissibility. However, one can omit this addi-
tional information when only consistent heuristics are considered.
In this case the resulting cost-function is monotone. Fortunately, we
found a refinement strategy to devise consistent heuristics for hard-
ware verification [44].

In our experiments we used the p-calculus [38] model checker
ucke [1] which accepts full p-calculus as its input language’. The
while-loop of BDDA* can be converted into aleast fixpoint. Asitis
not possible to change the two sets (Open, Closed) in the body of one
fixpoint the Closed set is simulated by one slot in the BDD for Open.
Another difficulty is that the function for Open is not monotone be-
cause states are deleted after they have been expanded. Monotonic-
ity is a sufficient criterion to guarantee the existence of fixpoints.
Therefore, the function for Open is hot a syntactic correct p-calculus
formula but as the termination of the algorithm is guaranteed by the
monotonicity of the Closed set the standard algorithm for the calcu-
lation of p-calculus fixpoints can be applied nevertheless. Unfortu-
nately, we cannot take advantage of a special BDD operation to de-
termine the minimal costs in this case. These calculations have to be
simulated by standard operations leading to some unnecessary over-
head that in the visible future has to be avoided in a more customized
implementation.

For the evaluation of our approach we use the example of the tree-
arbiter amechanism for distributed mutual exclusion: 2n users want
to use a resource which is available only once and the tree-arbiter
manages the requests and acknowledges avoiding a simultaneous ac-
cess of two different users. The tree-arbiter consists of 2n — 1 mod-
ules of the same structure such that it is easy to scale the example.
Since we focus on error detection we experiment with an earlier in-
correct version published in [18] using an interleaving model.

BFS BDDA¥
n it | max nodes time it | max nodes time
15 30 991374 46s | 127 5715484 2885
17 12 18937458 3912s | 167 7954251 4765
19 ) 22461024 6047s | 157 8789341 5405
21 14 26843514 | 24626s(9) | 157 9097823 530s
23 | >40 - >T7000s | 157 9548269 5165
25 - - [ 169 21561058 1370s
27 - - [ 169 25165795 | 18I8s(D)

Table 3. Tree-arbiter: In parenthesis the number of garbage collections is
given.

Asthealgorithm for the automatic construction of the heuristic has
not yet been implemented and since the number of different error-
cases increases very fast with the size of the tree-arbiter we searched
for the detection of a special error. Table 3 shows the resultsin com-
parison with aclassical forward breadth first search. To guarantee the
fairness of the comparison the search is terminated at the time when
the first error state has been encountered. The depth, which can be
chosen by the user, denotes the quality and complexity of the auto-
matically constructed heuristic depending on the transition relation
and the error specification.

For the tree-arbiter with 15 modules or less the traditional ap-
proach is faster and less memory consuming, but for larger sys-
tems its time and memory efficiency decreases very fast. On the
other hand, the heuristic approach found errors even in large sys-

3 All datain this section has been produced on a Unix-Workstation (Sun Ultra
1/512 MByte).
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tems, since its memory and time requirements increase more slowly.
For the tree-arbiter with 23 modules the error could not be found
with breadth-first-search. Already for the version with 21 modules 9
garbage collections were necessary not to exceed the memory limita-
tions, whereas the first garbage collection with the heuristic method
had to be invoked at a system of 27 modules. For the tree-arbiter
with 27 modules we also experimented with the heuristic. When we
double its values the heuristic fails to be optimistic, but the error de-
tection could be carried through avoiding any garbage collections.
Moreover, athough more than three times more iterations were nec-
essary only about 8% more time was consumed which indicates that
it can be efficient to perform many iterations treating small sets of
states instead of few iterations treating large sets. This also illus-
trates that there is much room for further research in refinements to
the heurigtic.

BFS BDDA*
size | max nodes time | depth it | max nodes time
6 23 26843514 | 5864s(5) 6v | 35 29036025 | 22075 (4
6 | 53 25165795 | 1009s(1
7 |53 25159862 813s (0

Table 4. Asynchronous DME: In parenthesis the number of garbage
collections is given.

The second exampl e used for the evaluation of our approach isthe
asynchronous DME. Like the tree-arbiter it consists of n identical
modules and it is a so amechanism for distributed mutual exclusion.
The modules are arranged in a ring structure whereas the modules
of the tree-arbiter form apyramid. In this case we also experimented
with the set Closed and it turns out that it was more efficient to use
the original BDDA*-algorithm. For this variation only small changes
in the calculation of Open are necessary. Like in the previous exam-
ple the results in Table 4 show that the heuristic approach is more
memory efficient and less time-consuming. The first experiment in
the table uses the set Closed that was omitted in the other experi-
ments since this turned out to be more time and memory efficient.

6 Conclusion and Outlook

Symbolic breadth first search and BDDA* have been applied to
the areas search [21] and model checking [44]. The experiments in
(heuristic) search indicate the potential power of the symbolic ex-
ploration technique (in Sokoban) and the lower bound information
(in the Fifteen Puzzle). In model checking we encounter a real-world
problem of finding errorsin hardware devices. BDD sizes of 25 mil-
lion nodes reveal that even with symbolic representations we operate
at the limit of main memory. However, the presented study of domain
independent STRIPS-planning proves the generality of BDDA*.

The presented directed BDD-based search techniques bridge the
gap between heuristic search planners and symbolic methods. Es-
pecialy the newly contributed Pure BDDA* algorithm and the FF
heuristic seem very promising to be studied in more detail and to be
evaluated in other application areas. All applied heuristics are not as
informative as their original, but, nevertheless, lead to good results.
Together with the wide range of applicability through the generality
of the presented approach, we conclude that on the same heuristic
information a symbolic planner is competitive with asingle state one
if at least moderate-sized sets of states have to be explored.

Finaly there is lot of work to be done in future. For example,
some BDD refinements (such as transititon function splitting) should
be implemented. Further on, we have to develop a BDD exploration




algorithm that yields optimal parallel plans. Kautz and Selman have
shown, how this can be achieved in case of SATPLAN and Haslum
and Geffner have presented a first solution to the problem for HSP.
The most intense research will focus on generalization to the plan-
ning language (such as non-determinism), where the advantage of
BDD-based planning compared to single-state exploration is more
apparent. For example BDD generalisations to Markov decision pro-
cess planning for the (single-state) general planning tool GPT by
Geffner and Bonet are desireable [5].

When introducing ressources, hybrid approaches with integer pro-
gramming become an apparent issue. Three different approaches can
be found. Walser and Kautz integrate the concept of numbers within
the propositional setting and therefore extend the languages [34].
However, the new formalism can handle plans with ressources, ac-
tion costs and complex objective functions. Vossen et. a present a
domain independent tranglation of planning problems into integer
programs [46]. As a drawback the efficiency of other system has not
been gained. Bockmayr and Dimopoul os integrate some domain spe-
cific knowledge to the setting of propositional planning [3].

Acknowledgment | thank F. Reffel and M. Helmert for their co-
operation concerning this research. The work is supported by DFG
in aproject entitled Heuristic Search and Its Application in Protocol
Verification.
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Planning with tokens:

an approach between satisfaction and optimization

Patrick Fabiani

Abstract. This paper presents an initial approach in an attempt
to integrate powerful propositional planning tools within a general
planning process possibly involving both numerical and symbolic
uncertainties. Recently developed propositional approaches to plan-
ning allow to build and search efficiently a planning graph. Yet, han-
dling uncertainty and numerical optimization criteria within such
frameworks remains difficult. A potentially powerful solution is to
combine symbolic reasoning tools with decision theoretic represen-
tations. A first proposal isto begin with a colored Petri net represen-
tation of the propositional planning domain. Sample formalizations
of planning problems and subsequent implementations are presented
together with the propagation mechanisms with tokens. The plan is
output as a Petri net, so that all information about dependency re-
lations among actions is preserved. The preliminary results on de-
terministic planning problems seem encouraging. Besides, useful in-
formation concerning the planning process, uncertainty or risk can
then be attached to the colored tokens and thus travel throughout the
planning graph. Thisis meant to be later exploited for optimization.

1

The introduction of sensory or modeling uncertainties in the classi-
cal planning paradigm leads to practical difficulties both at represen-
tation and solution level [13]. Yet, planning under uncertainty is a
key issuein research about agents with autonomous decision making
abilities. The topics addressed in [6] easily extend to the general case
of autonomous agents which have to deal with rich domains while
having uncertain or incomplete models of their environment, pos-
sibly involving partial observability or partia predictability. Recent
work about a problem of dynamic robot motion planning under un-
certainty [7] has shown how computational geometry could be com-
bined to game theory in order to reduce the size of the search space.
Though dealing with uncertainty is not the chief topic addressed here,
this paper presents an initial step in order to generalize this approach
and combine symbolic reasoning with decision-theoretic tools. The
proposed approach consist in first designing an efficient classical
planner borrowing ideas from Graphplan, to be later extended to al-
low planning under uncertainty. The present paper is organized in
three sections. In section § 2 we first relate this work to other ap-
proaches and explain our motivations to use tokens with a discussion
about optimization issues. In section § 3 we introduce Petri nets and
tokens and show how this formalism can be related to our needs. In
section § 4 we focus on the mechanisms of planning with tokens in
classical domains, eventually providing perspectives on future work
on both classical planning and planning with uncertainty.
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2 Reated work

2.1 Combining decision theoretic and classical
planning

The theory of games and decision [17, 16] provides an attractive
framework for decision making under uncertainty, within which the
study of automated sequential decision making under uncertainty
can be usefully embedded. Different approaches to decision-theoretic
planning have been studied and developed in various domains :
see [14] for robot motion planning problems and [4] for a discus-
sion about recent issues about decision-theoretic planning and more
specifically around the MDP framework.

On the other hand, solving MDPs or stochastic dynamic pro-
gramming problems of quite reasonable size remains a task of high
computational complexity [15]. The curse of dimensionality appears
when partial observability isadded (POMDPs) : then, the dimension
of the search space is equal to the size of the underlying state space.
Algorithms have been developed that can efficiently solve decision-
theoretic planning problems of reasonable size : in particular, [4] re-
views anumber of approaches developed to prune as many branches
as possible in the search graph.

More specifically, the work in [3] is remarkable as proposing to
reuse ideas from Graphplan [1] for reachability analysis in solving
MDPs. Yet, it may not always be easy to draw an adapted MDP-
like discretization of the state space from the initial problem defi-
nition : in [7] for example, the workspaces of the pursuer and the
target robots are both systematically discretized into 1500 possible
free states each (to be fine enough). Assuming perfect localization in
real time for both robots, and focusing on couples of initial positions
for which the pursuer can see the target (an average 40 possibilities),
the MDP for the tracking problem with uncertain moves but perfect
localization information would have a state space of size 60000. Now
with localization uncertainties, the corresponding POMDP has a di-
mension 60000 : there would be a need for a tailored hierarchical
decomposition rather than a systematic discretization. The curse of
dimensionality is hopefully circumvented in [7] thanks to Computa-
tional Geometry tools, which seems agood ideato generalize when-
ever equivalent powerful tools exist.

Thisagain, leads to the idea that classical planning methods could
be somewhat adapted so as to take uncertainty measures into ac-
count at planning time, or aternatively, as already proposed by C.
Boutilier [3], in order to build an appropriate search graph and allow
a subsequent decision process to deal with it properly. For instance,
PGraphplanin [2] takes probabilistic actions into account and Sen-
sory Graphplan21] handles uncertainty about the initia state. [10]
presents another attempt to extend classical planning methods to dy-
namic and changing environments. Yet, most of the difficulties and
limitations raised by S. Kambhampati in [13] still apply.



2.2 Planning with uncertainties, optimization and
forward search

The first point we want to make here is that in classical planning,
the problem is one of satisfaction of a sequence of transition con-
ditions leading to a goal termination condition. By contrast, dealing
with uncertaintiesin planning, likein decision-theoretic planning, re-
quires optimization capabilities. This actually is one magjor difficulty
for classical planning algorithms to adapt to problems with uncer-
tainty.

For instance, [2] describes an adaptation of Graphplan for doing
contingent planning, considering probabilistic actions - Pgraphplan.
Pgraphplan builds the graph basically the same way as Graphplan.
However, Graphplan considers that both instances p; and p» of a
same proposition appearing in two separate states s; and s» are
equivalent. For that reason, this proposition is introduced only once
in alevel of the graph - thisis the basis of digunctive planning. By
contrast, this assumption is not valid anymore in Pgraphplan’s plan-
graph. Indeed, the reachability probabilities concerning s; and s»
may be different, so that p:, for example, may have a higher prob-
ability of reachability. Since we are doing contingent planning, it is
important to keep this distinction between p; and p» in order to make
the search for a plan easier. Unfortunately, Pgraphplan does not keep
it because it builds the graph basically the same way as Graphplan.

As a consequence, in order to extract a plan, the plan graph has
to be searched forward instead of backward. This prevents it from
taking advantage of most of the speed-ups of classical Graphplan,
because these are related to the coupling between forward constraint
propagation and backward search. As pointed out in [2], searching
the Pgraphplan’s plan-graph backward is much more difficult than it
isin classical Graphplan.

Similarly in [10], the author try to reuse Graphplan’'s ideas for a
combination of contingent and conformant planning in an uncertain
environment. In their approach though, the actual computation of un-
certainty levels requires an unreasonable series of backward and for-
ward computation phases.

The same problem occurs about utility functions or rewards : in-
deed, a given state can be reached from different trajectories with
different utility or cost and one would need to keep some track of
it in order to do some optimization. Besides, two different states,
with two different utility values may share some common partial de-
scription. What value must be assigned to the node corresponding to
this partial state when no distinction is made between the underlying
states, or sets of states.

2.3 Statesor features?

Most of the time, the probabilities, costs, utilities, or expected util-
ities to be optimized can only be computed via a forward search in
the state space : the optimization criteria depend upon the states (or
sets of states in the best case) and transitions between those states
(resp. sets of states) along the performed sequence of actions. These
criteria generally cannot be computed from features of the state, like
features described by propositions, which is a real problem for dis-
junctive planners like Graphplan.

Hereisasimple optimization exampletofix theideas. It isadapted
from the rocket benchmark domain to fit in this discussion. Consider
one rocket and four planets : Venus, Mars, the Moon, and the Earth.
Two packages - A and B - are on the Earth, along with the rocket. A
has to be delivered on Mars and B on Venus, minimizing the cost of
transportation. Costs are attached to interplanetary journeys and are
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summarized in figure 1. How could we adapt Grpahplan to find the
best transportation plan ? Consider two possible trips of the rocket :

30
VENUS MARS

10 10
5

Interplanetary journeys have a cost. Here is an example.

Figurel.

1. Earth- Mars- Moon, cost = 12
2. Earth - Moon - (stayed on the Moon), cost = 5

While building the plan graph, we observe there are two ways of
reaching the moon, with dramatically different cost values (suppose
for example that each token wears a cost value that is updated when
going through a F'LY transition). A temptation isto keep the lowest
cost token only. Now suppose while on Mars (in trip 1), the rocket
unloaded package A. The higher cost of thistrip is then totally jus-
tified. In fact, both these costs cannot be compared because they do
not correspond to plans of same level of achievement with respect to
the final goals to be reached.

To distinguish clearly between the two ways of reaching a node
in the plan graph, we need to somewhat keep track of the followed
"trajectory"”, or the sequence of action. The fact is that for this spe-
cific domain, propagating tokens in a graph at planning time would
allow the tokens to carry all the necessary information for the back-
ward search agorithm to find the best cost afterward, thus naturally
solving the problem.

Yet, generalizing this scheme would simply make our approach
look very much like aforward search in the state space, and forward
search in the state space is extremely costly. We would like to avoid
it whenever possible.

2.4 Search space splitting and optimization

As a matter of fact, at each stage of the search space building pro-
cess, some sets of (reachable) states may share interesting properties.
They may have the same utility value - defining utility regionsamong
states, like in [7] or they may be reachable with the same probabil -
ity - defining probability or risk regions. In such cases, digunctive
planning, with its capability to manage sets of states (described as
propositional features) may have an answer.

This is not always possible : when, on the contrary, the topology
of these regions depends on the values assigned to intricate combi-
nations of several features of the domain (thus, defining states), fully
disiunctive planner are useless since they consider each feature inde-
pendently. Intuitively, anice solution should involve some “ splitting”
control based on a decomposition of the state space into regions, or
sets of states, but in away that has nothing to do with the way Graph-
plan handles features.

For instance, Sensory Graphplan [21] aims at handling uncertainty
about the initial state. In the given examplein [21], there are two pos-
sible hypotheses for the initial state and therefore, Sensory Graph-
plan generates two separate plan graphs, from each initial state. Each



graph isrelated to a possible world. The plan search looks for aplan
valid in both worlds. In this case, both worlds are characterized by
simplefeatures, but doing so, the authors have introduced some split-
ting in the search space, based on an partition of the state space at the
root of the search space. We would like to authorize this at any stage
of the search space building process, whenever introducing such dis-
tinctions may happen to prove useful.

2.5 Controlling the search space splitting

For the rest of this paper, one says that the search space building
stage splits the search space, when it splits the current set of reach-
able statesin several sub-sets, and then continues independently from
each sub-set. Thisnotion isexplained in more detailsin [12], in terms
of planning approaches and potential plan sets.

For example, an FSS(Forward State Spagesearch type of ap-
proach does full splitting. Indeed, as soon as an action is introduced
in a plan prefix - narrowing down the current set of potential plans
- the resulting set is pushed in a new branch of the search tree (see
fig. 2). On the contrary, a (digjunctive) Graphplan-like approach does
no splitting at all: al the possible actions are introduced together,
and the set of all the potential plan sets they entail is considered as
a whole when continuing planning. This is the basis of digunctive

planning.
(At-Robby R2)
(AtB1R1)
(AtB2R1)
Free G1)

(At-Robby R1)
(Carry B1G1)
(AtB2R1)

(Busy G1)

(Move R1Rp)

State 1

(At-Robby R1)

(AtBLR1)
(AtB2R1)
Free G1)

(At-Robby R1)
(AtB1R1)

(Carry B2G1)
(Busy G1)

Figure2. Hereisthe beginning of an FSS-search tree that would be
developed for the gripper problem (with 2 balls and 1 gripper). Each node is
acoherent state.

During the search space building stage, the state reachability may
thus be more or less approximated. For example, Graphplan com-
putes only pairwise mutex relations and therefore considers some
states as reachable whereas they are not because of some three-wise
constraint. In such a case, no plan can be found at backward search
time, and a further extension of the search space is reguired.

The more splitting is used, the more accurate is this approxima-
tion. Doing full splitting insures exact reachability and optimality
criteria computation. As a consequence, the checking stage in a de-
terministic goal oriented planning problemistrivia and classical Dy-
namic Programming tools can be applied directly if optimization has
to be performed. With partial splitting, such criteria can at best be
bounded, which may nevertheless prove useful.

The same way, the more splitting is used, the more narrow is the
range of actions and propositions which are introduced. Indeed, we
avoid some mistakes which may have led to the introduction of some
actions that should be pruned. However, a higher level of splitting
entails a higher level of duplication of work since each action may
be introduced several times (from each subset of state) at each level.
On the one hand, this makes the search stage easier - because part
of the check is implicitly included in the classification, but on the
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other hand, this worsens the combinatorial aspects of the problem -
because of the redundancy it entails.

2.6 Motivation for the use of Petri nets and tokens

Thefirst benefits we expect from Graphplan-like schemesisthe two-
stage process of forward search space building followed by backward
search. On the other hand, some information may be drawn during
the building phase that we don’'t want to lose for the search (and
optimization) phase. The intuitive idea is that token propagation via
Petri-like graphs should allow to keep track of some of thisinforma-
tion and reuse it later, either during the search space building phase
or during the backward search phase.

The token propagation mechanisms should support the optimiza-
tion capabilities which are barely compatible with Graphplan’s dis-
junctive planning : as afirst contribution, we show in the following
that we can provide token propagation mechanisms that allow us to
perform both Forward State Spaceearch and digunctive planning
“ala Graphplan”.

Planning with Petri nets is not a completely new idea[9] : it is
here combined with recent research on Graphplan [12, 11]. In [8,
19], the expected advantages of such a combination are discussed
in terms of action and perception planning for autonomous agents.
More generally, it allows to attach useful information concerning the
planning process, uncertainty or risk to tokens and then track or use
thisinformation throughout the planning graphs.

3 Tokensand Petri nets
3.1 From a STRIPSdomain to a Petri net

PL

chch

Figure3. A simple Petri net, composed of asingle transition 7'r, and 3
places P1, P2, and P3. Inthetop figure, both P1 and P2 are marked by
tokens (black dots), therefore the transition 7'r can be triggered. On the
bottom figure, the transition has been triggered : one token in each input
place has been “consumed”, and the output place P3 is marked by atoken.
Note that it remains atoken in P1 ; however, since P2 is empty, the
transition cannot be triggered. In more complex Petri nets, places can be
connected to several transitions, as inputs or outputs.

A Petri net is composed of three types of elements : places tran-
sitions and tokens(see fig.3). Places can be seen as token holders.
They are connected to transitions as inputs or outputs. When a place
contains one or more tokens, it is said to be marked All of the places
connected as input of a same transition must be marked before this
transition can be triggered. When a transition is triggered, one token



of each of itsinput placesis*consumed”, and all of its output places
are marked. This new marking can allow other transitions to be trig-
gered and so on. In colored Petri nets, tokens can be of different col-
ors. In this case, tokens colors add new constraints for determining
whether atransition can be triggered or not, and of course, addition-
nal rules allow transitions to compute the colors of tokens marking
output places.

It is pretty straightforward to represent a STRIPS domain using
Petri nets [9]. First, consider totally instantiated operators. For each
possible proposition, the Petri net contains aplace. Transitions corre-
spond to operators. They are connected to the places related to their
preconditions asinputs, and to the ones related to their effects as out-
put. Once the STRIPS domain has been translated in a Petri net (see
fig. 4), astateis represented by the global marking of the net.

DROP_B1 R1_G1

s ATROBBV
=2
=T )

/2
=

B2 'AT_ROBBY_R2 ’.
\ \
PICK_B2_R2_G1

DROP_B2_R2_G1

CARRY_B1 G1

Figure 4. Petri net corresponding to an instance of a gripper domain. In
this example, operators have been instantiated considering one gripper G'1,
two balls B1 and B2, and two rooms R1 and R2

When aplaceis marked by atoken, the corresponding proposition
istrue (false otherwise, asin STRIPS). At a given time, the marking
shows also all the transitions that can be triggered. This representa-
tion can be made more compact considering non-instantiated opera-
tors.

Figure5. Petri net involving labels generated starting from a gripper
domain (the same as the one of fig. 4). This graph, much more compact,
represents non-instantiated operators. The pertinent instances will be
brought using the tokens'labels.

3.2 From aPDDL domain to a colored Petri net

Let now each place correspond to afeature of the domain (see figure
5) : now each token hasto hold alabel on which iswritten an instanti-
ation of the variables in the feature. From a propositional logic point
of view, a place corresponds to a predicate, and the label of a token
wears a particular binding. As a conseguence, whether a transition
can be triggered depends also on the labels of the tokens marking its
preconditions. Reversely, the execution of atransition may not entail
only atoken motion but also some modification of their labels.

Practically, starting with a PDDL [18] description of a domain,
its transcription into a Petri net proceeds automaticaly as follows.
Each : pr edi cat e givesaplace, and each : act i on atransition.
Connecting to a transition places corresponding to preconditions or
positive effectss obvious. Negative effect$i.e. when the operator
destroys some of its preconditions) are naturally dealt with at the
Petri net level, since a token marking a precondition place leaves it
when the transition is triggered. Therefore, these bring no change to
the net topology. A third type of effect has to be considered, we call
them implicit effects They encode the fact that some of the precon-
ditions of the action remain true after its execution - i.e. propositions
appearing in the precondition list without being in the negative effect
list. These require additional links to be introduced in the network, in
order to bring the tokens back to the places where they were before
their transit through the transition (since these preconditions are till
true). Seefig. 6 for an example. [htbp]

(Pick ?B - ball 7R - room ?G - gripper)
Prec. : (At 2B 7R) (At-Robby 7R) (Free ?G)
Effects: (Carry 2B 2G)

~(At B R)

{At-Robby 7R)

e

Figure 6. On top of the figure isthe PDDL description of the operator
Pick (from the gripper domain). Below isits transcription as a Petri net
transition. Note that there are two exiting links (on the right), whereas this
operator has only one positive effect. Thisis because the top link - the one
returning to At-Robby - isan implicit effect.

For each link in the Petri net, unification between variables of
the proposition attached to the place and variables of the operator
attached to the transition is completed and stored. This will make
easier the computation related to the propagation of tokens through
transitions (particularly when dealing with the modification of their
labels).

Note that the Petri net obtained this way reflects exactly the do-
main as it is described in PDDL. Therefore, it isindependent of any
specific planning problem. Thus it needs to be built only once per
domain.



4 Planning with tokens
4.1 Building the search space like Graphplan

Building the space of reachable states is done by propagating to-
kens from an initial marking, through transitions. The way Graph-
plan completes this kind of task (extending the planning graph) has
proven its efficiency, and has displayed characteristics particularly
attractive for planning [1, 13]. This section shows that the same can
be done in our framework, inheriting by the way the same properties.
Building the space of reachable states is done by propagating tokens
from an initial marking, through transitions. Every place holds alist
of token levelsin which are recorded the successive markings. There-
fore, atoken is always considered within a given token levek of an
item of the Petri net. It islinked to tokensin thet — 1 token levebf
items of the net (showing where it comes from), and to tokens in the
t + 1 token levebf items of the net (its potential destinations). This
way, we can track the trajectory of a token during the propagation,
and get the list of transitions it went through - i.e. the corresponding
plan.

oty Rsoom)
pr— pr—
. RS = - g g
rom=R12A0=R2) ——— rom = R1 20=7R2)
S —S S )
=
- (78=B1 R=R1 7G=G1)
g (7B=B2 R=R1 7G=G1) . -
= = = [r=rz =l
(Cary B-Ball %G-Gripper) (Carry 78-Ball 7G-Gripper)
S

Figure7. Inevery picture, thefirst column of places isthe same, showing
the marking at time t. The second column shows a possible marking at time
t+1. The three first pictures correspond to the three transitions which can be
triggered according to the current marking. The last one, on the bottom right
hand corner, shows what we obtain with our approach : each possible
transition has been triggered “virtually” so that the other ones could be
triggered also.

At propagation time, as soon as the preconditions of a transition
are marked, the transition is “virtually triggered”. That is to say that
even though tokens are sent to the next token level of the places
corresponding to the positive and implicit effects of the transition,
a copy of the current marking persists so that other possible propa-
gations can be conducted (seefig. 7). Asaconsequence, at each step
of the propagation, the global marking of the current token level cor-
responds to the union of all possible markings. Hence, it does not
describe asingle state but a set of reachable states.

As you can see in figure 8 the graph representing the to-
kens' connectivity isvery similar to the one built by Graphplan.
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(Move %rom 2to)

(Move 2rom o)

(?rom=R2 20=7R1)
(?rom = R1 20=7R2)

Pick 2B R %G

7B=B1 7R=R1 ?G=G1)

(Zrom = R1 20=7R2)

Figure 8. Each level shows the new token level of the places. In between,
the transitions which caused the token motion are recorded. This plan graph
is very much alike Graphplan’'s one.

So far, at each step, al the markings which can be deduced from
the global marking of the net may include some unreachable ones.
This is a common issue in digunctive planning. In order to discard
part of these impossible states, additional constraints are usually in-
troduced : for instance, Graphplan computes mutex relationsand
LCGP [5] computes authorization relationsIn our system, mutex
relations are computed, according to rules similar to Graphplan's
ones (as stated in [1]). In terms of tokens, the interferencerule ("a
la Graphplan) isas follows : if atransition T' "consumes'a token,
then it is mutex with al transitions using the same token (because
T deleted one of their precondition$, and with all other transitions
bringing an identical token (same label) in the same place (because
T deleted one of their positive effecfs In other words : two transi-
tions cannot "use" the same token simultaneously, unless they both
get and put back an identical token in a same place instantaneously
(implicit effects). The competing needsile ("a la Graphplan’) be-
comes : if there is a token ¢; triggering a transition, and a token ¢
triggering another transition, and if ¢; and ¢» are mutex, then these
transitions are also mutex. Of course, the same thing could be done
with authorizationrel ations.

Similarly, among propositions : two tokens are mutex if every tran-
sition bringing thefirst oneinitscurrent place and giving it its current
label is mutex with all the ones bringing the second onein its current
place with its current label. Similarly to Graphplan, if two tokens
marking precondition-places of a same transition are mutex, then the
transition is not triggered.

The next section shows that some of the mutex relations need not
to be explicitly computed, thanks to the use of colored tokens.

4.2 Building the search space dightly differently

The so far obtained planning graph is very similar to Graphplan's
plan-graph, with the slight difference that each level is distributed
among places and transitions. Asaside effect, when searching for the
particular instance of a proposition (to check whether an effect has
aready been introduced inthe graph, for example), it isnot necessary
to search thewholelist of propositions of the given level, but only the
list of instances of the relevant place.

However, with the following rule, the use of colored tokens can
allow to further avoid computing explicitly anumber of "permanent”
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Figure9. Example of mutex relation directly related to the planning
problem. It disappears during graph construction. From the graph built for
this mobile robotics problem, only a part relevant to our discussion is
represented

mutexrel ations between propositions carried by tokens of same color
marking a same place (concurrent instantiations of a same feature) :

1 robot :

J1 (3)

J1 (4)

mutex :

Ji (1)
Ji(2)

Figure11. From zone 2, the robot can reach three other zones, or also
remain where it is. Thanks to the use of colored tokens (here colors are
represented by subscripts), no mutex needs to be expressed explicitly.

two robots R1 and R2 that can independently move in room 1, 2,
3 or 4. Two tokens, denoted with different subscripts ; and » are
needed. Figure 12 shows the graph we get in this case. In the second

Two tokens of the same color (coming from the same past trajectoryyyel | place InRoom (room, robot) is disunctively marked by two

marking a same place with two different labels are mutex.

Indeed, two types of mutexrelations are generated by Graphplan.
Some of them are directly related to the planning problem itself, i.e.
to the initial marking in the planning domain. They disappear after
the plan-graph has been extended over some levels, and the range
of reachable states consequently increased (see fig.9). Some other
mutexrelations, on the contrary, are "permanent; or structura. Re-
lated to the domain itself, they will never disappear from the graph.
They correspond to states which are strictly impossible, and there-
fore which can never bereached! Such mutexcome from the fact that
some features, or variables, cannot have more than one assignation
at a given time, and in a given context. For example, a same robot
cannot be concurrently in two different places (see fig. 10). In other
words, some resources cannot be shared or some objects cannot bein
different places at the same time. Comparabl e results are obtained by
R.M. Simpson and T.L. McCluskey with their Object-Graph planner
[20].

)

Mutex:

(Zone(2),Zone(1))
(Zone(2),Zone(3))
(Zone(2),Zone(4))
(Zone(1),Zone(3))
(Zone(1),Zone(4))
(Zone(3),Zone(4))

(Zoneld

Figure10. From zone 2, the mobile robot can reach 3 other zones, or also
it can stay where it is. Graphplan isforced to introduce six permanent mutex
relations.

Figure 11 shows the same situation as fig. 10 within our frame-
work: No explicit mutex relation needs to be computed. They are all
embedded in the token coloring.

As a more complete example, consider the possible motions of
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sets of four tokens of same “color" (subscript 1 or 2 in this case).
According to the rule, tokens of same subscript in the same level
are al mutualy exclusive with each other (a same robot cannot be
simultaneoudly in different places!) but not with tokens of different
subscript (the positions of the two robots are not dependent upon one
another). There isa sort of parallel between the robot’s non-ubiquity
and the one of the token. In that sense, the tokens' colors are used
here in order to represent the non-ubiquity of “objects’ or “agents’.
In comparison to Graphplan, this rule leads to the computation of a
smaller number of explicit mutexrelations.

level 1 level 2
[Reom(room,obc}) ~ [inRoom(room, ol

J1 (1,R1) J1 (1,R1)

J2 (1,R2) J1 (2,R1)

J1 (3,R1)

2 robots : R1, R2 Ji (4.R1)

J> (1,R2)

4rooms: 1,2, 3, 4. J> (2,R2)

J2 (3,R2)

Ja2 (4,R2)

mutex : -

Figure12. Both robots can reach three other rooms, or remain where they
are. Thanks to token coloring, no mutex has to be expressed explicitly. Every
position pair permitted by Graphplan is still permitted here.

The more numerous will be the variables not supporting multiple
instantiations, and the literals which can be assigned to them, the
more numerous will be the permanent mutex Graphplan generate
them explicitly, as regular mutexrelations, making it more difficult to
store and treat its data structures. We encode them implicitly through
the use of colored tokens. These remarks may explain the speedup
obtained in preliminary implementations and presented in table 1.

4.3 Handling colors - practically

Applying technically the above considerations is not always straight-
forward. Consider a transition with two preconditions and a single
effect... which precondition token will give its color to the effect one
- keeping in mind this will determine its potential mutex relations
with other tokens marking the same place? Our concern being to
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X2} (2B=B2 T=Tablel) - -~ Swq—- - oo ET X2} (28=B2 7T=Tablel)

X1} (78=B1 7T=Table2)
X2} (78=B2 7T=Table2)

(Power-Source ?PS)

(Move 7B %G)

J14} (B=B1 2%G=G1)

(Power-Source 2PS) H2.4} (B=B2 7G=G1)

X4 (26=G1)

Figure13. Intheinitial state, each token has a different color. As
Power — Source isanimplicit effect, its color is not part of the action
color (which therefore has only 2 components). In the second level, the third
token of OnTable wearsthe color 1 : thisisthe intersection between the
action color ({1, 4}) and the set of colors marking this place in the initia
state ({1, 2}). The token marking Busy wears the color 4 because thisisthe
only remaining component of the action color.

have a fully automatic planner, this choice must be made through
a systematic method.

Firstly, here is a naive solution one could think of, based on the
possible aggregation of colors. Let the colors be represented by sets
of integers. In our example, say the first precondition is marked by a
token of color C, and the second one by atoken of color Cs, then
the resulting color of the token marking the effect would be C; U Cs.
For two tokens, of respective color C; and C;, marking asame place,
if C;i N C; # 0 then there would be a mutex relation between both
these tokens.

This does not work because the color treatment would not
make any difference between tokens related to resources (sharable
or reusable over time) and tokens related to objects (in the
particular context of the transition being considered). Consider
for example two tables with blocks on the first one, and
two grippers used to move blocks from Tablel to Table2.
The action (M oveBlock? BGripper?G) requires the precondition
(OnTable? BT able;) and (Free?G). Of course, it is possible to
move the block B; with the gripper G:1 and then to move the
block B» with the same gripper G1. This would cause the place
(OnTable? B?T') to be marked with two tokens, one carrying the
label (?B = B1;?T = Table2), and the other carrying the label
(?B = B»; 7T = Table2). Unfortunately, both these tokens would
have a color containing the color of the token marking (FreeGh),
and therefore would be considered mutex in the “naive” plan graph
whereas they are not. Here, the gripper plays the role of a resource,
that is not sharable at one time, but usable several timesin sequence.

Hereiswhat is actually implemented in our system, which avoids
thesetroubles. Let C,ction bethe union of the precondition colors of
the considered action.

The color assigned to each effect is computed starting from
Caction. In Order to keep the tokens' coloring coherent with regard
to the " objects” identification, some components of Coction have to
be filtered out. Colors of tokens entering the transition (from precon-
ditions) are related to some “objects’ or “agents’ ; the same con-
sistency between “objects’ and colors must be found among the to-
kens exiting the transition (towards effects). Thisis accomplished by
maintaining a consistency between colors and places (instead of “ob-
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jects’ directly) and the best availabl e reference concerning the coher-
ent link between colors and placesistheinitial state. The assignment
of effect colorsis done as follows.

Preconditions being also implicit effects of the action are dis-
carded from Ciction (this takes care of sharable resources).

The effects of the action are split in two categories : places which
weremarked intheinitia state (weknow which colorsare attached to
them), and places which were not. For one of the first type, we keep
from Ciction ONly the components corresponding to the colors of to-
kens marking it in theinitial state, and we remove these components
from Clction . Effects of the second type will al receive the resulting
Coaction- Figure 13 shows this procedure on our simple example.

This approach makes a distinction, as much as possible, between
resources and objects. The scenario we presented cannot occur, but
still, the fact that the same ball cannot be on both tables at the same
time remains encoded by the colors. Of course, in a description lan-
guage like PDDL, as well asin natural language as a matter of fact,
resources and objects using them can be confused sometimes - all the
more as this distinction is highly context-dependent. For this reason,
the number of mutex relations which will be encoded through the
color manipulation depends upon both the way the domain is writ-
ten and the initial state of the problem. Anyway, the planner remains
complete since a lack of mutex relations is not harmful (only too
many of them isharmful asfar asit concerns completeness). Besides,
regular explicit mutex checking is completed when token colors are
not mutex, so that the backward search will have as many constraints
as possible to be guided. Finally, note that in such adomain, colors of
tokens marking places are single numbers - so that checking whether
two tokens are mutex is easy and fast.

4.4 Obtaining a plan

Tablel. Comparison on the 6 balls GRIPPER domain with a code kindly
provided by S. Kambhampati. Note that mutex relations not explicitly
computed have been deducted thanks to tokens' colors.

Graphplan Planning

+ Csp tech.s[11] w/ tokens

64 s 550 msec 4s 800 msec
level | prop action records | prop action records

mut mut mut mut
0 214 3858 0 136 2478 0
1 214 3858 1 136 2478 1
2 214 3858 45 136 2478 46
3 214 3858 254 136 2478 103
4 214 3858 1087 136 2478 204
5 214 3894 2724 136 2478 297
6 226 4206 5746 136 2478 781
7 250 4182 10774 | 136 2604 1261
8 322 3298 10237 | 148 1458 631
9 542 1466 0 112 680 0
10 220 176 0 140 121 0
11 0 0 0 0 0 0

As soon as the features of the goals are marked with the right
tokens in the right places with the right labels, a backward search of
the type of Graphplan’s one can be applied to the graph generated
by the token propagation in order to extract a valid plan - if any. A
remarkable point is that the plan is output as a Petri net, so that all
information about dependency relations among actions is preserved.

The presented planner based on token propagation mechanisms
was implemented in Lisp on a Sun Sparc 10 Ultra and the GRIP-
PER domain has been automatically generated from a PDDL defini-
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Figure14. Both these graphs represent CPU-time performances of some of the planners participating to the AIPS' 2000 planning competition. Missing points
correspond to problems that could not be solved within the CPU-time limit (30 min).The top graph shows results on the Logistics domain, and the bottom one

on the Blocks domain (abscissa val ues correspond there to the number of blocks involved in the problem)
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tion file. A comparison was drawn with a Lisp code provided by S.
Kambhampati.

The backward search agorithms are identical for both planners
and are also from S. Kambhampati, who introduced in [11] the use
of dynamic CSP techniques in order to boost the backward search
phase. The table 1 gives both total planning time and for each level
developed in the forward building phase, it compares the number of
generated mutexes, among propositions or among actions, and sets
of markings that are recorded as "unreachable at that level&fter
checking in the backward search phase.

The most remarkable feature in this comparison seems to be the
difference in the number of mutex recorded by the two planners. The
token planner need not record most of the "permanent mutextlas-
sical Graphplan records and a subsequent simplification occurs both
at propagation time, and backward search time : the number of con-
straints to check and the number of sets of markings to search are
reduced conseguently. There should be an increase in memory use,
but it does not seem to be significant so far, contrary to the speedup.

Further experimentation has been completed during the
AIPS 2000 Planning Competition. Our system entered it under
the name TokenPlan A sample of results is showed in figure
14, from data kindly provided by F. Bacchus, chair of this year
competition. All the systems ran on a 500MHz Pentium |1l with
1GB of RAM. Some of them were implemented in C, C++, Lisp, or
elsein Java

Despite these language differences, we can see TokenPlan isin the
stream. Its performances are abit better than BlackBox’ (even though
this one scales better), and roughly equivalent to IPP’s. This shows
the transcription of Graphplan in the Petri net framework is feasible
and reasonable (no loss in performances is induced). The same way,
asfor other Graphplan based planner, it would be possible now to add
features to Tokenplan in order to improve its performances (such as
the computation of authorization relations instead of mutex relations
[5] for instance).

4.5 Pergpectives on search space splitting with
token propagation

(At_Robt_v_x 7R - room)

J1 ((RR1))

(At_Robt_v_x 7R - room)

J1((?RR1))
J2 ((RR2))
J3 ((RR1))
J4 ((RR1))

(At 2B - ball 7R - room) (At 2B - ball 7R - room)

J1((? B1) (RR1))
J1((?8 B2) (RR1))

J1((?8 B1) (RR1))

J1((?BB2) (RR1,
2B B1) (R R1,
J2 (B B2) (RR1

72
J3((?8 B2) (RR1))
J4 (28 B1) (RR1))

(Free?G - 3ri pper)

J1((?G GI))
J2 ((?G G1))

(Free 2G - gripper)

J1((?G G1))

(Busy ?G - gripper)

(RED

(Busy ?G - gripper)

J3
J4

Figure15. Hereisthe beginning of afull splitting search applied to the
gripper problem in our framework. To make easier the comparison with fig.
2 we numbered the classes of tokens the same way we had numbered the
state-nodes. Actions have been omitted for clarity.
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Previous sections described how to build afully disunctive search
space using token propagation. It can be rapidly checked that the
same approach may aswell generate full splitting by simply creating
new classes of tokens each time anew state is reached : first consider
tokens gathered in different classes (the class is represented here by
an integer) - add the rule that in order to be triggered, a given transi-
tion must have all of its preconditions marked by tokens of the same
class- add the rule that all the tokens marking the effects of a given
transition are given a new class, which is not in use already. An ex-
ample of the result is given in fig. 15. Some places may be marked
by tokens of different classes wearing the same label. Asan example,
thisis the case for ((?RR1)) in fig. 15. Thisis the inherent redun-
dancy of full splitting approaches.

Asfar asit concerns the example of [21], the splitting required to
distinguish possible initial states can be achieved within our frame-
work by introducing a different class of tokens for each possible
world. Only one graph per sewould be built.

Therefore, this may give the opportunity to duplicate only parts of
the states that are actually different with respect to an optimization
criterion : probability of reach and utility would be chief criteriafor
designing classes in a decision-theoretic planning problem such as
the rocket one of figure 1.

Nevertheless, we have shown that we can provide token prop-
agation mechanisms that alow us to perform both Forward State
Spacesearch and disjunctive planning “a la Graphplan”. Interme-
diate "splitting" strategies remain to be defined, implemented and
optimized.

5 Conclusion

A lot of work remains to be done about the basic mechanisms of the
proposed token-based planner and further validation and improve-
ments are needed. Otherwise, it seems interesting to further study
planning with intermediate levels of splitting as pointed out in [12,
challenged].

The basic idea is to be able to distinguish states or sets of states
only when necessary. The framework proposed in this paper theoret-
icaly allows a large variety of splitting strategies, but the problem
of controlling these strategies at planning time remains difficult. One
solution would be to attach directly a sub-domain of the state space
to the tokens. These sub-domains would correspond to a decomposi-
tion into regions of validity of properties related to utility functions
or probability measures over the state space. Such a decomposition
would be tailored for the computation of the stochastic optimality cri-
teria just the same as regions of utility or reachability are computed
geometrically in [7]. The advantage of tokens with that respect is
that such a decomposition highly depends on the trgjectory followed
in the planning graph.
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Scheduling in a Planning Environment

A. Garrido, M. A. Salido and F. Barber

Abstract. In a rea planning problem, there exists a set of
congtraints (both temporal constraints and resource usage
constraints) which must be satisfied in order to obtain a feasible
plan. This requires a scheduling process (after the planning
process) which should guarantee the availability of resources
and the satisfiability of al the problem constraints. Several
approaches have been proposed to deal with planning and
scheduling problems. However, these approaches have
drawbacks which will be presented here. This paper deals with
the main features of a scheduling process in an integrated
architecture of planning and scheduling, where both processes
work in a simultaneous way. Thus, the executability of each
plan is guaranteed as it is being obtained by the planner. The
planning process searches among aternative partial plans, where
each one of them has its own ordering relations among actions,
resource reguirements, intermediate states, etc. Since these
congtraints are provided while the plan is being obtained, the
proposed scheduling process should be able to manage them as
they are being known. Thus, the scheduler should not obtain a
solution after each new asserted constraint but rather it should
only maintain the consistency among all the asserted constraints.
In addition, the planner keeps track of severa alternative open
plans, which are suitable for being expanded in each moment.
For this reason, the scheduler should maintain the effects of the
constraints belonging to different plans that are being explored
by the planner. Hence, both specific planning and scheduling
optimisation criteria are used in order to improve the behaviour
of the integrated system, its efficiency and the quality of the
obtained plan.

1 INTRODUCTION

In a planning problem, actions usually require use of shared
resources in order to be executed. Moreover, severa temporal
congtraints should be satisfied during the plan execution: action
durations, effect persistences, temporal constraints on problem
states, due times, etc. In usual planning processes, resource usage
and satisfiability of problem temporal constraints are not
considered. Thus, planning systems obtain a plan as a partia or
total ordered sequence of actions, and a later scheduler process
should check the feasibility of the plan according to the available
resources and problem constraints. Therefore, a correct plan may
not be executable due to violation of some temporal constraint or
unavailability of shared resources. Thus, a new plan should be
obtained and there will be aloss of system performance.

! Dpto. Sistemas Informéaticos y Computacion, Universidad Politécnica
de Vdencia, Camino de Vera $/n 46071, Spain, email: {agarridot,
msalido, fbarber} @dsic.upv.es
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On the other hand, temporal planners can reason about metric
constraints such as parcPLAN [11] and IxTeT [12]. These
temporal planners deal with temporal data by means of an
explicit representation of time managing qualitative (ordering
relations commonly used in planning) and quantitative
congtraints (release times and durations used in scheduling). In a
more integrated way, there are planning systems such as Tosca
[4 and O-Plan [5, 7] which integrate both planning and
scheduling processes in a single system. However, a drawback
appears in these cases: it becomes difficult to determine when the
system is planning or scheduling: “it is easy to see that O-Plan
works, but it is difficult to see why” [1]. Since a specific process
of planning or scheduling does not exist, it becomes difficult to
determine certain optimisation criteria (which, moreover, can be
integrated in a central module). Consequently, we agree planning
and scheduling integration is necessary and these two processes
should be performed simultaneously. However, we think these
processes are different enough to be distinguished during their
execution in the integrated system. Planning processes deal with
what actions are going to be executed whereas scheduling
processes deal with when these actions are going to be executed
[8]. In another way, planning implies reasoning about actions and
system states, and scheduling implies reasoning about actions,
resources and time [27]. Therefore, it is not irrelevant to study
both processes in a separate way in order to improve finaly the
performance of the integrated system [1]. Thus, an integrated
system may obtain many benefits from both the planner and the
scheduler, such as utilisation of shared heuristics, decrease the
search space, performance improvements, etc. [17]. Nevertheless,
this integration usually is not quite frequent due to the fact that it
is neither easy nor intuitive: “these systems do not integrate well”
[23].

This paper deals with the main features of a scheduling
process in an integrated architecture for planning and scheduling
[13]. In our system, the planner and the scheduler work
simultaneously in an integrated way. Here, the scheduler
guarantees the satisfiability of temporal constraints and resource
availability for each partial plan as these plans are obtained by
the planner. This way, the system recognises the invalid plan and
this plan isimmediately discarded. Furthermore, even though the
plan is executable it may not be efficient enough or optimal. For
this reason an aternative plan may be needed with the objective
of reducing its cost.

One of the main features of our scheduling approach is its
interactive behaviour and its independence from the planning
system. This approach is valid for every planning system, both
forward and backward chaining planners. The scheduler alows



the integrated system to prune partial plans, avoiding the
generation of invalid plans. Furthermore, the scheduler is able to
manage several partial plans, which have been generated by the
planner. Another important feature is the use of heuristics,
characteristics of the scheduler, which will speed up the
integrated process and improve its behaviour.

In this section we have presented the introduction to this
paper. We propose the integrated system, its main features such
as problem specification language (to model the problems), and
its architecture in section 2. The scheduling process, its
behaviour through an example and the way we manage all the
temporal constraints and resource availability are described in
section 3. Conclusions are discussed in section 4.

2 THEINTEGRATED SYSTEM

In this section we expose a high-level genera view of our
integrated system (Figure 1). The domain representation is
obtained from the problem domain by means of the specification
language. The domain representation consists of the problem
objects (including the resources), the actions and the problem
congtraints. The integrated system of planning and scheduling
solves the problem in order to achieve the executable plan.
Nevertheless, new problem constraints or incidences may appear
during the execution period. In this case, a reactivity stage is
needed to obtain a new optimal plan according to the new
problem constraints. All these elements are detailed below.

Solving
Process

Specification
Language
Problem guag:
Domain

Objects, Executable

Representation | Actions,
and
Constraints

Integrated
System

Reactivity

Figurel. Genera view of theintegrated system (from [13])

2.1 Problem Specification Language

In order to model and analyse the problem domain, we use a
language, which allows the user to define the next elements:

Domain abject hierarchy. Classic approaches in planning use
a declarative-language by means of first-order predicates for
domain description [19]. In contrast to these schemes, we
always maintain the same structure for literals[13]:
<class-name> <object> <dot-name> <value>

This frame-based structure allows us to model real application
environments. The object hierarchy can represent problem
objects as well as the resource hierarchy. There exists a
specia class for shared resources asin [23]. The resources are
shared albeit nonsimultaneously by the actions. If objects are
resources there are several dots by default, such as quantity
(number of items), resource availability (temporal constraints
that indicate when the resource can be used), service time
(how long the resource is used by default), etc. Moreover, the
user can also define the initial situation and goals to achieve
by using the previous structure.
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Actions. Actions can be primitive actions, which cannot be
divided any further or macro-actions, which group primitive
actions in an established partial or total order. We can refine
every macro-action in its primitive actions carrying out the
planning and scheduling process through a hierarchy of
different levels. Thus, we can obtain an initial plan that will
be detailed in following steps of the process by means of a
refinement method [8].

Problem constraints. These constraints can be applied to
different elements of the problem:

Temporal constraints over the entire plan. They
indicate the possible execution duration of the plan
by means of its possible beginning and ending.
Constraints over the resource usage. Due to the fact
that resources cannot be simultaneously used by
more than one action, constraints must guarantee
that actions do not use the same resource in the same
time.

Constraints over the ordering of actions because
there are actions that must be executed in a specific
order.

Constraints over the action durations. These
durations can be dependent of the order in which
they are executed.

Temporal constraints over the problem objects and
their states (attributes). For instance, an object
cannot be held in the same state for more/less than a
determined interval, an object must reach a specific
state in a determined moment, etc.

2.2 Architectureof the Integrated System

The planning and scheduling modules in the integrated system
(Figure 2) share data structures of the system with the common
information. This shared common information is stored in a
special kind of data structure similar to a blackboard model [17].
The planner must accede to each data related to actions, their
ordering, initial situation and goas. On the other hand, the
scheduler must keep all the information related to allocation and
nonsimultaneous resource usage, tempora constraints and
ordering among actions.

Problem
Domain

_| Integrated Process of N
| Planning & Scheduling [ optimal pan”

iw

Execution

| Global

, //’/ Data = N

e \,
I// ¢ \\\
In’ Control \‘|
| Module }
\ e AN /

\ -~ ., 7
D o
Local Planner Scheduler e yroo
Memory Memory

Figure2. Integrated architecture of planning and scheduling



In the integrated system, a strong communication should be
carried out during the construction process of each partial plan.
The planning and scheduling processes exchange information, by
means of the shared data structures, in order to obtain a more
efficient integration. Communication between the planner and
the scheduler must occur:

Every time a new planned action (or an existing one) solves a
precondition. In this case, the scheduler must update the
ordering among the actions (and the ordering of the resources
which are used by these actions) according to the new causal-
link.

When the planner demands a resource that must be used in an
action. Here, the scheduler must update the sequence of
utilisation of the resources in order to avoid a simultaneous
usage.

When a new ordering among actions is established due to a
planning conflict resolution. Asin the first case, the scheduler
must update the ordering among the actions.

Gl
(pen) ()
) G CB
o)

Figure3. Search among aternative plans (current feasible partial plans
are shaded)

In @l the previous cases, the planner must inform the
scheduler about:

The action to be planned. Since the planner works on various
excluding alternative plans (Figure 3), the planner must
specify in which alternative plan the action is used. Each
aternative plan represents a plan with different actions to
achieve the problem objective. Only resources in actions of a
same partial plan must not be simultaneously used. Therefore,
the scheduler must be able to manage the possible excluding
aternative plans at the same time, which are shaded in Figure
3.

The resource list to be used in this action. The planner may
know the resource list to use due to another previously
planned action in the same partial plan or because the planner
requires some specific resources. In this case, the scheduler
must not allocate new resources, but it will check if this
alocation is consistent with the known constraints for the
required resource in its partial plan. If the planner does not
know the resource to be used, the scheduler should assign the
necessary resources for the action, in accordance with the
action specification, by using optimization criteria.
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The order of the action to be planned. The planner may
establish an order, both partial and total, among several
actions of each partial plan. This order is related to other
actions involved in its plan. This mechanism permits us to
establish some ordering criteria by indicating that one action
precedes another. If this ordering is the result of solving an
ordering conflict, the scheduler must reorder the actions and
determine if the new ordering is consistent according to the
existing constraints. For instance, if an ordering is not feasible
because of the violation of any temporal constraint or because
thereis not any available resource, this plan will be discarded.

When the scheduler detects an inconsistency, it communicates
to the planner to discard this action. Furthermore, the scheduler
recommends the planner a list of alternative available resources.
In addition, the scheduler could suggest which partia plan (from
the frontier of the plan tree (Figure 3)) should be expanded,
taking into account which partial plan is less constrained or
imposes less constraints over resources. This feature can be a
valuable heuristic for improving the planning process. Hence, a
great level of integration is required between the planning and
scheduling processes. For instance, let be P, the current partial
plan obtained as a result of a search in the space of partial plans
(Figure 4). This plan is expanded by adding new actions or steps
that will achieve the final objective. Severa alternative plans P,
P, and P, might be generated, which introduce new steps S, S,
and S, respectively. If the plan P, is selected, the scheduler must
check that its temporal constraints are satisfied and allocate the
resources (only if it is necessary). In order to guarantee the
constraints of a plan, the scheduler may constrain the partia
sequence of steps of that plan. Therefore, the plan P, is the plan
P, with all its constraints satisfied. Next, the plan P,’ might be
expanded, the plans Py, Py’ and P, would be generated and
the process would continue until accomplishing all the problem
objectives. Finaly, the integrated system obtains an executable
(and eventually optimal) plan according to the resource usage
and other optimization criteria

Current
partia plan

Plan expansion
(Planner)

Constraint checking
(Scheduler)

Plan expansion
(Planner)

Figure4. Processof plan expansion and constraint checking by the
planner and the scheduler, respectively

During the execution time, some incidences might appear (for
instance if some resource becomes unavailable). In this case, a
new reactivity process to repair al the conflicts would be
necessary to obtain a reassignment of resources, if possible.



Otherwise, the plan should be modified to accomplish the new
problem requirements. This gives rise to a rescheduling or
replanning problem, which is solved by means of a repair method
[8].

As a result of the integration, we can obtain the following
advantages:

We can detect an inconsistency (due to resource
unavailability, temporal constraint violation, etc.) in a partial
plan as soon as this inconsistency appears. Since this
inconsistency implies a nonfeasible partial plan, this plan is
quickly discarded. Hence, the efficiency of the global process
isimproved.

Since the system uses a specific module of scheduling, the
system can manage more complex constraints than temporal
planners. Moreover, we can define optimisation criteria (both
in the planner and the scheduler) which improve both the
efficiency of obtaining the plan and the quality (optimality) of
the obtained plan.

According to the way of obtaining the partial plans (Figure 4),
thefina plan is executable.

3 THE SCHEDULING PROCESS

Once established this genera architecture, we will analyse the
requirements that the scheduling process requires. On one hand,
one of the main aims of the scheduling process is to guarantee
the executability of the achieved plan according to available
resources, context constraints, etc. [10]. All tempora constraints
in the problem must be satisfied. Furthermore, the shared
resource usage must also be consistent; i.e. enough available
resources must exist to ensure the fulfilment of each planned
action when it is finally executed. On the other hand, another aim
is to guarantee the optimality of the obtained plan, according to
its cost, due times and some optimization criteria.

In order to carry out the integration defined in the previous
section we need a scheduler with a special behaviour, which
should be more dynamic and interactive than traditiona
scheduling processes. Traditional schedulers are based on
Constraint Satisfaction Problems or CSPs [16, 20]. These
schedulers are not directly applicable here, because of its lack of
flexibility: it is very costly to have to obtain a new solution every
time anew constraint is added or eliminated. For each new set of
congtraints (which are the result of including or excluding
constraints), a CSP process must resolve the entire problem in
order to obtain a new solution. However, when the set of
congtraints is modified, the previous solution may become
invalid. It is clear that incremental CSP methods might be used
here, but we do not need the solution to the problem in each step
[26]. We only need to assume consistency at each new asserted
constraint. Furthermore, the scheduler must be contextual, i.e., it
must be able to manage several aternative plans with complex
temporal constraints simultaneously.

Main features of our scheduler, its behaviour through an
example and the way of managing the temporal constraints are
detailed in this section.
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3.1 General Considerations

Temporal constraints in our problem can be represented by a
temporal network where nodes represent time points and arcs
between them represent digunctive metric-temporal constraints
[9]. Working with disunctive metric-temporal constraints is a
complex task because of it implies working with a huge number
of equivalent networks (one for each disjunction). For instance,
in a typical problem of scheduling, if the number of tasks on a
common shared resource is n, the number of equivalent different
nondisjunctive graphs for each generated graph will be 2" [21].

Our scheduler uses a module for reasoning with temporal
congtraints, the Temporal Constraint Network Manager (TCNM).
The TCNM guarantees the consistency of the temporal network
by using a closure process, which propagates each new constraint
to al nodes of the network [2].

In traditional scheduling systems, the entire set of problem
congtraints is known in advance, so the am of a scheduling
process is to obtain a solution which satisfies these constraints.
Here, CSP techniques are usually used [16, 20]. Alternatively,
other schedulers work on a set of initial solutions which may not
satisfy the problem constraints, and the schedulers repair them
over time[8, 23].

In opposition to these traditional scheduling processes, the
problem constraints are incrementally supplied, in our case, by
the planner while each partia plan is being generated. At each
new constraint, the scheduler guarantees the consistency of al
the currently known constraints in each partial plan. Our
scheduler works in a progressive way. As in [6], schedules are
constructed by a process of iterative refinement. We believe this
approach to be more flexible because it alows us to add
congtraints in a dynamic way. When a new constraint is added
into the system, the scheduler will detail the schedule
constraining the domain of possible values. The scheduler does
not obtain the solution that satisfies all the current constraints
after each constraint is asserted, but maintains al the minimal
sets of values that might be solutions. An inconsistency is
produced when the domain of possible values becomes empty by
the effects of a constraint C;,. For instance, we will see an
example of two actions which use the same nonshared resource
in Figure 5.

Let A and A, be two actions that can be executed in any order
of precedence and that use the same resource. Therefore, A, must
be executed before A, (a) or vice versa (b). At this moment, the
scheduler only maintains the interval of possible solutions in the
timeline but without allocating any concrete value as in
traditional CSPs. Next, if a constraint indicates that A, must be
executed before A, the scheduler will discard the established
order “A, before A,”. With this information, if a new constraint
asserts the fact “A, before A,” this constraint will be treated as an
inconsistency and it will be discarded. Furthermore, the
scheduler may impose more restrictive constraints: it may impose
additional constraints on plans due to temporal or resource usage
constraints.
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Figure5. Example of two actions A, and A, which use a nonshared
resource

3.2 Scheduler Behaviour

The scheduler must represent the necessary information in its
temporal graph for each new planned action. Every action of
each plan is trandated into one or more temporal constraints,
which are managed by the TCNM. The consistency can be
guaranteed thanks to this TCNM which checks each new
constraint introduced into the scheduling system.

Following, let us see the three levels of temporal constraints
that arise in this approach.

Temporal constraintsin the action level

At this level, constraints are based on durations of actions,
ordering relations and constraints among their time points.

For every action (A;), the scheduler must create two new time
points, which represent the start time point (A.on) and the end
time point (A.off) of the respective action. The digunctive
durations are represented by A.on {(dmin; dmax,), (dmin,
dmaxp), ..., (dmin, dmax,)} A.off. Each interval represents a
different disunction in the duration of that action. Furthermore,
the scheduler will check the ordering constraints with other
actions. For instance, if there is another action A; that must be
executed before A;, the constraint A;.off {(0 ¥)} A.on will have to
be satisfied. On the other hand, if an action A; must be executed
before atime point TP;, it is represented by A.off {(0 ¥)} TP;.

Temporal constraintsin the resource level

Here, constraints are based on durations and nonintersection of
shared resources due to their nonsimultaneous usage. In addition,
constraints among actions and time points of resource usage are
included.

For every resource (R) used in an action (A;), the scheduler
must create two time points. They represent the start time point
(RA.on) when the resource in that action may start to be used
and the end time point (RA;.off) when the resource in that action
may have finished being used. The durations (resource usage) are
represented by disunctive intervals between the beginning and
the ending of the resource usage: RA;.on {(dmin; dmax,), (dmin,
dmaxy), ..., (dmin, dmax,)} RA.off. The beginning and the
ending of the resource utilisation is related to the start and end

time points of the action they belong to. Hence, a resource may
be used during al the action or only during a part of it. There
may be an offset, either positive or negative, between the start
point (end point) of the action and the start point (end point) of
the resource in that action. Besides, it is necessary to guarantee
that the use of aresource R, in an action A; (represented by RA;)
is not simultaneous with the use of the same resource in another
action A (represented by RA). It can be performed simply by
indicating the usage of the resource R, in A is before or after the
usage of that resourcein A;.

Temporal constraintsin the attribute level

At this level, the constraints between the object’'s states
(attributes) are represented. Constraints appear due to relations
between states of one or more dynamic attributes. For instance,
an attribute cannot change its value during atime window.

For every pair state-attribute (St Att,), the scheduler will create
two new time points, which represent the beginning (St Att,.on)
and the ending (S Att,.off) of an attribute state. In a similar way,
the duration of these attribute states can be represented as
S Att.on {(dmin, dmaxy), (dmin, dmaxy), ..., (dmin, dmax,)}
S Att,.off. If there are some ordering relations among states, we
use the type of constraints St Att,.off {(0 ¥)} SAtt.on if the
attribute is the same. If the attributes are different, we use the
constraint StAtt,.off {(0 ¥)} SAtt,.on.

Since these changes in attribute states are produced by the
effects of some actions, each pair state-attribute must be related
to the action that produced its change. As in the resource level,
there may be a delay, either positive or negative, between the
beginning or ending of the action, and the change of the attribute
state. The notion of persistence can be represented by a delay
(see Figure 6) in the ending of the state change (if the persistence
is positive the value S Att,.off will be later than the ending of the
action, which produces the change in this attribute state).

(3030) ’

Del ay“-‘
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Figure6. Representing the persistencein the attribute level
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As we can observe from above, the three levels are quite
similar. In fact, the steps to carry out these levels are practically
the same: creating the time points, establishing the duration and
managing the precedence relations.

Moreover, it is important to realise these three levels are
repeated in each alternative plan managed by both the planner
and the scheduler. The time points of different plans must not be
related because they represent distinct aternatives to achieve the
final plan. If some inconsistency is produced in a determined
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plan, the planner will discard that plan and the scheduler will
discard the graph with the three levels of that plan.

3.3

In order to illustrate better the previous levels of temporal
constraint management, we show a simple example of how the
actions planned by the planner are managed by the scheduler.

[llustration Through a Simple Example

(defclass FERRY (subclass-of RESOURCE)
(slot location (type PLACE)) ;whereisthe ferry
(dot status (type string)) ;isit empty
(dot load-time (type disunctive-interval))
(dot sailing-time (type disunctive-interval))
(dot unload-time (type digunctive-interval)))

(defclass VEHICLE ()
(slot location (type PLACE))
(slot on-ferry (type FERRY))
(slot on-lorry (type LORRY)))

:whereisthe vehicle
;inwhat ferry
;inwhat lorry

(defaction sail (?n-ferry ?placel ?place2)

(vars (FERRY n-ferry sailing-time ?st))
(preconds (FERRY ?n-ferry location ?placel))
(test (1= ?Pplacel ?place?))
(effects

(add (FERRY ?n-ferry location ?place2))

(delete (FERRY n-ferry location ?placel)))
(duration ?st)
(resources (ferry n-ferry ‘during 2st)

(bridge B1 ‘during 7st))) ;Blisthe bridge

(defaction unload (?n-ferry 2n-vehicle ?place)
(vars (FERRY n-ferry unload-time 2ut))
(preconds (VEHICLE ?n-vehicle on-ferry ?n-ferry)
(FERRY M-ferry location ?place))
(effects
(add (VEHICLE ?n-vehicle location ?place)
(FERRY n-ferry status ‘ empty))
(delete (VEHICLE "n-vehicle on-ferry -ferry)))
(duration 2ut)
(resources (ferry Pn-ferry ‘during 2ut)))

Figure7. Fragment of the problem specification: generic resource
‘ferry’, ‘vehicle' and actions ‘sail’ and ‘unload’

We will use as example a modified version of the well-known
ferry problem [3]. The objective is to transport some vehicles
from the margin of a river to the other one. In our case, we aso
have some lorries to carry out this task. Therefore, the resources
are the ferries, the lorries and a bridge. This bridge must be up in
order to the ferries can sail under it and it must be down in order
to the lorries can drive along it. Thus, the bridge is a nonshared
resource used by both the ferries and the lorries.

The user can define the actions, resources and actions of this
problem by using the specification language defined in section
2.1. For instance, in Figure 7 appears the definition of some
objects of the problem, such as the generic resource ‘ferry’,
‘vehicle’ and the actions ‘sail’ and ‘unload. The action ‘sail’
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transports a ‘vehicle’ from the margin of the river to the other
one in a ‘ferry’ and the action ‘unload’ disembarks a ‘vehicle’
from the ‘ferry’. In this example, there are not any constraints
over the attributes. Even though the action durations might be
digunctive intervals, we do not use them in order to simplify the
figures.

Let us suppose that the first action the planner plans is
‘unload’ which uses the ferry F1. Here, the temporal network that
the scheduler managesis shown in Figure 8.

Action Level

it ), ((0¥) @«20 20)) ® ©%) £ rina
Situation U \_/ "\ Situation
Resource Level

(©0); ©o);

v H
Fron |_((2020)) FLoff
in unload in unload

Figure8. Action and resource levels of the action ‘unload’ managed by
the scheduler

Next, if the planner plans (in the same alternative plan) the
action ‘sail’ using the same ferry F1, the new constraints asserted
in the temporal network are what appear in Figure 9. In this
figure, we can see the temporal constraint ((-¥ -21) (16 ¥))
which implies using the ferry F1 in a nonsimultaneous way. For
this reason, F1 will be used in the action ‘unload’ either 16 units
of time after its use in ‘sail’ or 21 units of time before, but no
simultaneously.

Action Level
) _©0) (N wse) N\ ©0) @
Situation v v Situation
Resource Level
o © o) <00 (0 o)
((15 15)) @ @ ((1515) Bmf
in sal in sail
(¥ 21)
(16 ¥))
‘ (2020) mff
in unload in unload

Figure9. Action and resource levels of the action ‘sail’” managed by
the scheduler

3.4 Management of Temporal Constraints

The temporal constraints over actions, resources and attributes
are treated as digunctive metric-temporal constraints. Therefore,
we have two possible aternatives to manage them and to
guarantee their consistency and correctness. According to the



behaviour of these constraint management algorithms we can
classify them into two different kinds: algorithms that maintain
the derived constraints and algorithms that only maintain the
input constraints[21].

Algorithms that maintain the derived constraints

These agorithms require large amounts of memory to store all
the generated constraints in the closure process. The reason of
maintaining the derived constraints is to allow us to know
quickly (without any additional process) which is the temporal
congtraint between two time points. When a new constraint
between two tempora points is asserted into the system, these
algorithms check its consistency with the existing constraint. If
the new constraint does not violate the existing one, the resulting
constraint will be the more restrictive combination between them.
There are several levels of consistency, typically path-
consistency (which guarantees the consistency of all the paths
between two temporal points) and global consistency [9] which
guarantees the minimality of the network.

The propagation (deriving new constraints) is carried out by
means of the closure process detailed in [2] and it is graphically
represented in Figure 10. Briefly, each time a new constraint is
asserted between the time pointsi and j, the following loops are
executed:

Loop 1. The derived constraint between node i and node kn is
calculated:

Cikn = Cikn A (GiA Cjkn )
where the operation A is the intersection operation, and A is
the combination operation [9].
Loop 2. The derived constraint between node j and node Im is
calculated:

lem = Cj|mA (Cji A Ciim)
Loop 3. The derived constraint between node Im and node kn
is calculated:

G =Gk, A (G, A Cjkn )

Loop 2

Loop 3

Figure 10. Closure process which propagates the effects of asserting a
new constraint

Since guaranteeing the consistency in disunctive networks is
avery complex task (NP-complete complexity), we can decrease
its complexity by using algorithms (of polynomia complexity)
that relax the consistency. The former algorithms perform the
propagation process in a faster way, but do not guarantee a
consistent solution. Hence, we cannot assure each new constraint
isinconsistent.
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Algorithms that only maintain the input constraints

These agorithms may be used with the aim of reducing the
complexity of adding new constraints. The main advantage of
these agorithms is that they do not require large amounts of
memory because they do not maintain the derived constraints.
These agorithms do not carry out any propagation process
among the new constraint and the existing ones in the network.
Therefore, they only maintain the asserted constraints. This kind
of algorithms eases the process of retracting some asserted
congtraints into the system. When a new constraint between two
temporal points is inserted into the system, the algorithm
retrieves the minimal constraint between these two primitives.
Next, the algorithm checks if the new constraint is consistent
with the retrieved one. If it is consistent, the new constraint is
accepted, and if not it is rejected. The main problem of this
approach is to caculate the minima constraint in a
nonpropagated network. It is a complex task because there exists
an exponential number of paths that represent the constraints to
find. Currently, we are working on new algorithms to calculate
this minimal constraint in a disjunctive network in an efficient
way on the basis of [21].

4 CONCLUSION THROUGH RELATED
WORK

The main drawback of tempora planners for performing
scheduling tasks is that handling difficult temporal constraints
over plans, actions and shared resources becomes in a complex
task because they do not have specific temporal managers.
Usually, they use a kind of Time Point Network [5] to represent
time constraints on time points. Although some tempora
planners can work with metric constraints, such as IXTeT [12],
traditionally they do not have the enough temporal knowledge or
they do not use disiunctive constraints. In opposition, if specific
processes of planning and scheduling are used, we will be able to
apply characteristic features of each process. For instance, in the
planner, techniques to diminish the search space and in the
scheduler, more efficient criteria to carry out a better
optimisation of the obtained schedule.

On the other hand, CSP and incremental CSP techniques [26]
are not applicable enough due to the fact that they obtain a new
solution instead of guaranteeing only the consistency of the
problem constraints. Other authors have modelled plans as a set
of constraints (future and plan entity constraints) which together
limit the behaviour of the plan during its execution [25].

As we can see, much effort has been performed in order to
manage resource scheduling in an efficient way [24]. Moreover,
many attempts of integrating planning and scheduling have been
carried out, mainly in the works of Muscettola and Smith with
HSTS[18, 22] and Gervasio [14]. According to [8], we propose
an integrated refinement system similar to the one proposed for
Ghallab in [12]. Our system works with different aternative
plans (contextual scheduling) and with digunctive constraints to
schedule resources avoiding their simultaneous usage. Hence, in
this paper we have detailed the behaviour of our scheduler in our
planning and scheduling integrated environment. The scheduler
must have a dynamic and interactive behaviour different from



traditional CSPs. Because the planner in a planning environment
frequently provides the scheduler new constraints, the scheduler
must validate them taking into account the plan they belong to.
We have presented an easy way to manage all the constraints of
the problem, both temporal constraints and resource usage
constraints. They are managed by three very similar levels:
action level, resource level and attribute level. In addition, we
have discussed two ways to manage the temporal constraints:
maintaining the derived constraints and maintaining only the
input ones. Currently, we are working on nonpropagation
techniques which alow us to retract constraints in a very
efficient way. We are aso studying the possibility of adding
more expressive temporal constraints to the scheduler [15].
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Heuristic Methods for Solving Job-Shop
Scheduling Problems

A. Garrido, M. A. Salido, F. Barber and M. A. L 6pez*

Abstract.  Solving scheduling problems with Constraint
Satisfaction Problems (CSP's) techniques implies a wide space
search with alarge number of variables, each one of them with a
wide interpretation domain. This paper discusses the application
of CSP heuristic techniques (based on the concept of slack of
activities) for variable and value ordering on a special type of
job-shop scheduling problems in which the operations must
schedule inside of temporal windows. These techniques are
improved by introducing the concepts of slack probability and
the find-hole method. Thus, a more flexible heuristic technique is
obtained, which improves empirical efficiency and alows early
detection of unfeasible problems.

1 INTRODUCTION

Scheduling is the problem of allocating limited resources to
operations (activities) over time. Scheduling is a complex task
that can be formulated using a constraint-based representation.
Reasons for scheduling complexity include [4]:

Scheduling is a feasibility problem. The final solution must
accomplish all the problem constraints. Another objective to be
satisfied is the optimization of an evaluation function, adjusting
to certain criteria as cost, lateness, process time, inventory
time, etc.

Some scheduling problems have many constraints due to the
unavailability of resources, due dates, etc.

Constraint representation cannot express the importance of
the value domains. The number and identity of tasks that
reguire a resource over a particular time interval is a key piece
of information that can suppose the basis for heuristic variable
and value orderings.

Scheduling constraints are usualy disunctive ones (i.e.: two
tasks cannot use the same resource at the same time). The
consistence problem of metric digunctive constraints is NP-hard
[3], such that CSP techniques are used. However, inequality
congtraints generate a large search space that may have few (or
no) feasible solutions. Thus, it becomes necessary to define
techniques to empirically decrease this complexity and be able to
solve rea problems more efficiently (constraining value do-
mains, relaxing some constraints, etc). We are interested in the

! Dpto. Sistemas Informéticos y Computacion, Universidad Politécnica
de Vaencia, Camino de Vera n 46071, Spain, email: {agarridot,
msalido, fbarber} @dsic.upv.es

44

relaxation of the heuristic variable and value orderings to obtain
a more flexible method, which makes a better use of the knowl-
edge the scheduler may have about each particular problem. Our
work is focused on job-shop scheduling problems. In these
problems, operations must be scheduled within their feasible time
windows (i.e.: between its respective earliest start time and latest
finish time). We propose heuristic techniques for variable and
value orderings to be included in two known searching
algorithms. Basic-Depth-First Backtrack and Depth-First-with-
DCE [9, 10]. The former algorithm is the classical chronological
backtracking procedure heuristically improved. The latter uses
the additional heuristic Dynamic Consistency Enforcement
(DCE), which dynamically focuses its effort on critical resource
subproblems and learns from its previous faults.

We summarize the main concepts about the job-shop
scheduling problem and the CSP approach in Section 2. In
Section 3, we introduce the search method used and new
heuristic concepts in this process. The proposed heuristics are
empirically evaluated on a set of typical problems in Section 4.
Conclusions and final remarks are discussed in Section 5.

2 THE JOB-SHOP SCHEDULING PROBLEM

A job-shop scheduling problem is represented by a set of jobs
J={Jy,....Jn} and a set of resources R={R,...,R}. Each job J;
consists of a set of operations O'={0;,...,0';} which must be
performed between a ready-time (rt;)) and a due-time (dt;). The
execution of each operation (O') requires the use of a set of
resources (R | R) during a time interval (du',). The start time
sty of operation O indicates when the operation may begin to
use the resources R,

The problem of job-shop scheduling can be considered as a
Constraint Satisfaction Problem [1], with the following elements:

A set of variables {xg,...,x,} associated with the start time of
operations. These variables take values in finite domains
{Dy,...,Dy} that may be constrained by unary constraints over
each variable. In these problems, time is usualy assumed
discrete, with a problem-dependent granularity.

A set of constraints {cy,...,c4 among variables which are

predicates c(;,....x) defined on the Cartesian product
D;" ... D; and restrict the variable domains.



Constraints of job-shop scheduling problems can be
represented as binary, digunctive, metric and point-based
congtraints [3]:

6 (xj.%)° {{d]d; 1[d5d3]--[d-d 1} where di £d".

This constraint disjunctively restricts the tempora distance
between x; and X,

di £x - Xj £d7 U---Udy, £x - x; £dy

Moreover, unary constraints on a variable x may be
represented as binary constraints between the variable and a
special time-point TO, which represents ‘the beginning of the
world' (usualy, TO=0):

xj - TOT {[d1d{1[d2d3] - [dndn]}

meaning that: x; T {[d1d;][d>d3]--[d;dn]}

Thus, we have a Temporal Constraint Problem or TCP [3]. An
assignment of the variables (x;,...%) in their domains is
consistent with respect to ¢, iff ¢ is satisfied. A solution of a
CSP is an assignment of a value to each variable within its
respective value domain satisfying al constraints.

2.1 Constraintsand CSP Algorithms

Two main constraints appear in this kind of job-shop problems:

Precedence constraints: the operations Oji of each job J; must
be scheduled according to precedence constraints, i.e., there
exists a partial ordering among the operations of each job and
may be represented (Figure 1) by a precedence graph or tree-
like structure [10]. Each precedence constraint O, BEFORE
O, givesriseto the linear inequality st' + dul, < st

Capacity constraints.  resources cannot be used
simultaneously by more than one operation. Thus, two
different operations O, and O, cannot overlap unless they use
different resources. Capacity constraints give rise to
digunctive linear inequalities:

"0, O | o |
R« C R, = £U (O before 0] U[O, before O]

Additionally, other technological constraints may restrict the
set of possible execution times for individual operations or
availability times for resources, etc.

There are two main objectivesin ajob-shop CSP:

Feasibility: if a solution can be found. We can later be
interested in optimal solutions, according to several
scheduling optimality criteria or cost functions to evaluate the
optimality of each feasible solution.

Efficiency of the CSP process. This objective implies
minimizing backtracking processes and, consequently, the
conflicts. When an operation requires a resource that is
already being used, a conflict appears. We can anticipate
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possible conflicts and improve the algorithm efficiency by
detecting resources with the highest contention.

0, 0’

Figurel. Example of tree-like (from [10])

The solving agorithm should be able to generate and evaluate
al the possible assignments for each one of the problem
variables. However, only a small fraction of these possible
assignments will participate in a feasible solution. Thus, an
efficient search, by means of an incrementa method, should
establish an appropriate order for instantiating the variables and
obtain the order to select the values from the domains. This
incremental method can be applied with two main techniques:
retrospective and prospective techniques [1].

Retrospective techniques that assign a value to a variable
checking other variables with assigned values in order to
avoid conflicts. If all constraints hold, another variable and
value are selected. Otherwise, some constraint is not satisfied
and backtracking occurs. The simplest retrospective
technique is chronological backtracking. If the verification of
consistency fails, it will select the variable most recently
instantiated and it will test another value of its domain. When
al values in the variable domain have been unsuccessfully
tested, the backtracking goes back to the next most recently
instantiated variable, and so on. If the procedure goes back to
the initial state (i.e., the state with an empty schedule), the
problem is unfeasible. Chronological backtracking may
behave in an inefficient way, which is known as thrashing
[6]. Thrashing may appear when the backtracking tries to
recover from a dead-end state (a partia solution which
cannot be completed). Since it tries to schedule the last
scheduled operation, it may go back to similar dead-end
states. However, the operation most recently scheduled is not
usually the cause of the conflict. The search may fail due to
some variable assignment previously performed in the search.

Prospective techniques that propagate the effects of each

variable instantiation to wunassigned variables. This

propagation is based on three levels of local consistency®

which arise from the analysis of reasons for thrashing [1]:

i) Lack of node consistency. No elements in the variable
domain satisfy unary constraints. Assigning these values
causes immediate failures.

2 Loca levels of k-consistency are empiricaly more efficient in
backtracking processes than total-consistency [6].



ii) Lack of arc consistency which applies the previous
concept to binary constraints.

iii) Lack of path consistency. For each value xi D; and
xd Dy such that (x=Vv; ¢y %=wJ) holds, a sequence of
values does not exist

%1l Dist, %21 DivzreeoXical Dicy, such as
(% Cii+1 Xir1)s (Xir1 Gisziv2 Xir2)s-er AN (K1 Gz k %) hold.

2.2 Variableand Value Orderings

The order in which variables and domain values are selected in a
CSP process is important to decrease the empirical
computational time. An optimal variable/value ordering would
produce a linear time solution for a feasible scheduling problem
because no backtracking would be necessary. Thus, an aim is to
minimize backtracking stages and, consequently, the conflicts.
These conflicts appear when an operation requires a resource

that is already being used. Therefore, it is necessary to use good
ordering heuristics to efficiently solve practical problems and
reduce the effective size of the search space [6]. In particular,
texture measurements [8] can be used as a basis for heuristic
decisions. A texture measure is an assessment of properties of a
constraint graph and reflects the intrinsic structure of a particular
problem. On the other hand, by detecting resources that have the
highest contention, we can anticipate possible conflicts and
improve algorithm efficiency [2, 10]. The most common
heuristic is to instantiate the most constrained variable to its
least constraining value. Intuitively, the earlier the most
constrained variable is instantiated, the earlier the backtracking
will take place (pruning the search space and minimizing
thrashing). Furthermore, the probability of finding a solution
without backtracking in this variable is increased by assigning
the least constrained value.

Problem data and method
parameters

1
Possible 718
5 assignments K
Scheduling or
Individual demand Precedence 6 backtracking
congtraints
Aggregate demand Propagation and 5
Free movement verification of
Resource 3 capacity

Static part of the constraints [ | constraints
heuristic method

Dynamic part of the
heuristic method

Solution / Non-feasible
solution

Figure2. Heuristic Searching Method: Static part and Dynamic part

3 HEURISTIC SEARCH METHOD

We use the classic backtracking procedure, which is improved
with specific heuristic criteria for variable ordering to avoid
thrashing and to improve the efficiency of the process. Our work
is based on the heuristic techniques developed by Sadeh [10].
However, we do not consider al the criteria because they vastly
limit the search space. Moreover, the flexibility of the method is
based on some additional considerations that allow us to extend
the search space.

In order to study the calendar of utilization of each resource,
we use the Individual Demand and Aggregate Demand
techniques. These techniques and the concept of dack
probability of an operation alow us to make better use of the
temporal windows of the operations for scheduling. These
techniques select the most critical operation and assign it its less-
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constrained value. We have mixed retrospective and prospective
techniques in the verification of the consistency. Furthermore,
we introduce the find-hole method that alows us to eliminate
any doubt in the presence of a conflicting situation either: (i)
according to operations not yet scheduled (prospective); or (ii)
according to the maintenance of the consistency among the new
operation and the operations aready scheduled (retrospective).

3.1 Searching Process

Chronological backtracking is based on the incremental search
of a solution. This incremental search can be represented as a
transition between states. It starts in an initial state without any
scheduled action. It finishes in a fina state when a solution is
found (all the actions have been scheduled) or when there is no
feasible solution. Our algorithm uses some heuristics to improve
the efficiency of the classical backtracking techniques. Figure 2
shows a schematic representation of the heuristic method used in



the search of a solution. The method has two parts: one static

part (search anticipation), and another dynamic part, which is

based on the techniques that are applied during the search
process. The mgjority of the decisions are taken during the
search process. consistency enforcing, which value to select,
schedule, or unschedule, etc. However, dl these decisions are
conditioned by the decision adopted in the static part: the order
of selecting the variables.

We can observe a possible sequence of decisions in the

scheduling of an operation in Figure 2:

1. Anoperation is selected to be scheduled in (2).

2. Capacity constraints are verified according to the operations
not yet scheduled and no conflict is detected (2, 3).

3. We look for a possible time for the start of the operation (4)
guaranteeing the precedence and capacity constraints
according to the operations that have already been scheduled
(5, 6).

4. Thereisno conflict and the operation is scheduled (7).

On the other hand, if a conflicting situation is detected in step
3, abacktracking stage (8) will occur in step 4 and the procedure
will go back to the most recently scheduled operation testing a
new value of its domain.

3.2 Slack Probability of an Operation

The slack of an operation O); is defined in Operational Research
as the difference between the latest (Ist}) and earliest (est') start
time:

SO)=Ist - est

This value indicates the number of units of time the
operation’s execution can be delayed, without delaying the
project. In our context, we have a similar underlying idea: we are
interested in finding which is the operation that admits more
starting times, taking into account the precedence constraints.
We define the slack probability (SP) of an operation as the
probability of movement in the temporal window [est’,... Ift}],
where est'; is the earliest O start time and Ift! is the latest O);
finish time. Thus, the slack probability is defined as:

|

If the operation has only one possible start time, the slack
probability will be null. Otherwise, if the operation has a wide
domain of possible start times, its slack probability will be the
unit. Hence, an operation is more conflictive than another if its
slack probability is minor.

A simple problem is shown in Figure 3. In this figure, there
exist operations which share a same resource R. In addition,
operation slacks are represented for each operation. If the
criterion for selecting the next operation is the slack probability,
the next operation to be scheduled will be the operation 0%
because its value SP(O%) isthe least.

a7

SP(0%) = 0.66
0% 6 |
est=4 Ift=21
SP(0%) =038
0% 3 |
est=7 Ift=21
SP(0%) = 0.74
0% 5 }
est=3 Ift = 21
SP(0Y) =0.71
I [0, 4] |
| (Y2 7 |
est=3 Ift =16
time

Figure3. Representation of the slack probability for operations that
share aresource R (boxes are labeled by the name of the operation and
its duration)

3.3 Consistency Enforcing: the Heuristic Find-
Hole Method

Once an operation has been selected to schedule, it is necessary
to check that all the involved constraints are satisfied:

Consistency according to the precedence constraints. The
precedence constraints are defined among operations of a
same job: the process must guarantee that two operations of
a same job are not executed in the same instant of time.
Essentially, the earliest start time is propagated downstream
within the job whereas latest start time is propagated
upstream. This propagation is applied before the CSP search
process.

Consistency according to constraints about resource
capacities. Checking the consistency of capacity constraints
isadifficult process due to the next constraints:

Forward consistency checking. When an operation is
scheduled and a resource is allocated to the operation, a
forward checking process analyzes the set of remaining
possible reservations of other operations that requires the
same resource and removes those conflicting
reservations.

Additional consistency checking. The process must check
if two unscheduled operations that require the same
resource are not overlapped. Two operations overlap
when both require the same resource at the same time for
every start time.

Find-hole. This method checks if an apparent conflicting
situation is actually conflicting. Before indicating an
operation has not any possible execution, it is necessary
to check the resource usage calendar of this operation. If
the shared resource is not used during the entire
operation’s execution, it can be used in another



operation. The find-hole method identifies the two
extreme time points of the temporal line in which the
action is executed (t and t*, respectively) and searches
some hole in which the resource is available and can be
used by another operation. If a hole does not exist, an
inconsistency will be detected because the resource is not

available.
}Ist'i +du|i >t
find - hole(O'; ) checksif | Ist'i £1*
}est'i +dul >t

4 EMPIRICAL EVALUATION

In this section, we study the empirica evaluation of the
developed heuristic method. The empirical method performance
is compared with the algorithms Basic-Depth-First and Depth-
First-with-DCE. Both agorithms use the same variable/value
ordering heuristics and the same techniques of consistency
enforcing.

Basic-Depth-First. This algorithm shows the efficiency of a
chronological backtracking (it always goes back to the last
scheduled operation).

Depth-First-with-DCE. This algorithm behaves as the
previous one, but it uses the added DCE heuristic.

4.1 Design of the Data Test

We have defined four types of job-shop scheduling problems.
Each type has a different number of jobs, operations and
resources (see Table 1). We have randomly generated 50
problems of each type. The number of operations may vary, but
the number of jobs and resources cannot.

Tablel. Typesof job-shop scheduling problems

JOBS RESOURCES OPERATIONS
TYPE 1 10 6 60 max. 20 min.
TYPE 2 10 8 80 max. 50 min.
TYPE 3 10 10 100 max. 80 min.
TYPE 4 12 10 120 max. 108 min.

Two parameters allow us to deal with different scheduling
conditions. The range parameter (RG) adjusts the distribution of
the due dates and release dates of the jobs. The bottleneck
parameter (BK) controls the number of bottleneck resources. In
each problem type, we have three different values of the range
parameter (RG) and two bottleneck configurations (BK) (see
Table 2). Moreover, the operation durations were randomly
obtained from two different distributions, depending on whether
an operation requires a bottleneck resource or not.

Table2. Comparison of the heuristic methods, which is used in the algorithms Basic-Depth-First and Depth-First-with-DCE vs.
Chronological Backtracking (over 5 sets of 40 job-shop problems). Standard deviations appear in brackets

Performance of the heuristic method
CHRONOLOGICAL BASIC-DEPTH- DEPTH-FIRST-WITH-DCE
BACKTRACKING FIRST K=4 K=8
RG=0.2 Sear ch Efficiency (*) 0.12 (0.15) 0.48 (0.44) 0.68 (0.30) 0.85 (0.33)
BK=1 Solved Experiments 1 17 17 17
RG=0.2 Sear ch Efficiency (*) 0.12 (0.15) 0.64 (0.43) 0.75 (0.32) 0.86 (0.29)
BK=2 Solved Experiments 1 24 24 24
RG=0.1 Sear ch Efficiency (*) 0.17 (0.24) 0.83 (0.33) 0.89 (0.23) 0.92 (0.19)
BK=1 Solved Experiments 3 33 34 34
RG=0.1 Sear ch Efficiency (*) 0.17 (0.24) 0.91 (0.26) 0.93 (0.20) 0.94 (0.16)
BK=2 Solved Experiments 3 36 36 36
RG=0.0 Sear ch Efficiency (*) 0.15 (0.20) 0.96 (0.20) 0.96 (0.17) 0.97 (0.14)
BK=1 Solved Experiments 2 38 38 38
TOTAL Sear ch Efficiency (*) 0.15 (0.20) 0.76 (0.34) 0.84 (0.25) 0.91 (0.23)
Solved Experiments 10 148 149 149

(*) obtained by dividing the total number of problem’s operations by the number of generated nodesin
the solution search. In this way, the maximum efficiency is 1

4.2 Algorithm Comparison

Since a depth-bound was set in the solution search, when more
than 800 states are generated, the search process stops. In this
case, we assume the problem is probably nonfeasible.
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The obtained results are summarized in Table 2. As we
thought, the chronological backtracking method is not enough to
solve complex job-shop problems. In spite of the low rate of
found solutions, the efficiency is appropriate enough (it is 0.85
with RG=0.2, BK=1 and consistency level k=8). This efficiency
rate is due to the fact that we have aso considered the
unsatisfied problems in the efficiency calculation. Hence, the



proposed heuristic technique is capable of stopping the search
when it deals with unfeasible problems (the process does not
expect to find a feasible solution).

BASIC-DEPTH-FIRST DEPTH-FIRST-WITH-DCE

74% F 25.5% N

26% N*

74.5% F

O%N/

e owN

I F: Feasible
I N: Non-feasible
[ 1 N*: Probaby non-feasible

Figure5. Comparison of the algorithms BDF and DCE

The results obtained by Basic-Depth-First (BDF) and Depth-
First-With-DCE (DCE) algorithms are presented in Figure 4.
26% of the problems tested by BDF were declared probably
nonfeasible (more than 800 states were generated), whereas DCE
classified them as feasible and nonfeasible problems.
Consequently, the BDF algorithm is not capable of properly
determining whether the problem is feasible or not. However, the
results are inverted in the DCE agorithm: all the problems for
which the solution is not found are unfeasible.

5 CONCLUSIONS

In this paper, a variation of the job-shop scheduling problem, in
which operations have to be performed within fixed temporal
windows, has been analyzed. We refer to these problems as job-
shop CSPs because operations must accomplish precedence and
capacity constraints. Job-shop CSP problems cannot be solved
with traditional scheduling techniques such as priority dispatch
rules, one-pass scheduling techniques [5, 7] or traditional linear
programming techniques of Operational Research.

Our studies are mainly based on Sadeh’s work [8, 9, 10]. In
his work, the CSP paradigm is applied to this kind of problems,
demonstrating that CSP methods are promising alternatives to
traditional scheduling methods for solving job-shop CSPs. We
have proved propagation techniques and heuristics for variable
and value ordering (slack probability and find-hole methods) are
useful in solving job-shop scheduling problems. Moreover, these
techniques are able to stop the solving process when a feasible
solution cannot be found. Furthermore, the empirical results
show these heuristic methods can efficiently solve different
types of problems that could not be solved with the traditional
CSPs.
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An accessibilit y graph learning approac h for task
planning in large domains
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Abstract. In the stream of research that aims to speed up practical plan-
ners, we propose a new approach to task planning based on Probabilistic
Roadmap Methods (PRM). Our contribution is twofold. The first issue
concerns an extension of GraphPlan[1] specially designed to deal with “lo-
cal planning” in large domains. Having a reasonably efficient “local plan-
ner”, we show how we can build a “global task planner” based on PRM
and we discuss its advantages and limitations. The second contribution
involves some preliminary results that allow to exploit to domain symme-
tries and to reduce in drastic manner the size of the “topological” graph.
The approach is illustrated by a set of implemented examples that exhibit
significant gains.

1 Introduction

Even though task planners have made very substantial progress over the last years,
they are still limited in their use. This is the case with large domains where nu-
merous facts and a huge number of possible actions instantiations are not relevant
- a posteriori - for solving a given problem.

There are also domains, like in robotics, where the environment has a given
topology; learning such a structure will certainly help in building an efficient plan-
ner in a given domain. However, the structure of the environment (at least the
“useful” one) heavily depends not only on the environment but also on the actions
that can be performed. OQur aim is to develop a generic planner that will exhibit
and learn the “structure” of a given domain. This is the reason why we propose
to investigate approaches based on Probabilistic Roadmap (PRM). PRM basically
“captures” the space “topology” through random state generation and connec-
tivity tests between states using a local planner. PRM obtains good results in
robot path planning because it is relatively easy to test the validity of a randomly
generated configuration and because there exist good metrics and numerous very
efficient local planners in the configuration space. PRM can even obtain excellent
results when careful techniques are devised in order to construct a compact graph
and to “direct” the search toward non-explored regions[12].

W e propose an extension of these notions to task planning. Our contribution is
twofold. The first issue concerns an extension of GraphPlan[1] specially designed
to deal with “local planning” in large domains. Having an reasonably efficient
“local planner” | we show how we can build a first “global task planner” based on
PRM and which builds a “topological” graph approximation of the task space.
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W e also discuss its adwantages and limitations. The second contribution involves
some preliminary results that allow to exploit domain symmetries and to reduce
in a drastic manner the size of the “topological” graph. Both contributions are
illustrated through a prototype implemen tation. The results are very promising.

2 Probabilistic Roadmap Method (PRM) background

2.1 Learning and Using

PRM [9] have been successfully used in path planning. A PRM planner performs
in two steps: i) topology learning and ii) using the learned topology to search a
solution of a given problem.

PRM builds a graph, G = (V, E), which “captures” the configuration space
topology. The vertices V' correspond to randomly generated configurations, and
the edges F to the possible connections between vertices. A local planner £ is used
to test such a connection. Table 1 shows a basic version of PRM algorithms. The
predicate connect(v,q) means that configurations ¢ and v are already connected
by the graph. This test allows PRM to avoid cycles; indeed, G is limited to a tree
in order to allow a significantly faster solution search.

Toillustrate PRM algorithm, we develop a toy example in figure 1 with M AX =
5: PRM chooses randomly the configurations ¢; and ¢s. In our example, the local
planner £ simply tests the existence of a collision-free straight line between two
configurations. £ can not find a path between ¢; and ¢3. A new configuration c3
is randomly generated; PRM creates a connection a between ¢; and ¢z because of
L(e1, e3). Adding ¢4 creates a new connection b with cz. Then, ¢5 allows to connect
¢1 (¢) and ¢z (d). When the learning step is stopped, one can use the graph to
search for a global solution to a path planning problem. The initial S and goal S’
states are first connected to the graph G with the local planner. A search is then
performed and obtains a collision-free path (S = ¢z = ¢; = 5 = 2 = S’)l.

2.2 A visibility based algorithm

There is clearly a need to limit the size of the graph while main taining the best
possible “coverage”. To do so, Move3D[12] proposes a PRM that computes “visibil-
ity” roadmaps which consist of two classes of nodes: the guards and the connectors.
When a new valid configuration is randomly found, three cases may arise:

— either it is not visible from any existing guard?; it is then added as a new
guard to the graph,

— or it 18 visible by guards belonging to distinct connected components of the
current graph; it is then added as a new connector, and the corresponding
connected components are merged,

— otherwise, it 1s visible only by guards belonging to a same connected compo-
nent; in such case, it is rejected.

! We can note that PRM sacrifices optimisation to efficiency However, once a path is
found, various smoothing and optimisation techniques can be used to improve the
solution path

2 A guard [8] corresponds to a node that is able to access all neighbours by L.
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Vo, Eeo
Cardg <+ 0
While Cardg < MAX do
q < Random()
If g € CS¢ree Then
Ve« Vu{qg
Cardg + Cardg + 1
Ve « {v € V, v neighbour of q }
For each v € V,(ordered with increasing distance) do
If —connect(v,q) A L(v,q) Then
B BU{(v,a)}
End For each
End While

Table 1. PRM basic algorithm

\\\\\\\\\§

§
.
= AL

=
——

Fig.1. A PRM sequence example

With suc h algorithm ez and ¢4 of figure 1 would not have been added because
of their visibility from ¢;.

Following the PRM framew ork, there is clearly a need for a “very efficient”
method for testing states connectivity. There is no need here to have a complete
planner. Completeness will be ensured by the global planner (PRM approach).
The next section proposes an adaptation of GraphPlan that fulfills such a need.

3 Adapting GraphPlan to local task planning in large
domains

In this section, our aim is to develop a “local task planner” to deal with large
problem. This local planner will allow to define the “neighbourhood” notion used
in PRM. GraphPlan[1] plans with STRIPS operators and uses a constraint prop-
agation method. It performs in two steps: first, it builds a constraint graph ex-
pansion; and then it searches for the plan with a constraint resolution extraction.
One limitation comes from the number of possible action instantiations and mutex

disappearing for large problems3.

? For this section, we assume that the reader is familiar with GraphPlan algorithms.
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For instance, RIFO [10] allows IPP to keep only “relevant” facts and to reduce
the state size and possible action instantiations. With suc h state cuts, IPP is able
to plan in quite large domains. Our solution is different: we keep the total state
description. However in order to deal with the combinatorial explosion due to
action instantiation in large domains, we propose to perform a graph expansion
based on partial instantiation and we limit the number of levels. This 1s reasonable
since we are interested in developing a fast local planner (in large domains).

To do so we have defined specific tools for forward expansion and backward
search in partial instantiated action context.

3.1 Partial action instantiation

In STRIPS formalism [4], a state is defined by a set* S of positive facts S = {f;}. To
apply a totally instantiated action B to the state S, its precondition set P = {p;}
must be included in S (P C 5)5.

Our goal is to reduce the number of developed actions at each level. We de-
compose each action B in n partially instantiated actions B; where n = Card(P).

Definition 1 (Partially instantiated action B;). Let B(x) be the STRIPS
definition of an action B and let x its arguments (in first order logic) and P(x)
its preconditions. Let x; a partial instantiation of x such that p;(x;) is totally
instantiated. We call B(x;) (noted B;) a partial instantiation of B.

Note that preconditions and effects of B; are partially instantiated (except for
pi). For instance, table 2 shows a pick-and-place action and a partial instantiation
by its first precondition.

pick-and-place( x, y, z) pick-and-place( block, blocks, z)
Precond.: On(x,y), Clear(x) Precond.: On(block, ,block;), Clear(block,)
Clear(z) Clear(z)
Eff.: On(x,z), Clear(y) Eff.: On(block, ,z), Clear(block;)
= On(x,y), = Clear(z) —On(blocky ,block;), = Clear(z)

Table 2. (a) An example of STRIPS action in block-world domain. (b) A partially
instantiated action (by the first precondition On(x,y) ).

Definition 2 (B; Applicability). B; is applicable to state S if and only if
pi(xi) € S and ¥Vj # 1,3y, (a total instantiation of x;) p;(x;) € S.

3.2 Mutex propagation

The GraphPlan mutex definition is based on the notion of independence between
two actions. Two totally instantiated actions B' and B? are independent if B! o
B? & B? o B'. The independence relation can be defined by Table 3a properties.
W e can extend this independence relation to partially instantiated actions. B} and
B2 are independent if B} o B? < BZ? o B} with relations defined in Table 3b. Note
that the independence relation of partially instantiated actions 1s weaker than the
relation between totally instantiated actions; indeed if 37, ¢ such that B} is mutex
with B2 then B! is mutex with B? but not the converse.

* To simplify the notation, we consider states as set of facts instead of conjunctions.
5 In addition, we have the following properties: i) D C Pandii) DNA=¢ with D
(resp. A) the set of facts that become false (resp. true) after applying action B.
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PtCS P:CS Vi, pi(x;) €S Yk, pi(xk) € S
P'nD*=¢ PND'=¢ | Yjk.pi(x;) # Dilxx)  Vk3j,pi(xx) # D (x)
AlnD*=¢ A’nD'=¢ | ViIk Aj(xj) # Di(xr) VKI5, AZ(xxk) # D;(xy)

Table 3. (a) Independence between B' and B? in S. (b) Independence between B} and
B? (x; (resp. xx) is a total instantiation of y; (resp. x. ))

Find Plan(G,P,Einit)
If G = ¢ Then
Return OK
Unstack (X,lx) from ¢
If [lx =0 Then
If 3y an instantiation of X,y € &ni+ Then
Return Find_Plan(G,P,Einit)
Else Return Fa:l
Else
Given [ the set of partially instantiated action that
supports X and with Iz <lx
Result «+ Fail
While Result = Fail do
Choose {B; € }such that X is totally instantiated and
B; compatible with Bj, (i # j) and with P (non-mutex)
Add composition of B; preconditions to G
Add {Bi} to P
Result «+ Find_Plan(G,P,Einit)
Return Result

Table 4. Plan extraction algorithm for partially instantiated GraphPlan. (X corresponds
to a partially or totally instantiated fact, [x to the level in which we need X and ls the
level of 3 appearance.)

Nevertheless using partially instantiated actions allows us to generalise the
mutex relation between two facts. In GraphPlan, two facts P and @) are mutex if
P = =@ or if all actions that support P are mutex with all actions that support
). As we already mentioned, some effects of a partially instantiated action are
partially instantiated, and so we can create mutex between two “classes” of facts.

For instance, consider the pick-and-place action and a no-op action on fact
Clear(blocks). The pick-and-place action instantiated by the third precondition
(Clear(blocks)) deletes Clear(blocks) and adds On(x, blocks), whereas no-op main-
tains Clear(blocks). These two actions are mutex, and so we can conclude that

Vo € {blocky, ..., blocky,}, On(z,blocks) is mutex with Clear(blocks).
3.3 Solution extraction

Our planner uses the partial action instanciation to expand the mutex graph start-
ing from the initial state. As in GraphPlan, we try to extract a solution as soon as
we reach a level that includes the goal. During backward, the planner must find
total instantiations for the selected actions. Such a problem has strong similarities
with the extensions of GraphPlan to conformant planning (see CGP[13] and [6]).
Indeed, we have adapted the algorithm presented in [6] to deal with partially in-
stantiated actions. Table 4 provides a high level description of the plan extraction
procedure.
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Block-world domain
IPP-v4.0 Our planner (PIGP)
Problem | Level CPU Time Memory || Level CPU Time Memory
4 blocks 6 0.1s 0.4 Mb 6 0.3s 2.4 Mb
5 blocks 8 0.2s 0.6 Mb 8 2.4 s 2.5 Mb
6 blocks 10 0.3 s 0.8 Mb 10 6.5s 2.7 Mb
10 blocks 3 58 s 5.7 Mb 3 0.2s 2.9 Mb
20 blocks 3 269.3 s 95 Mb 3 29s 5.1 Mb
30 blocks - >1000s >200 Mb 3 5.3s 7.9 Mb
100 blocks - - - 3 37.8 s 15 Mb

Table 5. Results from IPP-v4.0 and our local task planner. The problems (10-100) are
defined by: at initial state, all blocks are on table; the goal is to obtain several three block

towers.

Results Table 5 compares IPP-v4.0 with our GraphPlan adaptation on block-
world domain. W e note that IPP is significantly faster than our algorithm on small
domains. On the other hand our planner can elaborate plans in larger domains
when the number of levels necessary to reach the goal is small. Indeed, while the
partial instantiation reduces drastically the combinatorial explosion of the graph
expansion phase, it is expensive for plan extraction.

This is acceptable in our case since we are interested in developing a fast local
planner in large domains.

4 Task planning with PRM

In this section, we describe our adaptation of PRM to task planning. It mak es
use of the local planner defined in the previous section to compute a “topological
graph” of the task space. This is done by randomly generating states and trying
to connect them to the graph using the local planner.

The process is stopped when we consider that we have a sufficient coverage of
the task space. The result is a domain “skeleton”, that will be used as a roadmap.

4.1 Adaptating PRM to task planning

Locality and accessibility Evaluating the distance between two states d(S,5")
is NP-Hard. All what we need is an estimation d of d with §(5,5") < d(S, S")°.

In our case, to approximate §, we use the mutex propagation phase of Graph-
Plan. Indeed the number of developed levels to possibly obtain a state S’ from
S represents the minimal number of independent action set, and so the minimal

number of action.

Definition 3 (Accessibility). State S is accessible from S (noted A(S',S)), if
and only if there exists an action sequence I' such that S = I'(S). The direct
accessibility corresponds to the existence of a local plan L(S',S).

® [2] proposes in HSP to evaluate § with the minimal number of actions to obtain S’
from S without delete-liste. In [3], he estimates cost from the initial state and uses it

to define an heuristic from any state.
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W e note that the accessibility relation is reflexive (i.e..A(S, S)), transitive (i.e.
A(S,S") AN A(S",S) — A(S,S")) but not necessarily symetric (i.e. A(S,5") #
A(S,9)).

A first algorithm: basic PRM Table 6 describes the incremental construction
of the roadmap. The local planner £ is implemen ted with a partially instantiated
GraphPlan (see previous section) and the distance corresponds to the minimal
number of graph levels (here we set the neighboorhood to 3 levels).

For instance, given (G; and (s two disjoint components of the graph G and a
state S. If S is accessible from Gy (i.e. 3g € G1, A(S,g)) and S is not accessible
from Gy (i.e. =39 € G2, A(S,g)) then we assume that state S does not provide
any new information about the task space topology”.

Following [12], we define the notion of Accuracy; it corresponds to the current
number of uninteresting states (since the last interest state). The number 1 —
1/Accuracy corresponds to an estimation of the probabilistic coverage of the task
space.

State validity Our algorithm is based on a random generation of states. While
it 1s quite easy to verify the validity of a given configuration in the path plan-
ning domain (no overlapping with obstacles), this is not the case, in general,
for task planning. For instance, in the blockword domain, we can not authorize
On(blocky, blocks) A On(blocka, blocky). Our planner is not able to check state va-
lidity. We assume, that we are able to randomly generate all valid states.

First results with basic PRM Figure 2a shows a graph obtained in 7-block-
world with a 95% coverage. The program took 727.2 s to build a graph composed
of 1867 nodes (3.1 Mb). In this figure, each state is represented by a dot. Two
connected dots mean that there exists a local plan between the corresponding
states. The position of a given in the diagram depends on the size of highest stack
of the state (radius of the circles from 1 to 7) and the number of the first block of
the stack (angle of the supporting segment). W e note that the figure is strongly
symmetric, especially because of the 7 possible first blocks. Indeed, in blodk-world
domain, for a tower of n blocks, there are n! possible configurations.

Figure 2b presents a graph built for the 3-mail problem with a 95% co verage:
a robot must move letters from a table to another in a complex en vironmert. In
this example, the environment contains 400 cells which are connected with 160000
facts (e.g. connect(ci,1,¢1,2)). Tables are represented by grey cells and walls by
black cells. Our algorithm used 18 Mb and took 386.4 s to build a graph composed
of 131 nodes. Note that the position of the nodes depends only on robot position
and not on the position of the letters (letters can be left on tables or on the robot).
This is the reason why there are a number of neighbour nodes on the figure which
are not connected.

From these two (non trivial) examples, we can malke two observations. First, our
algorithm successfully “captured” a topological structure of the task space derived

" We assume that S will again be randomly generated, in the future, to test again
possible connections between connected components of G. That is the reason why, we
can say that the probabilistic completeness of the method is ensured.
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G« {o}
Accuracy + 0
While Accuracy < MAX do
S + RandomValidState()
foundg « ¢ ; foundy + EmptyState()
foundnpy + 0
For each G € G (ordered with increasing distance) do
If 3g € G, A(S,g) Then
If foundn, = 0 Then
founda < G ; foundy < g
foundnp + 1
Else
If foundn, =1 Then
Connect S to foundg by found,
G~ Gg-G
Connect S to G by g
foundynp + foundpy, + 1
End For each
If foundn, =0 Then
G« Gu{s e}
If foundn, =1 Then
Accuracy +— Accuracy + 1
Else
Accuracy + 0
End While

Table 6. Accessibility based algorithm

from accessibility by local plans. Second, in both domains there are symmetries
and possible permutations which unusefully increase the graph.

4.2 A PRM that deals with perm utations

Due to all possible permutations between different states, the previous method to
build a task topological graph is not able to capture the domain topology with
a polynomial number of states (see for instance the symmetry that appears in
figure 2a). To solve this problem, we propose an extension that deals explicitly
with permutations.

For example, when there is a permutation between two states Sy (On(blocky,
blocks) AOnTable(blocks)) and Sy (On(blocks, blocki) AOnTable(blocky)), we will
try to learn the task space topology for only one permutation. In this case, the
environment “skeleton” is On(X,Y) A OnTable(Y) and there are two possible
substitutions (51, S2) {X/blocky; Y /blocks} and o(Sa, S1) {X/blocks; Y /block: }.

We define AT the accessibility relation A augmented by substitution which
is transitive: Given Sy, Sz and S| three states such that A(Sy, S2), A(S2,S51)
and ¢(S1,5]). In that case, there is a plan I' to connect Sa to S;. Given I, the
plan I modified by the substitution ¢(S7, S), and S} the result of the substitution
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Fig.2. (a) Learned (95%) graph in 7-block-world domain. (b) Learned (95%) graph in
3-Mail domain.

o (51, 51)(S2) ; we have S| = I'"(5%) and we conclude that the accessibility relation
A(S], 5%) is valid. So if we have A(S), Sa) then we can deduce A(S7,S1) (via the
path 1 — Sy — S5 — 57).

Consider for instance the 3-block-world domain. Given S; = { On(blocky, blocks),
On(blocks, blocks), On_table(blocks) }, ST = { On(blocks, blocky), On(blocky, blocks),
Ontable(blocks) } and Sa = { On(blocks, blocks), On_table(blocks), On_table(block,)
}. We note that —=£(S1,S]), £(S1,S2) and £(S2,51). In addition, we can reach 5%
from Sy in two steps, so we can conclude that AT (S, 51, 0(S1,57))%

At (S, S1,01510)
If £(51,51) Then
return OK
For each S; such that £(S1, S2) A L(S2,51) do
Sy 01511(52)
If.A"'(Sé7 S2,011) Then
return OK
End For each
return Fuazl

Table 7. Accessibility based on permutation

This property allows an extension of the basic PRM algorithm that takes into
account substitution. The new algorithm is similar to the algorithm presented in
table 6 but, instead of using A to test the accessibility of a new random state
S1, we test if it corresponds to a permutation between two components Gy and
(5 of the graph G (S2 € G4 such that ¢(S1,S2)). If it is the case, we store S,
Sa and ¢(S7,532) and use such permutation to try to connect G and G2 in the

8 We note that A(S1, S1) is false because our local planner £ is limited to three steps.
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STEPS5 STEP6

Fig. 3. A PRM sequence exemple

subsquent steps. Besides, if the connection is established, we check the graph in
order to eliminate redundancies (see step 6 of figure 3).

The following example illustrates the overall process’ (see figure 3). At step 1,
there are two components in our graph (Sp — S2 and S; — S3). Solid line represent
accessibility. At step 2, we randomly generate S4. Sa is accessible from Sy because
of £. In addition, we note that there is a substitution ¢(S4,S1). Dashed curve
denote a substitution. So the question is: can we connect components S5 — Sy — Ss
and 57 — S37 At this step, it is impossible because of: =.A(Sy, S4), —A(S3, S4) and
not connected at step 1, then we deduce =A% (S, .54). Now we store ¢(S4, S1) to
check if further states can connect the two components via AT (this is the case
with S5 and Ss/). At step 3, we randomly generate Ss. Sy is accessible from Sy
(S5 is created with o(Sy,S1). In this case (see step 4)), Sy is accessible from S;
(indeed we have S} — Spr — Sar — Sgr — S5 — S2 — Sp — S4). Dashed line means
that states are already connected in the other substitution. Now, we can reduce
the graph and create only one component without substitution. At step 5, we use
0(S4,51) to create Sz from S3. At step 6, we delete Sy (resp. S3) which is now
accessible from Sy (resp. Ss/) via Ss.

Block-world results Figure 4a shows a learned graph for the 7-block-world, with
a 99% coverage, domain with permutation method. Our algorithm uses 4.0 Mb
during 7.9 s to find 14 nodes Each dot is labelled by a state number described

° In order to simplify the explanation we assume that a state accessible from only one
component is added to G. For instance in step 1, nodes 2 and 3 are added. We also
assume that .4 is symmetric.
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Fig. 4. Learned (99%) graph with substitution method in 7-block-world domain

in figure 4b. W e note that for 7 blocks our graph contains only 14 states. These
states correspond, in fact, to “classes” of states; indeed because of the permutation
reasoning a state of this graph is not really instantiated but represents a whole
class of states obtained by substitution.

4.3 Solution search

The solution extraction method is similar to the insertion of one state during
the learning phase. Indeed, we must connect the initial state Sj,; to S; € G,
connect the goal Sgoq to Sy € G and then find a path!? between S; and Sy when
AT(S;, Sy)t.

Table 8 shows some results on block-world domain (with perm utation). Results
from 7-block-world express permutation reasoning capabilities: 7.9 s / 14 nodes
with 99% wvs. 727.2 s / 1827 nodes with 95%. In addition, we remark that if we
remove the average time spent to connect initial and goal state to the graph from
the average time to extract a solution, the spent time to find a path is about 0.1 s.

5 Conclusion and future w ork

We have proposed an extension of probabilistic Roadmap Methods (PRM) to task
planning. Such an extension can not be reasonably attempted without an efficient
local planner which may answer quickly to “connections” requests.

This is why we have developed an extension of GraphPlan[1] specially designed
to deal with “local planning” in large domains. It is essentially based on the con-
struction of mutex between partially instantiated facts.

1% We note that the planner is sound. Indeed the solution is extracted from the graph
and the connection between the initial and final state; all connections are built by the
GraphPlan extension (sound too); so if a path exists, it is consistent.

1 If we can not connect S; or Sy we can use a classical planner (e.g. IPP—V4.0).
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Graph learning Solution search
Problem | nbpoqe CPU Time Memory || CPU Time (average)
7 blocks 14 79s 4.0 Mb 0.07 s
10 blocks 31 44 s 4.8 Mb 0.31s
15 blocks 86 492.5 s 5.6 Mb 1.9s
20 blocks 253 4186.8 s 6.6 Mb 5.4 s

Table 8. Learn and solution extraction phase on block-world domain

Another key feature 1s the development of techniques that allow to reduce as

much as possible the size of the learned graph without “losing” the probabilistic
completeness.

This research is still preliminary. However, the obtained results are very promis-

ing. Our future work will concern further investigations on the following aspects:
i) improvement of the local planner efficiency (for example, can we introduce some
heuristics [3]7 ii) improvement of the topological structure identification by adding

more general symmetry analysis[5], or extending re-using methods ([11], [7], ...).
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A Heuristic for Domain Independent Planning and its
Use in an Enforced Hill-climbing Algorithm

Jorg Hoffmann!

Abstract. We present a new heuristic method to evaluate planning
states, which is based on solving a relaxation of the planning prob-
lem. The solutions to the relaxed problem give a good estimate for
the length of areal solution, and they can also be used to guide ac-
tion selection during planning. Using these informations, we employ
asearch strategy that combines Hill-climbing with systematic search.
The algorithm is complete on what we call deadlock-free domains.
Though it does not guarantee the solution plans to be optimal, it does
find close to optimal plans in most cases. Often, it solves the prob-
lems almost without any search at all. In particular, it outperforms all
state-of -the-art planners on alarge range of domains.

1 INTRODUCTION

The standard approach to obtain aheuristic isto relax the problem P
at hand into some easier problem P'. The optimal solution length to
asituation in P’ can then be used as an admissible estimate for the
optimal solution length of the same situation in P. An application of
this idea to domain independent planning was first used in the HSP
system [3]. The planning problem P is relaxed by simply ignoring
the delete lists of al operators. However, computing the optimal so-
Iution length for a planning problem without delete listsis still NP-
hard, aswasfirst shown by Bylander [4]. Therefore, the HSP heuris-
tic is only a rough estimate of the optimal relaxed solution length.
In short, it is obtained by summing up the minimal distances of all
atomic goals.

In this paper, we go one step further. We introduce a method that
computes some, not necessarily optimal, solution to the relaxed prob-
lem. These solutions are helpful in two ways:

o their length provides an informative estimate for the difficulty of
asituation;
e One can use them as a guidance for action selection.

The solution length estimates are used to control a loca search
strategy similar to Hill-climbing, which is combined with systematic
breadth first search in order to escape local minima or plateaus. The
guidance information is employed to cut down the branching factor
during systematic search. The method shows good behavior over al
domains that are commonly used in the planning community. In par-
ticular, wewill seethat it is complete on the class of problemswe call
deadlock-free. Performing local search, the method can not guaran-
tee its solution plans to be optimal. In spite of this, it finds close to
optimal plans in most cases. As a benefit from the severe restriction

L Ingtitute for Computer Science, Albert Ludwigs University,
Georges-Kohler-Allee, Geb. 52, 79110 Freiburg, Germany, email:
hoffmann@informatik.uni-freiburg.de
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of its search space, it shows very competitive runtime behavior. For
example, logistics problems are solved faster than by any other do-
main independent planning system known to the author at the time
of writing.

2 BACKGROUND

Throughout the paper, we consider smple STRIPS domains. We
briefly review two standard notations. An action o has the form

o = (pre(o) = add(o), del(o) )

where pre(o), add(o) and del(o) are sets of ground facts. Plans P
are sequences P = (o1, ..., 0,) Of actions, i.e., we consider only
linear plans.

3 HEURISTIC

In this section, we introduce a method for heuristically evaluating
planning states S. Basically, the method consists of two parts.

1. First, the relaxed fixpoint isbuilt on .S. Thisis aforward chaining
process that determines in how many steps, at best, a fact can be
reached from S, and with which actions.

2. Then, arelaxed solution is extracted from the fixpoint. Thisis a
sequence of parallel action sets that achieves the goal from S, if
their delete effects are ignored.

Thefirst part corresponds directly to the heuristic method that is used
in HSP [3]. The second part goes one step further: whilein HSP, the
heurigtic is extracted as a side effect of the fixpoint, we invest some
extra effort to find a relaxed plan, and use the plan to determine our
heuristic value. The fixpoint process is depicted in Figure 1.

The algorithm can be seen as building a layered graph structure,
where fact and action layers are interleaved in an aternating fash-
ion. The process starts with the initial fact layer, which are the facts
that are TRUE in S. Then, thefirst action layer comprises the actions
whose preconditions are contained in S. The effects of these actions
lead us to the second fact layer, which, in turn, determines the next
action layer and so on. The process terminates, and remembers the
number maz of the last layer, if al goals are reached or if the new
fact layer isidentical to the last one.

The crucia information that the fixpoint process gives us are the
levels of al facts and actions. These are defined as the number of the
first fact- or action layer they are members of.

mzn{z|f€Fz} @(.i:fEFi

o0 otherwise

level(f) := {



Fo = S
k=0
while G € F}, do
Ok :={o € O pre(o) C Fi}
Fry1 = F, U Uo € 04 add(o)
if Fk+1 = F} then
break
endif
k=k+1
endwhile
max =k

Figure 1. Computing the relaxed fixpoint on a planning state S. © and G
denote the action set and goal state of the problem at hand, respectively.

el (0) min{i|o € 0;} e&.i:0€ O;
evel(o) ;=
00 otherwise

We now show how to extract a relaxed plan from the fixpoint struc-
ture. Thisis done in a backward chaining manner, where we ssmply
use any action with minimal level to make a goal TRUE. The exact
algorithm isdepicted in Figure 2. Note that we do not need to search,
we can proceed right away to the initial state and are guaranteed to
find a solution.

fori:=1,...,max do
Gi={g €y |level(g) =i}

endfor

h:=0

for i :=max,...,1do

for dl g € G;, g not TRUE a i do
select o with g € add(o) such that level(o) =i — 1
hi=h+1
for al f € pre(o), f not TRUEat 7 — 1 do
Glevel(s) = Clevel ) Y {7}
endfor
for dl f € add(o) do
mark f asTRUEat s — 1 and i
endfor
endfor
endfor

Figure 2. Thealgorithm that extracts arelaxed solution to a state S after
the fixpoint has been built.

Before plan extraction starts, an array of goal sets G; isinitialized
by inserting all goals with corresponding level. The mechanism then
proceeds down from layer max to layer 1, and selects an action o
for each goal g at the current layer 4, incrementing the plan length
counter h. No actions are selected for goals that are marked TRUE at
the time being, as they are already added. The achiever o isrequired
to have level(o) = i — 1. Thisisminimal as the goa g has level i,
i.e, the first action that achieved g in the fixpoint came in at level
i — 1. The preconditions of o are inserted as new goals into their
corresponding goal sets. If the current layer is 4, then the levels of
o's preconditions are at most ¢ — 1, so these new goals will be made
TRUE later during the process.
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3.1 Goal Distance

To obtain the heuristic goal distance value h(.S) of agiven planning
state S, we now simply chain the two algorithms together. First, we
perform the fixpoint computation from Figure 1. If the process ter-
minates without reaching the goals, we set 1 (S) := oco. Otherwise,
we extract arelaxed plan, Figure 2, and use the plan length for eval-
uation, i.e., h(S) := h.

The overdll structure of the relaxed planning process is quite simi-
lar to planning with planning graphs [1]. It amountsto a very specia
case, as no negative interactions at all occur between facts or actions
in the relaxed problem.

3.2 Helpful Actions

We can also use the extracted plan to determine a set of actions that
seem to be helpful in reaching the goal. To do this, we turn our look
on the actions that are contained in the first time step of the relaxed
solution, i.e., the actions that are selected at level 0. These are often
the actions that are useful in the given situation. Let us see asimple
example for that, taken from the gripper domain, asit wasused in the
1998 AIPS planning systems competition. We do not repeat the exact
definition of the domain here, as it is easily understood intuitively.
There are two rooms, A and B, and a certain number of balls, which
shall be moved from room A to room B. The planner changes rooms
viathe move operator, and controls two grippers which can pick or
drop balls. Each gripper can only hold one ball at atime. We look at
asmall problem where 2 balls must be moved into room B. A relaxed
solution to theinitial state that our heuristic might extract is

< { pick ball1 A left,
pick ball2 A left,
moveA B },
{ drop balll B left,
drop ball2B left } >

Thisisaparallel relaxed plan consisting of two time steps. Note that
the move A B action is selected parallel to the pick actions, as the
relaxed planner does not notice that it can not pick ballsin room A
anymore once it has moved into room B. In a similar fashion, both
balls are picked with the left gripper. Nevertheless, two of the three
actions in the first step are helpful in the given situation: both pick
actions are starting actions of an optimal sequential solution. Thus,
one might be tempted to define the set H(S) of helpful actions as
only those that are contained in the first time step of the relaxed plan.
However, this is too restrictive in some cases. We therefore define
our set H(.S) asfollows.

H(S) := {0 € O | add(0) N G # B}

After plan extraction, Op contains the actions that are applicable in
S, and G contains the facts that were goals or subgoals at level 1.
Thus, we consider as helpful those actionswhich add at |east one fact
that was a (sub)goal at the lowest time step of our relaxed solution.

4 SEARCH

We now introduce a search algorithm that makes effective use of the
heuristics we defined in the last section. The key observation that
leads us to the method is the following. On some domains, like the
gripper problems from the 1998 competition and Russel's tyreworld,
it issufficient to use our heuristic in anaive Hill-climbing strategy. In
these problems, one can simply start in the initial state, pick, in each



state, a best valued successor, and ends up with an optimal solution
plan. This strategy is very efficient on the problems where it finds
plans.

However, the naive method does not find plans on most problems.
Usually, it runsinto an infinite loop. To overcome this problem, one
could employ standard Hill-climbing variations, like restarts, limited
plateau moves, or amemory for repeated states. We use an enforced
Hill-climbing method instead, see the definition in Figure 3.

initialize the current plan to the empty plan <>
S=7
obtain h(S) by evaluating S
if h(S) = oo then
output "No Solution”, stop
endif
while h(S) # 0 do
breadth first search for astate S’ with h(S") < h(S)
if no such state can be found then
output " No Solution”, stop
endif
add the actions on the path to S’ at the end of the current plan
S=9
endwhile

Figure 3. The Enforced Hill-climbing algorithm. Z denotes the initial
state of the problem to be solved.

The agorithm combines Hill-climbing with systematic breadth
first search. Like standard Hill-climbing, it picks some successor of
the current state at each stage of the search. Unlike in standard Hill-
Climbing, this successor does not need to be adirect one, and, unlike
in standard Hill-Climbing, we do not pick any best valued succes-
sor, but enforce the successor to be one that is better than our current
state.

More precisely, at each stage during search a successor state is
found by performing breadth first search starting out from the cur-
rent state S. For each search state .S, all successors are generated
and evaluated heuristically. Doubly occuring states are pruned from
the search by keeping a hashtable of past states in memory, and the
search stops as soon asit hasfound astate S’ that has a better heuris-
tic value than S. Thisway, the Hill-climbing search escapes plateaus
and local minimaby simply performing exhaustive search for an exit,
i.e., astate with strictly better heuristic evaluation.

4.1 Helpful Actions

So far, we have only used the goal distance heuristic. We integrate
the helpful actions heuristic into our search agorithm as follows.
During breadth first search, we do not generate all successors of any
search state S' anymore, but consider only those that are obtained
by applying actions from H(S"). This way, the branching factor for
the search is cut down. However, the helpful actions heuristic is not
completeness-preserving, i.e., considering only the actionsin H(S')
might make the search miss a goal state. If this happens, i.e, if the
search can not reach any new states anymore when restricting the
successors to H(S'), we simply switch back to complete breadth
first search starting out from the current state S and generating all
successors of search nodes.
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5 COMPLETENESS

The Enforced Hill-climbing algorithm is complete on deadlock-free
planning problems. We define adeadlock to be a state S that isreach-
able from the initial state Z, and from which the goal can not be
reached anymore. A planning problem is called deadlock-free, if it
does not contain any deadlock state. We remark that a deadlock-free
problem isalso solvable, cause otherwise theinitia stateitself would
aready be adeadlock.

Theorem 1 Let P bea planning problem. If P is deadlock-free, then
the Enforced Hill-climbing algorithm, as defined in Figure 3, will
find a solution.

Dueto space restrictions, we do not show the (easy) proof of Theo-
rem 1 here and refer the reader to [5]. In short, if the complete breadth
first search starting from a state .S can not reach a better evaluated
state, then, in particular, it can not reach a goal state, which implies
that the state S is a deadlock in contradiction to the assumption.

In [5], it is aso shown that most of the currently used bench-
mark domains are in fact deadlock-free. Any solvable planning prob-
lem that is invertible in the sense that one can find, for each action
sequence P, an action sequence P that undoes P's effects, does
not contain deadlocks. One can always go back to the initial state
first and execute an arbitrary solution thereafter. Moreover, planning
problems that contain an inverse action s to each action o are invert-
ible: smply undo al actions in the sequence P by executing the cor-
responding inverse actions. Finally, most of the current benchmark
domains do contain inverse actions. For example in the blocksworld,
we have stack and unstack Similarly in domains that dea with |o-
gistics problems, for example logistics, bulldozer, gripper etc., one
can often find inverse pairs of actions. If an action is not invertible,
its role in the domain is often quite limited. A nice example is the
inflate operator in the tyreworld, which can be used to inflate a spare
wheel. Obviously, there is not much point in defining something like
adeflateoperator. More formally speaking, the operator does not de-
stroy agoal or aprecondition of any other operator in the domain. In
particular, it does not lead into deadlocks.

As one of the anonymous reviewers pointed out to us, deadlock-
free domains might be an artificially dominant group because of the
simplicity of the current benchmarks. Any domain with consumable
resources will contain non-invertible actions. Thisis certainly true to
some extent. We have one theoretical and one practical answer.

e |ntheory, one can make Enforced Hill-climbing complete on any
planning problem by simply adding an operator that is applicable
in any situation, and reproduces the initial state. That way, search
always has the opportunity to go back to the start. In practice,
this is not likely to be an effective approach, as it would force
complete breadth first search to go all the way down to a state S
with h(S") < h™™, where h™™ isthe eval uation of the best state
seen so far.

e From a more practical point of view, our experience is that En-
forced Hill-climbing usually fails quite quickly on the problems
which it can not solve. One can then simply switch to a complete
heuristic search algorithm, like greedy best-first or weighted A*.

In the subsequent empirical investigation, we show results for a
large collection of benchmark planning problems. All of them but
one—a simple sokoban instance—are deadlock-free. Thisis not be-
cause we concentrated on solving problems that are deadlock-free,
but because there are very few benchmarks available that are not.



Anyhow, Enforced Hill-climbing finds solutions to all of these prob-
lems, including the sokoban instance containing deadl ocks.

6 EMPIRICAL RESULTS

For empirical evaluation, we implemented the Enforced Hill-
climbing agorithm, using relaxed plans to evaluate states and to
determine helpful actions, in C. We call the resulting planning sys-
tem FF, which is short for FAST-FORWARD planning system. All
running times for FF are measured on a Sparc Ultra 10 running at
350 MHz, with a main memory of 256 M Bytes. Where possible,
i.e., for those planners that are publicly available, the running times
of other planners were measured on the same machine. We indicate
run times taken from the Literature in the text. All planners were
run with the default parameters, unless otherwise stated in the text,
and all benchmark problems are the standard examples taken from
the Literature. Some benchmark problems have been modified in or-
der to show how planners scale to bigger instances. We explain the
modifications made, if any, in the text. Dashes indicate that the cor-
responding planner failed to solve that problem within half an hour.

6.1 Thelogistics Domain

This is a classical domain, involving the transportation of packets
via trucks and airplanes. There are two well known test suites. One
has been used in the 1998 AIPS planning systems competition, the
other one is part of the BLACKBOX distribution. The problems in
the competition suite are very hard. In fact, they are so hard that,
up to date, no planner has been reported to solve them al. FAST-
FORWARD is the first one that does. See Figure 4, showing also the
resultsfor GRT [12] and HSP-r [2], which are—as far as the author
knows—the two best other domain independent /ogistics planners at
the time being.?

problem time steps time steps time steps
rob-01 0.36 35 0.28 30 0.06 27
rob-02 313 36 132 34 0.19 32
prob-03 2545 64 555 60 0.77 54
rob-04 50.13 63 1928 | 69 0.98 58
prob-05 0.62 27 0.39 6 0.08 22
rob-06 293.60 33 1439 80 1.95 73
prob-07 6.20 37 1.76 37 0.38 36
prob-08 - - 16.37 48 2.04 4T
rob-09 371.03 97 50.48 98 2.08 9L
prob-10 287.64 12T 23.13 117 3.20 103
rob-11 458 34 154 36 0.21 30
prob-12 - - 43.06 48 2.0 4T
rob-13 - - 85.58 79 7.73 67
rob-14 - - 60.20 104 6.97 98
prob-15 19.52 120 67.50 106 127 93
rob-16 92.75 69 3158 62 123 55
prob-17 29.35 61 12.19 53 0.63 a4
rob-18 - - 335.05 193 50.76 167
prob-19 - 238.98 174 16.26 15T
prob-20 32412 169 24.20 39|
rob-21 294.23 120 8.93 102
prob-22 - - - - 26.05 282 |
rob-23 100.67 145 16.86 118 3.84 126 |
prob-24 - - 9854 49 4717 20
rob-25 - 106.23 181 _|
rob-26 7115 183 |
prob-27 71.26 14T
rob-28 679.43 265_|
prob-29 589.75 323
rob-30 62.4 131

Figure 4. Results of the three domain independent planners best suited for
logistics problems on the competition suite. Times are in seconds, steps
counts the number of actions in a sequential plan. For HSP-r, the weighting
factor W is set to 5, as was done in the experiments described by Bonet and
Geffner in[2].

2 |t is important to distinct the results shown in Figure 4 for HSP-r from
those reported by Bonet and Geffner [2]. Those results were taken on the
problems from the BLACKBOX distribution, while our results are taken on
the competition test suite.

65

The times for GRT in Figure 4 are from the paper by Refanidis
and Vlahavas [12], where they are measured on a Pentium 300 with
64 M Byte main memory. FF outperforms both HSP-r and GRT
by an order of magnitude. Also, it finds shorter plans than the other
planners.

We also ran FF on the benchmark problems from the BLACKBOX
distribution suite, and it solved all of them in less than half a second.
Compared to the results shown by Bonet and Geffner [2] for these
problems, FF was between 2 and 10 times faster than HSP-r, finding
shorter plansin all cases.

6.2 Mixed classical Problems

FAST-FORWARD shows competitive behavior on all commonly used
benchmark domains. To exemplify this, we show atable of running
times on a variety of different domains in Figure 5, comparing FF
against a collection of state-of-the-art planning systems: IPP [8],
STAN [9], BLACKBOX [7], and HSP [3].

In Figure 5, the planning problems shown are the following. The
tyreworld problem was originaly formulated by Russell, and asks
the planner to replace aflat tire. The problem is modified in a natural
way so as to make the planner replace n flat tires. FF is the only
planner that is capable of replacing more than three tires, scaling up
to much bigger problems.

The hanoi problems make the planner solve the well known Tow-
ersof Hanoi problem, with n discsto be moved. FF also outperforms
the other planners on these problems.

The sokoban problem encodes a small instance of a well known
computer game, where asingle stone must be pushed to itsgoal posi-
tion. Although the problem contains deadlocks, FF has no difficulties
in solving it.

The manhattan domain wasfirst introduced by McDermott [10]. In
these problems, the planner controls arobot which movesonan x n
grid world, and hasto deal with different kinds of keysand locks. The
original problem taken from [10] corresponds to the mh-11 entry in
Tabular 5, where therobot movesonall x 11 grid. The other entries
refer to problems that have been modified to encode 7 x 7, 15 x 15
and 19 x 19 grid worlds, respectively. FF easily handles al of them,
finding dlightly suboptimal plans.

Finaly, the blocksworld problems in Figure 5 are benchmark ex-
amples taken from [6]. FF outperforms the other plannersin terms of
running time as well asin terms of solution length.

7 RELATED WORK

The closest relative to the work described in this paper is, quite obvi-
ously, the HSP system [3]. In short, HSP does Hill-climbing search,
with the heuristic function

h(S) := Z weights(g)

geG

The weight of a fact with respect to a state S is, roughly speaking,
the minimum over the sums of the precondition weights of all actions
that achieve it. The weights are obtained as a side effect of doing
exactly the same fixpoint computation as we do. The main problem
in HSP is that the heuristic needs to be recomputed for each single
search state, which is very time consuming. Inspired by HSP, afew
approaches have been developed that try to cope with this problem,
like HSP-r [2] and the GRT-planner [12].

The authors of HSP themselves handle the problem by sticking to
their heuristic, but changing the search direction, going backwards



1 PP 11 STAN 11 BLACKBOX 1 HSP 11 FF
jomain [ __problem 11 time steps || time | deps || time seps [| time sSeps || fime Steps
[tyreworld fixit-1 0.04 19 0.10 19 0.43 19 0.35 23 0.04 19
[_tyreworld TiXit-2 1129 30 125 30 11432 30 - - 0.09 30
[ tyreworld Tixit-3 - - - 93314 4T - 0.20 41
tyreworld fixit-4 - - - - - - 0.42 52
hanol tower-3 0.03 7 0.03 7 0.23 7 0.31 7 0.01 7
hanol tower-5 0.1T 31 0.27 31 680.6 31 2.04 31 0.09 31
hanor tower-7 193 127 6.10 127 - - 2318 163 052 127
hanol tower-9 3931 511 230.20 511 - - - - 6.45 511
[ Sokoban [ sokobarl [ 115 | 25 ] 51 | 25 [ 280 | 5 [ B8 [ D [ 02 [ 5 |
‘manhattan mh-7 4.82 35 20.04 35 - - 112 35 0.09 38
‘manhattan mh-11 65.1 40 101396 40 1331 40 0.26 43
‘manhattan mh-15 - - - 0.64 59
‘manhattan mh-19 - - - - - - 153 87
Blocksworld bw-Targe-a 0.47 10 057 10 10.30 10 0.78 1T 0.04 7
Blocksworld bw-Targe-b 2.20 14 4.04 14 160.14 14 154 13 0.10 10
Blocksworld bw-Targe-c 8817 25 267.08 26 - - 437 20 056 16
Blocksworld bw-Targe-d 362.19 33 - N 11.36 7 142 20

Figure 5. Running times and quality (in terms of number of actions) of plans for FF and state-of-the-art planners on various classical domains. All planners
are run with the default parameters, except HSP, where loop checking needs to be turned on.

from the goal in HSP-r instead of forward from the initial state in
HSP. This way, they need to compute a weight value for each fact
only once, and simply sum the weights up for a state later during
search.

The authors of [12] invert the direction of the HSP heuristic in-
stead. While HSP computes distances by going towards the goal,
GRT goes from the goal to each fact, and estimates its distance. The
function that then extracts, for each state during forward search, the
state's heuristic estimate, uses the pre-computed distances as well as
some information on which facts will probably be achieved simulta-
neously.

For the FAST-FORWARD planning system, a somewhat paradox-
ical extension of HSP has been made. Instead of avoiding the ma-
jor drawback of the HSP strategy, we even worsen it, at first sight:
the heuristic keeps being fully recomputed for each search state, and
we even put some extra effort on top of it, by extracting a relaxed
solution. However, the overhead for extracting a relaxed solution is
marginal, and the relaxed plans can be used to prune unpromising
branches from the search tree.

To verify where the enormous run time advantages of FF com-
pared to HSP come from, we ran HSP using Enforced Hill-
climbing search with and without helpful actions pruning, aswell as
FF without helpful actions on the problems from our test suite. Due
to space restrictions, we can not show our findings in detail here. It
seems that the major stepsforward are our variation of Hill-climbing
search in contrast to the restart techniques employed in HSP, as
well asthe helpful actions heuristic, which prunes most of the search
space on many problems. Our different heuristic distance estimates
seem to result in shorter plans and slightly, about a factor two, better
running times, when one compares FF to aversion of HSP that uses
Enforced Hill-climbing search and helpful actions pruning. We did
not yet find the time to do these experiments the other way round,
i.e., integrate our heuristic into the HSP search algorithm, as this
would involve modifying the original HSP code, which means alot
of implementation work.

There has been at |east one more approach in the Literature where
goal distances are estimated by ignoring the delete lists of the oper-
ators. In [10], Greedy Regression-Match Graphs are introduced. In a
nutshell, these estimate the goal distance of a state by backchaining
from the goals until facts are reached that are TRUE in the current
state, and then counting the estimated minimal number of steps that
are needed to achieve the goal state.

To the best of our understanding, the action chains that lead to
a state's heuristic estimate in [10] are similar to the relaxed plans
that we extract. However, the backchaining process seemsto be quite

costly. For example, building the Greedy Regression-Match Graph
for the initial state of the manhattan world 11 x 11 grid problem is
reported to take 25 seconds on a Sparc 2 station. For comparison, we
ran FF on a Sparc 4 station. Finding arelaxed plan for theinitial state
takes less than one hundredth of a second, i.e., the time measured is
0.00 CPU seconds.

The helpful actions heuristic shares some similarities with what
is known as relevance from the literature [11]. The main difference
is that relevance in the usual sense refers to what is useful for solv-
ing the whole problem. Being helpful, on the other hand, refers to
something that is useful in the next step.

8 CONCLUSION AND OUTLOOK

In this paper, we presented two heuristics for domain independent
STRIPS planning, one estimating the distance of a state to the goal,
and one collecting a set of promising actions. Both are based on an
extension of the heuristic that is used in the HSP system. We showed
how these heuristics can be used in a variation of Hill-climbing
search, and we have seen that the algorithm is complete on the class
of deadlock-free domains. We collected empirical evidence that the
resulting planning system is among the fastest planners in existence
nowadays, outperforming the other state-of-the-art planners on quite
arange of domains, like the logistics, manhattan and tyreworld prob-
lems.

To the author, the most exciting question is this: Why isthe heuris-
tic information obtained in this simple manner so good? It is not re-
aly difficult to construct abstract examples where the approach pro-
duces arbitrarily bad plans, or uses arbitrarily much time, so why
does it amost never go wrong on the benchmark problems? Why
is the relaxed solution always so close to area solution, except for
the Tower of Hanoi problems? Is it possible to define a notion of
“simple” planning domains, where relaxed solutions have desirable
properties?

First steps into that direction seem to indicate that, in fact, there
might be some underlying theory in that sense. In particular, it can
be proven that the Enforced Hill-climbing agorithm finds optimal
solutions when the heuristic used is goal-directed in the following
sense:

h(S) < h(S') = min(S) < min(S")
Here, min(S) denotes the length of the shortest possible path from
state S to agoal state, i.e., Enforced Hill-climbing is optimal when
heuristically better evaluated states are really closer to the goal.

It can also be proven that the length of an optimal relaxed solution
is, in fact, a goal-directed heuristic in the above sense on the prob-

66



lems from the gripper domain that was used in the 1998 planning
systems competition. We have not yet, however, been able to iden-
tify some general structural property that implies goal-directedness
of optimal relaxed solutions.

Apart from these theoretical investigations, we want to extend the
algorithmsto handlericher planning languagesthan STRIPS, in par-
ticular ADL and resource constrained problems.
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Design and Configuration of Furniture
Using Internet-based Virtual Reality Techniques

Bernhard Jung' and M athias Nousch?

Abstract. BEAVER is a program for a specialized computer
aided design (CAD) task: The design of custom-built closets for
slanted walls or ceilings. BEAVER is based on standard web
technologies only, such as the Virtual Reality Modeling Language
(VRML) and Java, which enable BEAVER to be run in a suitable
internet browser. A key idea of BEAVER is that the user designs
the closet by direct interaction with a visualized 3D model, e.g.
when adding shelves or changing the size of the raw construction.
In this way, an abstract model of the desired closet can be created
and modified very easily and under permanent visual feedback.
The knowledge-based system assists the user during this task and
ensures that relevant design rules are obeyed. Upon completion of
the closet’s design, BEAVER automatically configures the abstract
model with al fittings required for the assembly of the real closet.
Thus, the abstract model is enhanced to a complete specification.
This specification is used to generate a shopping list of all needed
parts, such as boards and fittings. Also, a customized multimedia
assembly manua can be generated on the fly, which guides the
user when building the real closet. BEAVER not only demonstrates
state-of-the-art capabilities of internet-based virtual redlity tools
but, also, introduces an easy-to-use, widely available method for
customized furniture design: CAD for the rest of us, it's on the
web!

1INTRODUCTION

The immense growth of the World Wide Web (WWW) and the
rapid development of related technologies for the presentation of
multimedia content enables programmers to create even the most
complex applications as integral parts of websites which makes
these services reachable for a huge audience of internet users. The
most important characteristic features of such applications are their
time-, location- and platform-independent availability, (typically)
free of charge usage, no cost for production and installation, and
little effort for updating the underlying database. These advantages
alow service providers to reach customers for whom the use of
CD-ROM-based tools is either too large an expenditure or too
time-consuming.

BEAVER's specidized application area of customized
furniture design was motivated by a cooperation with a German
company that produces furniture fittings (connecting fittings,

! Faculty of Technology, AG WBS, University of Bielefeld, PO Box
100131, 33501 Bidefeld, Germany, jung@techfak.uni-bielefeld.de

2 mathias@nousch.de
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Figure 1. Virtual assembly with BEAVER. Shelves can be added to,
removed from, or shifted inside the 3D closet model. The program
automatically calculates the required size and shape of the shelves,
while they are moved to different positions.

furniture hinges etc.) for the do-it-yourself market. A large amount
of their turnover is made in cases where available mass production
furniture is suited only insufficiently to the needs of rooms with
specia characteristics. For example, the conversion of attics with
slanted walls into living space calls for individual closets with
exactly the roof’ sangle.

We chose this very specific, yet complex field of furniture
design as testbed for the development of a VRML-based virtual
construction tool for several reasons: First, the problem areaiis very
narrow and well separable from others. Therefore, a smal
knowledge base, assisting the user in solving this task could easily
be built. And second, the target group of the do-it-yourselfers
(DlYer) is highly inexperienced both in designing and assembling
of closets as well as in the use of computer aided design tools.
Thus, a very intuitive user interface with a short learning phase is
required. This makes the application area an excellent test case for
verifying the proposed advantages of a web-based virtual design
tool as compared to conventional CAD tools.

2 CONVENTIONAL DESIGN AIDS

The correct and complete design of furniture, when tried by DIY ers
is mostly an exception. The fitting producing company with which
we cooperated saw the need, not only to sell the appropriate fittings
but also to communicate their proper usage before the sale
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Figure 2. Virtua prototyping allows testing of the model’s functions
before its real assembly. With BEAVER, for example, the opening
angle of the closet can be experienced.

(customers that buy the wrong products are unhappy customers,
and potentially no customers at all the next time!).

The most common design aids in this field are printed
brochures including a drilling sketch and an assembly instruction
for each fitting. The information provided in these brochures may
be enough for the assembly of closets from a given furniture
construction kit. They are, however, inadequate for the design of
completely new closets because they offer no guidance concerning
the correct construction of closets as awhole.

The professional furniture manufacturing industry as well as
carpenters and interior designers use speciaized CAD programs.
Such CAD tools are very powerful but aso too expensive and too
difficult to operate for being used by DIY ers.

It was our goal to create a design tool, that would overcome
these limitations.

3 CLOSET DESIGN BY VIRTUAL ASSEMBLY

BEAVER pursues the following strategy to solve the given design
problem: The user designs an abstract model of the closet through
the interactive assembly of virtual components. This is done
through the direct manipulation of the visualized 3D model of the
closet (seefigure 1). The knowledge-based program assists the user
during this task by ensuring that all construction rules are met, thus
preventing the design of illegal, unbuildable closets. The abstract
model is a correct, yet incomplete specification of the desired
closet. At the same time, BEAVER trandates this abstract
specification into a precise one by choosing the appropriate type,
number and position of al required fittings and hinges. Once the
closet is fully designed, this precise specification is used to
generate a shopping list of required parts as well as an
individualized assembly manua which can both be used to buy and
build the real closet.

BEAVER’s multimedia user interface is split into a three-
dimensiona workroom and a two-dimensional menu. Both, the
virtual model inside the three-dimensional workroom and the
tabular construction parameters inside the program’'s menu are
visible at any stage of construction. The parallel presentation of the
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current scene within two different media types helps the
inexperienced user in solving emerging ambiguities (cf. [6]).

The multimediality of the display is reflected in the
multimodality of interaction: On the one side, the user can directly
manipulate the virtual model of a component through interaction
with its graphical representation. On the other side, the user can
manipulate the component indirectly by altering the tabular form of
its characteristic values. Such dterations are shown immediately
inside the 3D-workroom and vice versa. The combination of the
two modalities and their dependence upon each other permits a
very easy, fast, and communicative introduction to the design
process.

In BEAVER, different stages of the closet design process, such
as selecting the closet type, setting its size parameters, or adding or
modifying shelves, are presented in different frames. This step-by-
step approach was chosen because not too much should be
expected of an inexperienced user at onetime.

One of the most important advantages of virtua prototyping is
the possibility to visually experience and verify certain functions of
the model before its real counterpart is built. In BEAVER, for
example, the hinges are not only static fittings, but consist of two
parts, a cross mounting plate and a contained hinge, that can be
moved against each other with respect to the hinges' opening angle
as shown in figure 2. This enables the user to experience the
opening angle of the selected door type and to verify whether this
isredly the desired angle. In BEAVER, the door can be opened by
clicking a button or by dragging the virtual handle of the door.

3.1 Parametric components instead of a static
construction kit

The boards used for building a closet are hardly subject to any
rules concerning their size or shape. Therefore, in theory,
BEAVER has to manage a modular assembly kit of boards that is
of infinite size. To prevent this, only specific, but parametric kinds
of boards were modeled: Boards are six-sided blocks that can
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Figure 3. The closet’s size can be altered either by typing the absolute
values, or by directly dragging the closet’s walls. The visual and
tabular presentations are updated simultaneously. Any shelves or doors
that have aready been added to the closet are reshaped and
repositioned to fit the new closet geometry.
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Figure 4. Virtual assembly of closet components is supported by a
knowledge-based snapping mechanism. A horizontal pair of junctions
forms a dot in which a shelf can be placed, if the slot is not already
blocked. If the user moves a shelve to a new position, BEAVER
automatically snapsit into the nearest free slot.

contain a maximum of two miters at opposing sides. The back or
side boards of the closet may be seven-sided, which means they are
danted blocks. Apart from the miters or the dant, every edge is
right-angled. The size of the boards however is dynamic and can be
dtered during the design process. Such alterations are triggered by
the user; however, the required calculations are performed by
BEAVER.

The user is only alowed to change the parameters of the entire
closet, such as height or depth (see figure 3). It is possible to
change the size parameters of the whole closet even if other
components have already been added to the model, such as shelves
or a door. BEAVER then recomputes a new, basic closet model
and tries to place al components at their former positions, if
possible. The program is aso able to resolve conflicts that might
occur during this phase (see below, Subsection 3.2).

3.2 Assembling virtual components at abstract
junctions

One of the main problems when implementing virtual assembly is
an appropriate model of the objects connection possibilities (see
[3], [4]). This is somewhat easier if the real counterparts of the
virtual components have junctions that can be defined precisely
inside the model. Boards, however, have no concrete junctions at
al. So we had to assume a fixed number of abstract junctions with
aclear location on top of a board's surface. We decided to use the
same grid of junctions that is commonly used in the furniture
industry to prepare a board with drilling holes for its further use.
However, there was still another problem: if certain fittings are
attached to these junctions, the shape of the inlaying shelf should,
in reality, be modified according to the specific shape of thefitting.
Because such a manipulation of the shelf is permanent, no other
fitting may be attached to the junction at that location later on.
While this is very important for the real assembly task, it would be
agreat slowing-down, if this behavior were reenacted in our virtual
model. At this point, we decided to differentiate between the
abstract closet model that the user creates and the detailed closet
description that is derived by the program: When the user sizes and
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positions components, BEAVER only computes Boolean values of
the junctions, i.e., whether they are blocked or still free. At this
point of the design process, however, BEAVER is not yet
concerned with the shelves detailed shape enabling attachment of
fittings.

The placement of shelves in the closet during direct
manipulation of the 3D model is supported by a knowledge-based
snapping mechanism (see [2]). To place the shelf in the closet, the
user needs to bring the shelf and the side wall in overlap at their
abstract junctions. This overlap does not need to be a complete and
precise one, but is supported automatically when the distance
between two suitable junctions narrows down below a certain
threshold. The snapping mechanism serves as substitute for the
lack of precision when positioning the components in the 3D
model.

The realization of the snapping mechanism is based on the
abstract junctions of the closet’s side walls. For the assembly of
shelves, two horizontal pairs of junctions at the interior surface of
the closet’s side walls are needed. We call this a slot. A hinge of
the closet’s door can block one junction of a slot, which prevents
the whole dot from being occupied by a shelf, as can be seen in
figure 4. During the design of the closet, the user can aso shift the
shelves in vertica direction. The program keeps track of already
used or otherwise blocked slots. When the user drags a shelf with
the mouse and drops it, the program interprets this as the command
to add this shelf to the nearest empty slot. It then automatically
selects the appropriate type and number of fittings for the given
shelf-closet combination. If a shelf is dragged to a position where
the closet is aready danting, it is obvious, that a norma shelf
cannot be placed there. BEAVER recalculates the required shape
and size of ashelf, whenever it is repositioned in the closet.

If the size of the closet is modified during the design process,
the size and position of al its components must be recalcul ated.
BEAVER uses severa heuristics to solve conflicts that can emerge
in such situations. For example, if the closet’s size is reduced too
much, some of its components must possibly be removed. Doors
and their hinges are placed with the highest priority. If there is a
conflict between a hinge and a shelf, where the latter should be
placed in the same dot as the former, the shelf is removed from the
model. If there are too many shelves because the closet has been
shrunken, only the maximum number of alowed shelves for a
certain closet height are retained. If there are no such conflicts,
BEAVER tries to position every shelf into the same slot as it was
before the change to the closet height was made.

3.3 Configuration, shopping list, and customized
assembly instructions

Once the abstract model of the closet consisting of al boards,
shelves, and doors has been designed the next step is to configure
this abstract model with all fittings and hinges necessary for the
assembly of the real closet. As opposed to the interactive design of
the abstract closet model, the configuration process is performed
automatically by BEAVER. BEAVER's configuration rules ensure
that only fittings and hinges suited for this particular piece of
furniture are selected. Furthermore — and somewhat unsurprisingly
given the commercial interest of our industrial partner — BEAVER
only considers products of one manufacturer and, at the request of
our industrial partner, products from one product line only which
simplifies the configuration process even more.
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Figure 5. Fittings and hinges can be examined during the design phase
if the model display type is set to transparency. In BEAVER, the user
needs not care about which type of fitting he should use or where to
place the fittings. BEAVER finds the optimal configuration of fittings
for the specific closet designed.

BEAVER’s configuration process not only calculates the
appropriate kinds and number of fittings and hinges but also their
spatial positioning within the closet’s 3D model. Algorithmicaly,
the configuration process is very simple. It exploits the fact that -
after decade long efforts by the furniture industry of simplification
and standardization - there are well-defined rules for equipping
furniture with fittings and hinges (these rules are however not
usually known by the end user and that’s one of the points of atool
like BEAVER): Basicdly, the type and number of fittings and
hinges is very similar for al closets. Closets with doors will need
hinges for their attachment, where the number of hinges (two or
three) for each door depends on its size. Similarly, closets with a
base will need extra fittings and each shelf is attached with four
fittings. Variations in the selection of fittings and hinges stem from
differences in thickness of the boards and visibility considerations.

Configuration of the closet with fittings and hinges occurs in
two phases. The first phase computes number, spatial layout, and
product family of the connecting elements but not their concrete
model numbers. This first phase is actualy interleaved with the
design process as e.g. the hinges necessary for the attachment of
the doors may conflict with the positioning of the shelves. The
positions of fittings and hinges within the closet can be inspected at
any stage of the design in a special rendering mode where boards
are visualized transparently (seefigure 5).

Once the design task is complete, a shopping list of required
parts for the rea closet is generated. To achieve this, the
configuration process enters its second phase. Given the number
and product families of connecting elements computed before,
exact model types are proposed that eg. aso account for the
thickness of the boards used in the assembly. The shopping list
contains the types, serial numbers, and number of packages of the
fittings and hinges to be purchased. Each fitting is also described
with a photograph to make it easier for the customer to find the
specific package in the hardware store. Furthermore, each board is
presented with a drawing of its shape - annotated with numeric size
information - to remind the customer of the different shapes the
board can have and to prevent wrong cuts.

Besides the shopping list, BEAVER &aso generates assembly
instructions customized for the particular piece of furniture. In the
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generated assembly instructions, the installation process of the
fittings is described with loca drilling sketches (see figure 6).
Their global position, which the user could experience during the
design process (see figure 5), is now described in textual form that
refers to the size of the abstract drilling grid. Here the generated
assembly manual supersedes conventional print-media instructions,
as it not only provides information about how afitting is fixed, but
also where with respect to the complete assembly.

The assembly instructions describe difficult installations of
fittings in step-by-step drawings. Also, alternative parameters of
fittings, especially of hinges, that can be modified even after their
installation can be mentioned. The combination of text and
graphics helps the DIY er to check his imaginations against the real
assembly task and so to prevent errors.

The shopping list and the assembly instructions are presented
as “ordinary” web pages that can be bookmarked and revisited a
long time after the closet’s design. They can, of course, also be
printed out on paper. After all, paper still is the more convenient
medium for the DI'Y er when going to the hardware store or when
building the real closet in his attic or workroom.

4 IMPLEMENTATION

We decided to rely on three different programming languages for
implementing BEAV ER on the World Wide Web.

4.1 Knowledge base and design logic: Java

Java is an excellent solution for the development of complex
program structures and attractive graphical user interfaces. Java
can be interpreted by any modern web browser and is fast enough
for most applications. Further, the acceptance of Java applets is
very high among internet users. Thus, we chose Java for
controlling the design task and for realizing the two-dimensional
user interface. The Java applet's classes are structured in a
hierarchical order and mirror our top-down view of the design task:

The applet(-class) controls BEAVER’s main menu and overall
control flow of the program. It also establishes a communication
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Figure 6. The fittings detailed shapes are only used in the later stage
of generating customized assembly instructions. For the preceding
stage of virtual assembly, only basic data of fittings such as position,
orientation and size are maintained.



link with the 3D-renderer and provides this link to the other
classes.

The class closet is the largest class of our applet. It contains the
structure of al virtual components, dependencies, and al design
and configuration rules modeled in the program. The design and
configuration rules are implemented in a sraightforward
procedural fashion. We favored the procedura approach over a
declarative one because the underlying rules for design and
configuration are very stable, for efficiency reasons, and to keep
the size of the applet (and thus its download time) small. There is
only one instantiation of this class, but an enhancement of the
applet to allow more than one closet to be built is easily possible.
Closet isin complete control over the assembly of one closet.

Board exclusively manages the presentation of a closet’s
components (walls, shelves, door) inside the 3D-workroom. It
calculates the numerical shape descriptions of each component to
build a virtual three-dimensiona object. This class not only
controls the appearance of the virtua objects concerning
transparency, color, texture, etc. but aso handles the user's
manipulation of the virtual objects. For example if a component is
dragged and released inside the 3D-world this movement is
trandated into an assembly command and sent to the closet class,
which in turn decides what further actionsto perform.

The class fitting is somewhat similar to board. It manages the
3D representation of the fitting. This class however does not need
any methods for the surveillance of user actions performed on the
virtual objects because there are none allowed for fittings. The only
dynamic information about fittings maintained by this class are
type, function, size, position and orientation. The detailed shape of
the physical fitting is also modeled. The detailed shape information
serves however only visua purposes and is of no importance for
the virtual assembly. As mentioned above, this information is only
used in the generation of the assembly instructions.

4.2 Visualization and virtual assembly: VRML

The Virtua Reality Modeling Language (VRML) alows for easy
creation of interactive, three-dimensional environments on the
WWW. In BEAVER, VRML is used essentially as a 3D renderer
with the further possibility of creating , sensible” virtua objects,
whose manipulation inside the 3D workroom can be controlled by
the applet. The External Authoring Interface (EAI) [5] is used to
establish the communication link between the VRML browser and
the applet that contains the complete design logic.

Our virtual world consists of three different sections: First,
there is the main, static VRML file that defines the user's
viewpoint and a viewmodel. The viewmodel alows the user to
rotate and zoom the view of the designed closet. He cannot
navigate freely in the world, because we wanted to prevent
inexperienced users from losing sight of the object. The main
VRML file aso contains the lights and background for the scene.

Second, a navigation console (see figure 7) was developed
exclusively for this application. It isredized as an external VRML-
File, including a script which generates trandation and rotation
commands for the main world.

Third, there are the virtual components and fittings of the
closet. These are created dynamically by the Java applet via the
EAI. For these objects no scripts or routes exist inside the VRML
world. All manipulations, even the smallest dragging movements,
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result from commands that are generated by the applet after it
receives input from the VRML sensors. We chose this way of
interaction modeling to exclude all possibilities of differences
between the internal model of the closet and its external, visual
presentation.

4.3 Communication and dynamic page generation:
JavaScript

With JavaScript, it is farly easy to generate dynamic and
interactive web pages on the client’s side. It is very well suited for
the creation of rich multimedia documents. In BEAVER, we use
JavaScript to generate the shopping list of required parts and the
assembly instructions.

This is done in the following way. The applet breaks down the
entire interna representation of the closet into a list of variables
and their specific values. Then a new URL on the server is called
and the list of parametersis appended to the URL. The HTML file,
containing the JavaScript functions reads these parameters and
generates the shopping list and assembly instructions. The results
are presented as “ordinary” WebPages with text and images, which
can be printed or saved to disk. A further advantage of placing the
whole parameter list into the URL of the JavaScript page is the
following: By just bookmarking this link, the user can save his
current design and call the assembly instruction even a long time
after the closet was designed. Thus, it is possible to temporarily
save the design and continue working on it later.

An important aspect of using JavaScript, as opposed to e.g.
signed applets or Perl scripts, is that it avoids the need for writing
permission on the client’'s side or data storage on the server. As
future extension, JavaScript’'ing may aso be used as interface for
exporting 3D models of designed closetsinto CAD programs.

4.4 Notes on development

A fully functional prototype of BEAVER was developed in about
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Figure 7. The navigation console is a part of the initial VRML world.
In addition to the tabular presentation of the closet’s size, a pictograph
of a human figure can optionally be displayed in the virtual workroom,
lending the user avisual impression of the closet’s size.



three months time. This rather small development effort can be
attributed to the usage of high-level programming environments
such as Java and VRML. The development effort for the prototype
aso included design reviews by our industrial partners.

Besides providing the mere functionality, a next step was the
decision about which products were to be included in BEAVER's
database of fittings and hinges. Obviously, this decision was
mainly at the side of our industria partner. Accordingly, the
development effort for this second phase was more on the
coordination side than on the implementation itself. Interestingly,
our industry partner preferred the inclusion of only a rather small
number of products into BEAVER’s configuration process.

5 CONCLUSIONS

We have described BEAVER, a web-based program for the
interactive design of furniture. BEAVER's design methodology
draws on multiple knowledge-based technologies to assist the Do-
It-Yoursdfer in the design process. A snapping mechanism
supports the direct manipulation of the visualized 3D model. A
configuration process completes the abstract closet model with all
required fittings. BEAVER's knowledge of design rules further
prevents the construction of unbuildable closets. Besides
supporting the mere design of individual closets, BEAVER aso
generates a shopping list of the required parts and customized
multimedia assembly instructions. BEAVER is unique in the
combination of these features.

The web-capabilities and free of cost usage of our program
were highly welcomed by our industry partner because of
BEAVER’s potentia to enhance the sales of their — but not their
competitors - products. Seen from this point, BEAVER is not only
an easy-to-use and powerful aid for DIYers for the design and
assembly of furniture, but also a somewhat visionary prototype of a
new kind of software system for product presentation, promotion,
and distribution, possible only on the internet.

BEAVER is speciaized on the design of individual closets of
non-standard shapes. Its design methodology could also be applied
to other design tasks. Considering the interior design industry,
other types of furniture could be assembled and brought together in
web-based 3D presentation programs such as [1]. BEAVER
demonstrates that it is feasible to create specidized CAD tools
based on web-based technologies like VRML and Java.
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On the Instantiation of ADL Operators Involving
Arbitrary First-Order Formulas

Jana Koehler! and Jorg Hoffmann?

Abstract. Thegeneration of the set of all ground actionsfor agiven
set of ADL operators, which are alowed to have conditional effects
and preconditions that can be represented using arbitrary first-order
formulas is a complex process which heavily influences the perfor-
mance of any planner or pre-planning analysis method.

The paper describes a sophisticated instantiation procedure that
determines so-called inertia in a given problem representation and
uses them to perform simplifications of formulas during the instanti-
ation process. Asaresult, many inapplicable actions are detected and
ruled out from the domain representation yielding a much smaller
search space for the planner.

1 Introduction

A planning system that handles a more expressive language than
STRIPS requires sophisticated algorithmic solutions to quite a num-
ber of problems, which have nothing to do with the actual search
process for a plan. One of these problems concerns the computation
of the set of actionsasall ground instances of agiven set of operators.

The aim of the instantiation processisto generate all those ground
instances of the planning operators that are applicable in some legal
world state. This means, that the precondition of the operator should
be satisfiable and its effects should be consistent. On one hand, a
naive instantiation procedure that simply expands logical quantifiers
and enumerates all possible instantiations of operator parameterswill
quickly render even simple planning problems unsolvable. On the
other hand, arather sophisticated instantiation procedure can rule out
many actions, which will never be applicable in any reachable world
state or that would—if applied—yield an inconsistent state. It should
also return the most simple syntactic representation of preconditions
and effects.

Many planning systems do generate the complete set of actions
before planning actually starts. They use this set either for the encod-
ing of the domain in other representation formalisms such as SAT
[4] or for the derivation of useful information that can help during
planning, e.g., distance heuristics[2, 3], symmetries [1], relevant ac-
tions[11], and goal orderings [5]. Today, thiskind of precomputation
appears to be feasible for domains containing up to 100,000 ground
actions. But even if only asubset of the available operatorsisinstan-
tiated, e.g., those that are applicable in a given state during aforward
search, there is the need for a reasonably well performing instantia-
tion agorithm.

When using the PDDL language [10] to represent ADL operators
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[12], quite complex descriptions of preconditions and effects are pos-
sible:

arbitrary function-symbol free first-order logic formulas represent
preconditions,

conditional effects have the form (when antecedent consequent)
where the antecedent can be an arbitrary precondition and the con-
sequent isaconjunction of literals, i.e., an atom either occurs pos-
itively or negatively init. A conditional effect can also be univer-
saly quantified.

Given such an operator, the instantiation has to replace all occur-
ring variables, which are either quantified or occur as parameters of
the operator, by those type-consistent constants, which have been de-
clared in the planning problem. In order to replace al variables by
constants, the instantiation process proceeds in three phases:

1. Theexpansion of universal and existential quantifiers occurring in
the first-order formulas representing preconditions or antecedents
of conditional effects eliminates most of the quantified variables,
The expansion of universally quantified conditional effects elimi-
nates the remaining quantified variables,

theinstantiation of operator parameters eliminates the variable pa-

rameters.’
In each phase, the following atomic instantiation task occurs:

Given a variable 7z, a constant ¢ and an atomic formula p,
determine the resulting instantiation p[?z /c].

This is a trivia problem per se. But after having determined
p[?z/c] one can sometimes simplify this atomic formula to FALSE
or TRUE, which in turn often leads to a further simplification of the
operator representation. The paper addresses exactly this problem.
We describe what kind of atomic simplifications are performed in
IPP [7] under which conditions, how this process can be efficiently
implemented and how it affects the search space of the planning sys-
tem. The techniques have successfully been used in the 1998 AIPS
planning competition where IPP demonstrated a convincing perfor-
mance across avariety of STRIPS and ADL domains.

The paper is organized as follows: First, we give an overview of
the three phases of the instantiation process. Then we define the no-
tion of inertia predicates and describe how the knowledge about in-

3 In IPP the assumption is made that different operator parameters are in-
stantiated with different constants, i.e., the planner never generates actions
like move(a,a) because we consider this as abad domain representation that
should be revised. In fact, in operators with identical constant parameters,
all but one of the constants are superfluous and can be skipped from the
representation without loss of information.



ertiais used to perform atomic simplifications. We prove their sound-
ness and describe how the underlying tests can be efficiently imple-
mented. In the second part of the paper we define how atomic sim-
plifications can be propagated over the operator description to further
simplify the operator representation. We show how unary inertiare-
lations can be encoded as types to speed up the instantiation process.
Finally, theimpact of theinstantiation process on the search space of
IPP is demonstrated.

2 Overview over the Instantiation Process

After having parsed the domain and problem file into some appro-
priate data structure, abasic preprocessing step renames al variables
inthelogical formulas and assigns unique names to them. For exam-
ple, theformulay (?z) AV 7z ¢(?z) isequivalently transformed into
»(?x1) AV 72 o(?x2). Then code tables are generated, which map
strings to unique numbers, i.e., we obtain one number for each pred-
icate name, variable name, and constant name. Internally, all subse-
quently described operations work over trees of numbers represent-
ing the formulas.

Figure 1 shows the precondition of the remove operator from the
assembly domain [9] with the quantifiers in frames and the under-
lined requires predicate, which will be used throughout this paper to
illustrate the instantiation process. This predicate has two arguments,
the first one 2whole being an operator parameter of type assembly
and the second one ?res being a universally quantified variable of
type resource.

:action remove

parameters (?part whole - assembly)
:vars (?res - resource)

:precondition

(and ( (?res - resource)

(imply (requires 2whole ?res)
(committed ?res whole€)))
(incorporated ?part 2whole)
(or (and (transient-part ?part whole)

(?prev - assembly)
(imply (remove-order 2prev ?part whole)
(incorporated ?prev 2whole))))
(and (part-of ?part 2whole)

(not (| exists | (?prev - assembly)
(and (assemble-order ?prev ?part whole)
(incorporated ?prev 2whole)))))))

Figure 1. Precondition of the remove operator from the assembly domain.

The schematic tree-like representation of thisfirst-order formulais
shown in Figure 2. Theleavesof the tree contain the atomic formulas.
IPP’s instantiation process traverses the tree top-down and expands
quantifiers one after the other, i.e., it reaches the first quantifier forall
(?res - resource) and extracts the variable ?res together with its type
resource. From the problem file, IPP knows all constants of thistype.
These are now used to instantiate ?res.

The process considers all constants one after the other. For each
constant, a copy of the subtree representing the quantified formula
is generated. In the leaves of this tree, al occurrences of ?res are
replaced by the selected constant. Aswe will see below, this can lead
to so-called atomic simplifications, which replace an atomic formula
by either TRUE or FALSE. In turn, the whole tree can sometimes be
simplified to TRUE or FALSE, which yields adramatic reduction in
the size of the formula.
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AND

(incorporated ?part 2whole) OR

/\
AND
/\

/\ (transient-part ?part 2whole) forall (?prev - assembly)
NOT (committed ?res 2whole) |
\ OR
(requires 2whole ?res) -
N‘OT (incorporated ?prev ?whole)

(remove-order ?prev ?part 2whole)

forall (?res - resource)

OR

Figure 2. Treerepresentation of ADL formulas. Note that formulas of the
form ¢ — 9 have been replaced with the equivalent —¢ V v aready during
the parsing process.

In the case of a universal quantifier, the resulting trees are joined
by an AND. In the case of an existential quantifier, thetreesarejoined
by an OR. Figure 3 illustrates the result of the process.

forall (?res- resource) AND

a b ------- k
exists (?res - resource) OR

a b\ .. k

Figure 3. Copies of trees generated during the expansion of quantifiers.
Obviously, if one of the subtrees resulting from the expansion of a universal
(existential) quantifier can be simplified to FALSE (TRUE), then the whole

formula can be simplified to FALSE (TRUE).

The expansion of quantified conditional effects proceedsin asim-
ilar way. Figure 4 shows the tree representation of the move opera-
tor from the briefcase domain, whose conditional effect contains the
quantifier prefix forall (?x - object). The copied trees will now also
contain when nodes, i.e., numerous partially instantiated copies of
the conditional effect are generated.

The process for instantiating the parameters of an operator fitsinto
the same scheme. In each step, it takes a variable parameter together
with the set of type-consistent constants. For each of these constants,
a copy of the tree representing the operator is generated, and each
occurrence of the parameter in thistreeis replaced with the constant.
Then, the operator tree is simplified. If, for example, it's precondi-
tion simplifies to FALSE, the whole partially instantiated operator
can be skipped and removed from the domain. After al parameters
have been instantiated, each tree represents aground instance (i.e., an
action) of the operator.

3 Identification of Inertia and their Use during the

Instantiation

The tree-copying process takes a variable 7z and a constant ¢ asin-
put and traverses the subformula represented in the tree. Whenever it
reaches an atomic formula p, it gets replaced with p[?z /c]. In many
situations, it is worthwhile to invest some more effort at this point



move
effect
parameters | — (briefcase-at ?to)
AND
(?from ?to - location) — NOT— (briefcase-at from)
precondition — | forall (?x - object)
(briefcase-at from) E WHEN .
. .
2 (in2x) AND :
1 (at ?x ?from) NO‘T '
' (at % 2t0) *

Figure 4. Tree-Representation of an operator with a quantified conditional
effect. Expanding the quantifier forall (? - object) resultsin copies of the
tree starting in the when node.

and have acloser look at the result of the instantiation. Under certain
conditions, namely if p represents an inertia relation, one can deter-
mine that p[?z/c] must either aways be TRUE or FALSE. This can
even be the case if p[?z/c] is not yet fully instantiated. Let us con-
sider an example from the assembly domain. The object declaration
introduces alist of objects followed by their types:

:objects doodad valve frob sprocket socket plug - assembly
charger voltmeter battery - resource

The specification of the initial state contains the following instances
of the requires relation:

;init (requires frob charger) (requires sprocket charger)
(requires socket voltmeter) (requires doodad voltmeter)
(requires plug voltmeter)

Given the number of declared constants for the two types, the re-
quires relation can be instantiated with 6 x 3 = 18 different type-
consistent tuples, where 5 of them occur in the initial state.

The expansion of thefirst universal quantifier that is shown framed
in Figure 1 generates three copies of the formula tree, each contain-
ing either the partially instantiated atom (requires ?whole voltmeter),
(requires ?whole charger), or (requires ?whole battery). Two obser-
vations can be made:

e |f (requires ?2whole ?res) never occurs as a positive effect of any
operator then the only instances of this predicate, which can hold
in any state, are those that are specified in the initial state. This,
for example, impliesthat (requires ?whole battery) can never hold
and istherefore equivalent to FALSE.

e |f (requires ?whole ?res) never occurs as a negative effect of any
operator then the only instances that can be FALSE in any state
are those that are not contained in theinitial state. Now, if theini-
tial state contained all possible ground instances of, say, (requires
2whole voltmeter), then this partialy instantiated predicate could
be replaced by TRUE. All of its instances would be initially true
and thus persist in al reachable states.

In the following, we will formalize these ideas and give a precise
notion of inertia.
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3.1

IPP proceeds over the domain and problem description and collects
all used relation names. For each relation it checks if it satisfies one
of the following definitions:

Inertia Relations

Definition 1 Arelation isa positive inertiaiff it does not occur pos-
itively in an unconditional effect or the consequent of a conditional
effect of an operator.

Definition 2 Arelation isa negative inertiaiff it does not occur neg-
atively in an unconditional effect or the consequent of a conditional
effect of an operator.

Relations, which are positive as well as negative inertia, are sim-
ply called inertia. Relations, which are neither positive nor negative
inertia, are called fluents. The detection of inertiaand fluents is easy
becausein ADL, effects are restricted to conjunctions of literals. Fur-
thermore, thisinformation can be obtained with a single pass over the
domain description, which takes aimost no time at all. In the assem-
bly domain, the status of al relations can be inferred as shown in
Figure5.

predicate name | pos. effect | neg. effect status
available yes yes fluent
requires no no inertia
part-of no no inertia
transient-part no no inertia
assemble-order no no inertia
remove-order no no inertia
complete yes no neg. inertia
committed yes yes fluent
incorporated yes yes fluent
Figure 5. Inertia Relations in the Assembly Domain.

3.2 Atomic Simplifications

In order to decide if an inertia can be replaced by TRUE or FALSE
one needs to determine and count all type-consistent ground in-
stances of an inertia predicate p that match a partially instantiated
occurrence of p.

Definition 3 Let 7 be some type name.

dom(t) ={ec1,...,cm}

denotes the domain of 7, i.e., the set of constants having type 7.

In PDDL, each constant is either explicitly declared as being of a
particular type or it has the default type object. The same applies to
all operator parameters or quantified variables. Each predicate must
be explicitly declared together with its arguments, for which type
names can be given or the default type is assumed.

Definition 4 Let p be a predicate of arity n. Let @ = (a1, ..., an)
be the argument vector of some partially instantiated occurrence of
p where each a; iseither a constant or variable. With

V(a)={ie{l,...,n}|a;isavariable}

we denote the positionsin @ that are occupied by variables.



Definition 5 Let p bea predicate and let d@ be the argument vector of
some partially instantiated occurrence of p. Let ; be the type name
of position  in predicate p. Then

MAX(p@) = [ Idom(r)|

ieV(a)

denotes the number of all possible type-consistent ground instances
of p that unify with the argument vector a. In contrast,

N(p @) = {(p ) € Z | (p &) unifieswith (p )}

denotes the number of unifying ground instances of p that are con-
tained in theinitial state Z. Obviously, N(p @) < MAX(p @) holds.

It is worthwhile noticing here that IPP will remove al variables or
parameters that have an empty type. Therefore, we have |dom(7)| #
0 for each position ¢ of any partialy instantiated occurrence of the
predicate p. Thus, for any (p @) we have MAX(p @) # 0. Asan
example, let us consider (p @) =(requires ?whole voltmeter), for
which one obtains

V(a) = {1} /* only one variable argument */
T1 = assembly
dom(assembly) = {doodad, valve, frob,

sprocket, socket, plug}

MAX (requires ?whole voltmeter) = 6

[* 6 objects can instantiate whole*/

N (requires ?whole voltmeter) = 3

/* 3instances in the initial state contain voltmeter */

A partially instantiated atomic formula can be simplified to TRUE
or FALSE if it satisfies one of the conditions defined below.

Definition 6 Let (p @) be some partially instantiated atomic for-
mula constructed during the instantiation process.

If pisapostiveinertiaand N(p @) = 0
then (p @) is simplified to FALSE.

If pisanegativeinertiaand N(p @) = MAX(p @)
then (p @) is simplified to TRUE.

In all other cases (p @) cannot (yet) be simplified and remainsin the
formulatree asitis.

From the treatment of empty types, we know that MAX(p @) # 0
holds for (p @). Therefore, obviously a most one of the above tests
can succeed. For example, (requires ?whole battery) is a positive in-
ertia. It can be smplified to FALSE because no requires instance
from the initial state matches the argument vector (2whole, battery),
i.e., N(reguires ?whole battery)= 0 and the first test succeeds.

That an atomic formula can sometimes be simplified to TRUE is
best seen in the case when it is fully instantiated. Take, for exam-
ple, (requires plug voltmeter). This fact occurs in the initial state, so
N(requires plug voltmeter)= 1 # 0 and the first test fails. How-
ever, MAX (requires plug voltmeter)= []._, |dom(r;)| = 1 and
the second test succeeds. This reflects that (requires plug voltmeter)
isinitially TRUE and will never be made FALSE because requires
isanegative inertia.

Theorem 1 (Soundness of Simplifications)
Given a planning domain and problem, if (p @) is simplified to

(1) FALSE, then no state s which is reachable from the initial state
satisfies any type-consistent ground instance of (p @).
(2) TRUE, then any state s which is reachable from the initial state
satisfies all type-consistent ground instances of (p @).

Proof:

(1) holds because if N(p @) = 0 then none of the type-consistent
ground instances of (p @) are contained the initial state. Sincep isa
positive inertia, no other instances can be generated by any plan.

(2) holds because if N(p @) = MAX(p @) then al type-consistent
ground instances are contained in the initial state and will persist in
all reachable states because p is a negative inertia. u

Atomic simplification requires to determine the number N(p @)
of al those ground tuples in the initial state that unify with a given
argument vector of arbitrary length, containing variables or constants
at arbitrary positions. Using a naive solution, this means to perform
a single pass over the initial state Z, testing for each fact if it uni-
fies with (p @). Obviously, the time complexity is ©(|Z] * nmaz)
where n,, ., denotes the maximum arity of the predicates. The test
for atomic simplification has to be done for every leaf of every tree
that is ever generated during the instantiation process. The number
of these leavesislikely to be enormous, so there is a strong need for
a highly efficient method to find N(p @). In the following, such a
method is described, which alows to retrieve the number of match-
inginitial factsin timelinear in the length of 4, i.e., in the arity of the
predicates, O(nmaz)-

3.3 Efficient Implementation of Atomic
Simplifications

In principle, the idea behind the implementation is as simple as this:
Before instantiation starts, perform asingle pass over theinitial state
and create tablesin which the occurring tuples are documented. Then
later determine the proper table entry for (p @) and look up the cor-
rect value of N(p @). What makes the process complicated isthat we
have to deal with partially instantiated argument vectors a.

Let us consider the requires predicate as an example. For its argu-
ment vector of length 2, four cases can occur:

(1) Both argumentsare variablesand thus @ = (7z1, 7z2). One needs
to determine the total number of occurrences of requires (with
arbitrary arguments) in the initial state.

(2) The first argument is instantiated, but the second argument is a
variable and thus @ = (c1, 7x2). We need the number of occur-
rences of requires where the first argument isc .

(3) Only the second argument is instantiated and @ = (7z1, c2). We
need to count the occurrences with ¢, at the second position.

(4) Both arguments areinstantiated and @ = (c1, c2). The question is
whether the initial state contains (requiresc; c2).

For each of these four cases, a separate table is constructed. The
table entries are computed from the initial state. The dimension of
each table corresponds to the number of instantiated positions of the
argument vector. In Case (1), thetableistherefore 0-dimensional and
simply consists of an integer counting the number of requires facts
in the initial state. For Cases (2) and (3), a 1-dimensional table is
needed, with one entry for each object that istype-consistent with the
instantiated argument. For each of these objects, the corresponding
entry counts the number of times that requires occurred in the initial
state instantiated with that object. In Case (4), a 2-dimensional table
is constructed. Its entries are indexed by all pairs of type-consistent
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objects that can instantiate the requires predicate. For each such pair,
theentry isset to 1 iff requires occurred intheinitial stateinstantiated
with that pair. All tables are shown in Figure 6.

{1}
doodad | 1 {2}
0 vave | O dharge 2
frob 1
voltmeter | 3
sprocket | 1 batter o
socket | 1 y
plug 1
{1,2}
charger | voltmeter | battery
doodad 0 1 0
valve 0 0 0
frob 1 0 0
sprocket 1 0 0
socket 0 1 0
plug 0 1 0

Figure 6. Thetables to represent those facts from Z that match a given
argument vector for the requires predicate. Given the set of instantiated
positionsas 0, {1}, {2} or {1, 2}, the corresponding tables are shown from
left to right and down.

Let p be a predicate of arity n. For each subset C C {1,...,n},
atable T(p C) hasto be constructed. The table is |C|-dimensiona
and lists one entry T(p C)(&) for each type-consistent tuple & of
constants that can possibly instantiate p at exactly the positionsin C'.
All entriesare initially set to zero.

Note that although the number of tablesis exponential in the arity
of the predicates, planning domain representations rarely use pred-
icates with more than 3 or 4 arguments. We also argue that it is
rather unlikely that significantly more arguments will be required
even when more complex domains are modeled. First, the clarity of
the representation is affected, which would make it hard for a human
user to understand the domain model. Second, it is hard to imagine
that an expert in planning domain modeling would set up such acom-
plicated representation. Finally, the few representations of real-world
domains, which have been published so far, e.g., [14, 8] show that
sources of complexity do not occur necessarily in terms of operator
arguments.

Definition 7 Let @ = (ay,...,a») bean argument vector of sizen,
each a; being either a variable or a constant. Let C' = {41, ...,ix}
be a set of possible positions, i.e, C C {1,...,n}, where the
i1,.. .1 areordered increasingly. With

dlc = (aiy,---,a:,)
we denote the restriction of @ to the positionsin C.

Intuitively, the restriction of a vector to someset C C {1,...,n}
is obtained by simply skipping all those positions that are not in C,
but preserving the order of the arguments.
Now for each ground atom (p ¢) that occursin theinitia state, the
following is done:
foral setsC C {1,...,n} do
increment T(p C)(dc¢) (1)
endfor
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Performing process (1), we count for all instances of p intheinitial
state how often each combination of constants occurs for arbitrary
sets C of positions.

Definition 8 Let p be a predicate of arity n. Let @ = (a1, ..., an)
be the argument vector of some partially instantiated occurrence of
p. With

C(@):={i € {1,...,n} | a; isaconstant}
we denote the positions where @ isinstantiated.

During instantiation, given a partially instantiated predicate (p @),
we determine the set C'(d@) of positions where the argument vector
is occupied by constants. The appropriate table T(p C(d)) is the
one corresponding to that set. The entry in this table that we want to
access is the one indexed by the constants in the current argument
vector @, i.e., by the restriction @l (5 of d to its constants.

Theorem 2 (Soundness of Tables)
Let the tables T be the result of performing process (1) for each fact
intheinitial state. Then we have for each partially instantiated pred-
icate (p @):

N(p @) = T(p C(@))(dlc@))-

Proof:
Per definition, N(p @) = |{(p €) € Z | (p &) unifieswith (p @)}|.
We will show for each fact (p ¢) € Z: When process (1) works on
(p o),

T(p C(d))(d|c(a)y) getsincremented < (p c) unifieswith (p @)(x)

Asprocess (1) isperformed for each fact in Z, the proposition follows
directly from (x), which remains to be shown.

=-: We prove the contraposition. Let (p’ ¢’) be afact in Z that does
not unify with (p @). If p' # p, process (1) never even considers
the table T(p C(@)). Otherwise, one entry in this table gets incre-
mented when the process reaches C = C(ad). But, as ¢’ does not
unify with &, thereis at least one constant in &' | ¢z that is different
from the corresponding constant in @ (5. Therefore, the table en-
try in T(p C(@)) that getsincremented is different from the one for
dloa)-

<:Let (p ©) € T beafact that unifieswith (p @). When process (1),
working on (p ¢), reaches C' = C(a), theentry T(p C(@))(dc(a))
gets incremented. As ¢ is a ground instance that unifies with @, we
have dlc(a) = dlca), sothisentry isexactly T(p C'(d))(dlc(a)). ™

During the instantiation process it remains to find the correspond-
ing table entry in order to determine the correct value of N(p ).
Since constants are internally kept as numbers they can in principle
be used asindices into atable. However, to directly index into the ta-
bles, one would need to define tables of arbitrary dimension. Instead,
the implementation uses an implicit representation of the tables. The
appropriate address is computed by performing a sweep over the ar-
gument vector, which takes time O(nmqz ). As arities are usualy
small, this running time is very close to constant anyway.

3.4 Ground Level Inertia

So far we have only considered the predicates which are never made
true or false by a planning operator. These were used to constrain the
instantiation process. Once the set of all actions has been determined,
one can similarly define the ground facts that are never made true or
false by one of the actions.



Definition 9 A ground fact is a positive ground inertiaiff it does not
occur positively in an unconditional effect or the consequent of a
conditional effect of an action.

Definition 10 A ground fact is a negative ground inertia iff it does
not occur negatively in an unconditional effect or the consequent of
a conditional effect of an action.

An initia fact, which is a negative ground inertia, is never made
FALSE and thus always satisfied in al reachable world states. It can
be removed from the state description. All its occurrences in the pre-
conditions of actions and in the antecedents of conditional effects can
be simplified to TRUE.

A fact, which is a positive ground inertia and not contained in the
initial state, is never satisfied in any reachable world state. All its
occurrences in the preconditions of actions and in the antecedents of
conditional effects can be simplified to FALSE.

The remaining facts are fluents that, roughly speaking, can pos-
sibly change their truth value during the planning process. They are
therefore relevant to the representation of the planning problem.

Definition 11 A ground fact isrelevant iff

1. itisaninitial fact and not a negative ground inertia, or if
2. itisnot aninitial fact and not a positive ground inertia.

Using the table which corresponds to the fully instantiated case of
the process described in the previous section, one can find all rele-
vant facts by performing a single sweep over theinitial state and the
effects of all actions.

Thesimplified actions and the set of al relevant facts are then used
by IPP to generate a bitvector representation for all states and ac-
tions, where each relevant fact corresponds to a position in a bitvec-
tor.

4 Simplification of Operator Representations

As we have aready mentioned in the beginning, the instantiation
process creates copies of trees representing formulas and operators.
These trees can be simplified if one of their subtrees has been simpli-
fied to TRUE or FALSE, which can result from the atomic simplifi-
cations performed during the instantiation process. As soon as such
an atomic simplification has replaced an atomic formulaby TRUE or
FALSE, the subsequently described non-atomic simplification oper-
ations are performed.*

—-TRUE = FALSE -FALSE = TRUE
TRUEAy = o pANp = ¢
FALSEAp = FALSE pVeo = p
TRUEVe = TRUE eAN-p = FALSE
FALSEVyp = ¢ pV-p = TRUE

Figure 7. Implemented Simplifications for First-Order Formulas.

4 They are also performed once directly after having parsed the domain and
problem file.
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The first-order formulas which represent the preconditions of op-

erators and the antecedents of conditional effectsare simplified based
on the well-known tautologies as shown in Figure 7. Besides this,
IPP implements the following simplifications:
1. If aquantified variable does not occur in the quantified formula,
the quantifier isremoved, i.e., V 7z ¢(?y) issimplified to (?y).?
If a quantified variable 7z has an unknown type, which has not
been declared in the :types field of the domain file or if it has an
empty type, for which no constant has been declared in the prob-
lem file, then the quantified formulais replaced by TRUE in the
case of auniversal quantifier and by FALSE in the case of an ex-
istential quantifier.

. An equality between two identical variable names, 7z =7z, is
simplified to TRUE. An equality between two identical constants,
c1 = c1,isaso simplified to TRUE. If the constants are different,
i.e,c1 = c2, theequality issimplified to FALSE. In afully instan-
tiated formula, al occurrences of equalities have been replaced by
TRUE or FALSE.

2.

The simplification of first-order formulas can reduce awhole pre-
condition, antecedent or consequent to TRUE or FALSE. In this
case, the operator description can be simplified:

1. If the antecedent of a conditiona effect becomes FALSE, the con-

ditional effect isremoved from the operator. In this case, the effect

is never applicable because it requires FALSE to hold, i.e, the
state must be inconsistent.

. If the antecedent of a conditional effect becomes TRUE, the con-
ditional effect becomes unconditional.

. If the consequent of a conditiona effect becomes TRUE, the con-
ditional effect is removed because it does not lead to any state
transition.

. If the precondition or the unconditional effect of an operator be-
comes FALSE, the whole operator is removed from the domain.

. If an operator has only TRUE as its unconditiona effect and no
conditional effects, then the whole operator is removed®

In the final set of actions, to which no simplifications can be applied

anymore, al unconditional effects are merged into a single conjunc-

tion of literals and al conditional effects with identical antecedents

are merged into asingle conditional effect.

IPP also implements various syntax checks that help to develop

proper domain representations:

1. An operator is removed (a warning is issued, but planning con-

tinues) if an operator parameter is declared using an unknown or

empty type.

. A parameter is removed from the operator description (awarning
is issued, but the operator remains in the set) if it is declared, but
nowhere used in the preconditions or effects.’

IPP aborts the instantiation process if it encounters one of the fol-
lowing situations:

5 Unused quantified variables will usually not appear in the initial domain
description. They can, however, appear asaresult of atomic simplifications.

6 Removing effects or whole operators can possibly turn fluents into inertia,
i.e., one could repeat the whole analysis procedure again. However, such
a phenomenon was not observed in any planning domain and therefore it
seems not worth to invest the effort into such a fixpoint computation.

7 Just like unused quantifiers, this can also happen as a result of simplifica-
tions.



1. A predicate symbol is overloaded. PDDL requires the declaration
of predicates, their arity and the types of their arguments. When
parsing the domain and problem files, IPP verifies that all occur-
rences of a predicate meet the declaration.

2. An equality statement occurs in an unconditional effect or in the
consequent of a conditional effect.

3. An equality statement has less or more than two arguments.

4. A variable occursthat isneither declared as a parameter nor bound
by a quantifier.

5. A constant occurs that has not been declared in the problem file.

5 Encoding Unary Inertia as Types

Many domains, in particular all STRIPS domains used in the 1998
AIPS planning competition contain unary inertia. These are predi-
cates of arity one, which satisfy Definitions 1 and 2 and thus do not
occur in any of the effects. In other words, the set of constants ¢ that
can ever (and will always) satisfy (p ¢) isexactly the set of constants
occurring as the arguments of the instances of p in theinitia state.

Obviously, this set can be seen as the encoding of type information
because the single variable argument of p can only be instantiated
with one of these constants if we want to obtain a possibly satisfiable
atomic formula. As a matter of fact, in the STRIPS domains from
the planning competition, all unary inertiawhere intended to provide
implicit type information, as there are no explicit types givenin clas-
sical STRIPS, see Figure 8 for an example.

One can easily make thisimplicit type information explicit and re-
move all unary inertia from the domain description. The previously
described instantiation process that identifies and simplifies inertia
will also achieve the desired simplification of unary inertia, because
they are smply a specia case wrt. the length of the argument vec-
tor. However, doing it this way, the algorithm repeatedly generates
copies of formulatrees, only to find out that it can remove them im-
mediately afterwards because they use the “wrong objects’ in some
unary inertia. For example, when instantiating the set of actions for
the problem st ri ps-1 0g- x- 9 from the logistics domain used in
the competition, 55088 actions are generated for which the instanti-
ation procedure needs 527 seconds.

:action load-truck

:parameters (?obj Zruck ?oc)

:precondition (and (obj ?obj) (truck ruck)
(location ?oc) (at 2ruck Aoc)
(at 7obj ?oc))

:effect (and (not (at 2obj ?oc)) (in ?obj Zruck))

Figure 8. Theload-truck operator from the logistics domain. Note the
untyped parameters and the underlined unary inertia predicates that
implicitly encode the type information.

Consequently, there is the need for a further optimization of the
instantiation process, which can be achieved through a separate treat-
ment of unary inertia. The optimization, which is described in detail
in this section, encodes all the unary inertia obj, city, truck, airplane,
location and airport directly as types, which restrict the instantiation
possihilities for the arguments of the operators. Running timefor this
example decreases down to 63 seconds?

8 The instantiation procedure implemented in IPP 3.3 that has been used
in the competition is still a bit faster: It needs only 52 seconds for this

We now give a precise notion of how implicit type information
can be made explicit. First, for each unary inertia predicate p the new
type symbol 7, for the type corresponding to p is introduced.

Definition 12 Let p be an inertia predicate of arity 1. The type 7,
corresponding to p is defined as the type whose domain comprises
all constants ¢ for which (p ¢) holdsin theinitial state Z:

dom(y) = {¢| (p ) € T}

New types can be constructed from other types by intersecting or
subtracting from each other the corresponding sets of constants.

Definition 13 Let 7 and m» be type names. Then i N and 71 \ 72
are new type names. Their domains are defined as:

dom(m1 N 12) = dom(11) N dom(72)
dom(m1 \ 72) = dom(m1) \ dom(72)

After having extracted all types 7, for unary inertia p from the
initial state, the type structure of the domain representation isrefined
with the types 7, and types that can be constructed from them.

Definition 14 Let o be some operator and 7z be one of its parame-
ters. Let p beaunary inertia. If (p ?x) occursin the preconditions of
o or in the antecedent of one of its conditional effects, o is replaced
by two new operators o1 and 02:

e |n ol, the type 7 that has been declared for ?z is restricted to
7N 7, and all occurrences of (p ?x) are replaced with TRUE.

e Ino2, thetype 7 that has been declared for 7z isrestricted to 7\ 7,
and all occurrences of (p ?z) are replaced with FALSE.

Similarly, quantified formulas in preconditions or antecedents of
conditional effects are replaced.

Definition 15 Let o = V 7z : 7 ¢ be some universally quantified
formula containing a unary inertia p with argument ?z of type . The
formula ¢ isreplaced with ' defined as

o' = V?:rnm Y[(p?z)/TRUE] A
V?z:7\ 1 ¢[(p?z)/FALSH

Let o = 3 7z : 7 ¢ be some existentially quantified formula con-
taining a unary inertia p with argument ?z. Then ¢ is replaced with
’

14
o' = F:rN1, Y[(p?z)/TRUE] V
A%z :7\ 1 ¢[(p ?z)/FALSH

In the definition above, ¥[(p ?z)/TRUE] and ¥[(p ?z)/FALSE]
denote the formulas, which are obtained from ¢ if al occurrences of
(p ?x) have been replaced with TRUE and FALSE, resp.

The soundness of the replacements follows from the observation
that under the restriction 7 N 7, the atomic formula (p ¢) is dways
TRUE because only constants ¢ are considered which are also in
dom(7p). Under the restriction 7 \ 7, only constants ¢ € dom(r)
are considered that are not members of dom(7,) and thus (p c) is
aways FALSE.

We formally state the soundness of the replacements for univer-
sally quantified formulas.

example. However, this procedure uses a specialized algorithm which is
only capable of handling conjunctive preconditions, and it generates a total
of 62261 actions because no test for ground inertia is performed.



Theorem 3 (Soundness of Type Encodings)

Let p bea unary inertia predicate. Let ¢ =V 7z : 7 ¢ beaformula
with (p ?z) being a subformula of v. Let ¢’ be the formula ¢ gets
replaced with according to Definition 15. Then, for any state s that
isreachable fromtheinitial state holds

sEe & sEY

Proof:

From the definition of 7, we know that all constants ¢ € 7, occur
as arguments of p in the initial state, i.e., N(p ¢) = 1. For those
constants ¢ ¢ 7,,, we have N(p ¢) = 0. With Definition 6 and Theo-
rem 1, we get for all states s that are reachable from the initial state:

(1) sE(pe) for cen

(2) stE(pe) for cg mp

From this, we can immediately conclude for all states s that are
reachable from the initial state:

3) sEv < skEyY[(p?x)/TRUE] for c €7

4) sEv < sEY(p?r)/FALSE for ¢ ¢ 7
Thus, for any such state s
sEVIz:mp e fordlcer:sEy[Tz/

e fordl cernm s E=¢[?z/c] and
foral ce r\ 7 :sEyY[?x/d

(3) and (4) & fordl ce N7y :sk=yY[(p?r)/TRUE] and
foral ce v\ 7 :sE¢[(p ?z)/FALSH

S skEV? TN Y[(p 7z)/TRUE] A
V?zx:7\ 7 ¢[(p ?z)/FALSH

As the last formula is exactly ¢’ as defined in Definition 15, the
proposition follows. u

The soundness of the type encoding follows from the fact that the
modified operator set with the newly introduced types has exactly the
set of ground instances, which is generated by the instantiation pro-
cedure using inertia and performing atomic simplifications that we
described in the previous section. The soundness of the replacement
of existentially quantified formulas follows with similar arguments
asin the universally quantified case.

As an example, let us consider the operator from Figure 8 again.
Asthereis no explicitly defined type for any of the three parameters
they are assigned the default type object. When examining the first
parameter ?obyj, IPP findsthat it is used in the unary inertia predicate
obj. Therefore, it generates two copies of the operator, restricts the
parameter types according to Definition 14, and performs the cor-
responding atomic simplification of the unary inertia. The result is
shown in Figure 9.

In the first operator, the atom TRUE can obviously be removed
from the conjunction, which leads to asimplified precondition. Asall
constants in the STRIPS logistics problems are defined to be of type
object, the domain dom(object N Top;) = dom(7,p;) COMPrises
exactly those constants ¢ for which (obj ¢) iscontained in the initial
state.

In the second operator, the first atomic precondition has been re-
placed by FALSE as no constant in dom(object \ 7op;) can satisfy
(obj c). Thus, the whole precondition of this operator simplifies to
FALSE and it can be removed from the operator set asit will never be
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:action load-truck (")
‘parameters (7obj - object N Top; Aruck Aoc)
:precondition (and (TRUE )
(truck Zruck) (location ?oc)
(at ?truck ?oc) (at ?obj Aoc))

:action load-truck ®
:parameters (?obj - object \1o; Pruck Aoc)
:precondition (and ( FALSE )
(truck ?truck) (location ?loc)
(at ?truck ?loc) (at 7obj Aoc))

Figure 9. Parameters and preconditions of the two new load-truck
operators, which result from the encoding of the unary inertia predicate obj
asatype.

applicable. Note that in the case of arbitrary first-order preconditions
one cannot usually expect that operators can be removed immediately
just after they have been generated.

Repeating this process for the other two parameters, always the
second copy is removed immediately after it has been generated and
thus IPP obtains the final representation of the load-truck operator,
which is shown in Figure 10.

:action load-truck
‘parameters ( 2obj - object N ,p;

2Zruck - object N Tiryck

?oc - object N Tiocation)
:precondition (at Zruck Aoc) (at 7obj Aoc))
:effect (and (not (at 2obj ?oc)) (in ?obj Zruck))

Figure 10. The new operator load-truck, which results from the encoding
of al unary inertia as types and which replaces the original operator
representation. This operator isidentical with the one that is used in the
typed version of this domain.

The encoding of unary inertia as types is one possibility of how
type information can be used to reduce the search space of a planner.
TIM [1] implements additional sophisticated type analysis methods,
but currently limited to STRIPS. The extension of thiswork to ADL
and its combination with the instantiation method that is described in
this paper remains a subject of future work.

6 Empirical Results

Many examples could be presented, which nicely illustrate the bene-
fits of an instantiation procedure that takes inertiainto consideration.
For example, in the movie domain used in the planning competition,
5 operators are declared to get snacks: get-chips, get-dip, get-pop,
get-cheese, get-crackers. Each of them has a similar description, of
which we only exemplify the get-chips operator:

get-chips

:parameters (?x - chips)
:precondition

:effect (have-chips).

One observesthat the parameter 7z isnot used anywherein the op-
erator description. If for example, 9 different constants are declared



for each kind of snack, one obtains 9 ground instances of each oper-
ator, which areall identical and spam the search space of the planner.
In al movie problems, the goals are reachable at time step 1, but a
plan can only be extracted at time step 2, i.e., a permutation of all
actions at time step 1 is performed by the complete search algorithm.
Not very surprisingly, this takes aimost 3 sin IPP 3.3 on a Sun Ul-
tra 1/170 because 250973 actions must be tried before a solution is
found. In contrast to this, when detecting the unused parameter, only
one instance is generated for each operator, which dramatically re-
duces the search space down to 29 actions and thus aplanisfound in
only 0.06 s.

In the assembly domain, operators can be dramatically simplified
because they contain so many inertia. For example, the complex pre-
condition shown in Figure 1 uses 7 different predicates, but 5 of them
areinertia. This means that each precondition must simplify to afor-
mula only mentioning the fluents incorporated and committed. For
many actions, the precondition reduces to a single atomic formula
using only the incorporated predicate. IPP 4.0 is thus able to solve
some assembly problems, while previous versions failed already dur-
ing the instantiation, see Figure 11 for selected results.

problem actions | cpu sec. search space
assem-x-1 | 114/760 | 1742.43 64 673 043
assem-x-2 84/882 18.03 848 829
assem-x-3 | 190/1248 0.83 108
assem-x-6 | 118/1800 | 46342.80 | 1283078 957

Figure 11. Performance of IPP on assembly problems on a Sun Ultra
1/170.

Column 2 shows the number of generated actions using the in-
stantiation process with inertia compared to the number of all possi-
ble actions using naive enumeration. The search space is measured
in the number of actions IPP tries until it finds a plan. The solution
plansinvolve between 31 and 38 actions, but require only between 10
and 18 time steps, i.e., they involve quite some parallelism. Severa
other problems from this domain can be proven as unsolvable.

The determination of ground inertia helps IPP to discover infor-
mation that it would not be ableto find if only inertia predicates were
analyzed. Aninteresting example of this behavior occursin the tower
of Hanoi domain. Given the operator

move(?disc, from, ?to: disc)

:precondition (and (smaller ?to 7disc)

(on ?disc ?from) (clear 7disc) (clear ?to))
(and (clear(?from) (on ?disc o)

(not (on 7disc ”from)) (not (clear 7to))

.effect

which describes a legal move of discs, one notices that only a
smaller disc can be moved onto a larger disc. IPP discovers that
smalleris an inertia predicate and only generates the appropriate ac-
tions. But the action set al so contains moves, which take adisc froma
smaller disc and put it on asmaller disc. Indeed, the operator descrip-
tion says nothing about the relationship between the disc ?from and
the moving disc Zdisc, i.e.,, a move that takes a disc from a smaller
disc and puts it on another smaller disc seemsto be alegal action.

When performing the analysis of inertia on the ground level, IPP
is able to find out that such moves are impossible. It detects that all
instances of (on 2disc ?from), where ?disc is larger than ?from are
never made true by any action, i.e., they are positive inertia, and they
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do not hold in the initia state. Thus, these facts are unsatisfiable and
all preconditions using them can be simplified to FALSE. Since all
actions with FALSE as a precondition are removed from the action
set, a further reduction of the size of the planning graph is achieved.
For example, in the case of 3 discs, 10 out of 48 actions are elimi-
nated. In the case of 8 discs, 140 out of 468 actions are removed. A
search space of only 295.535 actions results and the plan of 255 steps
isfound in only 16 seconds.

7 Conclusion

The generation of the set of all ground actions for a given set
of expressive ADL operators is a complex process which heav-
ily influences the performance of any planner or pre-planning
analysis method. The implementation comprises more than 5000
lines of C code and is available from the IPP webpage at
http:www.informatik.uni-freiburg.de/~ koehler/ipp.html in the re-
lease of IPP 4.0. We hope that the instantiation procedure will be-
come a useful part of reusable code that helps other researcher teams
in setting up their own planners more quickly and without dealing
with the burden of reimplementing the same preprocessing proce-
dures again and again.
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Considering the Dynamic in Knowledge Based
Configuration

Ingo Kreuz'

Abstract. Learning from previous solutions could be a key for
improving both the solution process and the quality of the solution.
Unfortunately knowledge (i.e. components) in technical
configuration domains changes quickly and learning brings with it
a certain amount of conservatism. For example a component that
was learned to be good for a certain task should no longer be
chosen, if a newer version appears on the market. On the other
hand a certain amount of conservatism is often desired since
uncontrolled innovation is as a rule also detrimental, i.e. the newer
component mentioned above is not obviously better.

This article presents Relevant Knowledge First (RKF) as a
method and heuristic respectively. It tries to find a good
compromise between conservatism and innovation based on
statistical values and aging of knowledge.

1 INTRODUCTION

Technical markets including computers, multimedia or digital
cameras change very quickly. Other technical domains use devices
from these fast changing domains, such as cars, trains and
airplanes. If one tries to put up a configuration system in these
domains he or she will be confronted with the problem of fast
changing facts in the knowledge bases. As a rule it is difficult to
identify knowledge that is no longer necessary, so it is normally
impossible to delete such knowledge. As a consequence the
knowledge bases become larger and larger, thus slowing down the
configuration processes.

Looking at the field of cognitive psychology we can get an idea
of how human experts handle large amounts of quickly changing
knowledge: We seem to be able to concentrate on actual tasks, we
can learn from doing something successfully and repeatedly, and
above all we are able to forget things that are no longer relevant —
without deleting them.

In his book [1] Anderson calls the “concentration” the
“activation of a memory trace”. It indicates how accessible
information is for a current problem, i.e. how fast and with what
probability the information can be accessed. Every time we use a
memory trace its accessibility increases a little. If a piece of
information is needed frequently, its action potential increases
what we called “/earning” above. The relationship between the
quantity of exercise and the access efficiency (e.g. measured as
reaction time) results in a power function which is known in
cognitive psychology terms as the power law of learning. The
learning of information counteracts forgetting: If information is not

I DaimlerChrysler AG, Research and Technology, HPC T721, D-70546
Stuttgart, Germany, email: ingo.kreuz@daimlerchrysler.com
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used over a long period of time, its action potential becomes less.
Experiments show that forgetting can also be described as a power
function, which amongst other things could be explained by the
decaying processes of the neural connections.

The concentration on a given task, the learning and forgetting
have lead us to a method for assessing the relevance of
information: RKF (Relevant Knowledge First) is a heuristic or
method for the processing of knowledge bases in the field of
configuration. It identifies the relevance of information for a given
problem thereby simulating some kind of learning

e to speed up and to improve the solution process
e and the solution’s quality

and forgetting
e to keep the search space small

e and to give “newer” knowledge the chance to prove its
worth, avoiding conservatism.

Note: We do not want to simulate the human model described by
Anderson. It simply served as a good starting point for the
development of RKF. What we want is a measurement for the
relevance of information in knowledge bases for a given task.
Though the investigations of cognitive psychology gave us
valuable ideas, we will leave this field now and introduce our
measurement for relevance.

2 PRINCIPLE OF RKF

We recognized that it is useful to assess knowledge during a
knowledge-based search process in order to be able to focus on an
actual solution process. With this even large knowledge bases can
be scanned efficiently. For this assessment there are two deciding
factors which correspond to the antagonism between conservatism
and innovation: On one hand the knowledge is very probably
useful again if it has already been useful for similar tasks. On the
other hand new information should be preferred, in order to obtain
innovative solutions and avoid conservatism. For the assessment
we use “relevance” which is calculated by age and usefulness of
knowledge.

With RKF (Relevant Knowledge First) the search for solutions
is supported by relevant knowledge being processed preferentially.
When knowledge is selected during a solution process, e.g. in order
to bring an object into the solution set or to check its consistency,
the relevance for all knowledge in question is calculated and one of



the most relevant objects is used. For subsequent search processes
the relevance is increased for successfully used information.

In order to avoid premature convergence on “bad” results, the
most relevant knowledge is not always used. Instead of this only
“one of the most relevant” pieces used. This can be achieved with
the help of a random generator, whereby the probability for one
choice should be proportional to the relevance of the knowledge.

The relevance of a piece of information i is calculated as
functions of its age a;,. (forget) and its usefulness u;,. (train) for a
given task class tc, whereby usefulness compensates for age. The
constant ¢ is used as a domain dependent weighting factor between
usefulness and age for the relevance. The second constant m serves
to synchronize the measurements used for usefulness and time.

relevance(a; ., u;,) = c - forget(m -a;,) + (I-c) - train(u;,.) (1)

The power functions mentioned in the introduction show desirable
characteristics for knowledge bases in technical domains. They
were therefore a starting point for the “train” and “forget”
functions used in our field, which are introduced in sections 4.1
and 4.2.

For each task class the usefulness of information is separately
stored so that the relevance for each task class is calculated
independently. This method more or less corresponds to the
“activation level of memory traces in certain tasks” functions” or in
other words a “concentration on a current task”. The independent
consideration of different tasks prevents conflicting tasks making
training of the knowledge base for good solutions impossible. For
finding task classes there are two indicators:

The task classes at first result from the combinations of various
global optimization objectives, because conflicting objectives
would make a knowledge base training for RKF impossible.
Therefore if for example the optimization objectives “price” and
“performance” are decisive in one domain, the task class can be
automatically generated as a result of the combinations of price and
performance together with the objectives “high”, “low” and “don’t
care”, e.g. “low price / high performance”, “don’t care the price /
high performance” etc.

As a second indicator task classes can be used, which emerge
directly from the respective domain. These are for example target
groups of customers for configuration systems. The task classes
that has been found automatically can therefore be further refined.

As soon as a solution is found, all information which was useful
for finding the solution, i.e. all used information, is upvalued. To
do this, the solution is assessed and for all used information in the
knowledge base its usefulness is increased in relation to this
assessment. In this way, information which has lead to good results
becomes useful more quickly. The way in which “usefulness”
should precisely be defined, depends on the domain. In section 3,
we briefly introduce two of our suggested usefulness measurements
which can be applied in technical domains.

Information which was seldom or barely useful, becomes
irrelevant bit by bit on the basis of its aging. The measurement
employed for age also depends on the domain. Section 3 gives
some suggestions for the calculation of age.

In order to find good solutions, RKF is used in an optimization
loop: As soon as a solution is found it is assessed, the usefulness of
the information concerned is increased and the solution process
restarts. The random generator that helps in selecting one of the
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most relevant pieces of information, provides the solutions being
different. Due to the repeated increase of usefulness that is based
on the assessment the optimization loop converges to a global
optimum. The loop can be broken as soon as a “good enough”
solution has been found or after a given time limit.

Figure 1 shows the knowledge based search algorithm using
RKF:

Inputs:
task class,

ar———> demands on the solution
g

g knowledgebased search

b= RKEF: relevant information is

E preferred

z

=]

solution found?

assess solution

increase usefulness for all
information used

Figure 1. Knowledge based solution process using RKF

3 MEASUREMENTS AND DEFINITIONS FOR
THE DETERMINATION OF RELEVANCE

With RKF the relevance of knowledge is calculated as a function
of age (time) and usefulness. The measurements for time and
usefulness presented in this section serve as a basis for our RKF
investigations. In isolated cases they can be further adapted to the
area of applicability by which RKF is to be employed

It should be pointed out that relevance of knowledge is only
comparable if the same measurements for usefulness and time have
been used. Even though several measurements could be applied at
the same time. For example a different usefulness measurement can
be applied to control knowledge rather than to factual knowledge,
in case the distinction between the types of knowledge is made in
the knowledge base and the relevance of knowledge of these types
is therefore never compared with the other.

Firstly a measurement was sought for the age of information i,
which permits comparisons such as “older” and “younger”. A
relative measurement is therefore sufficient. The age a; of a piece of
information is calculated, as usual, from the difference between the
point in time when the information was saved t,; and the current
time t:

a;=t—1ty; )



Both of the following time measurements have been used in our
experiments:

e RTC (Real Time Clock): The “real” time of a computer
system serves as the current time for the knowledge base.

e NOR (Number of Runs): The number of knowledge-based
search processes held up to this point in the knowledge base
serves as “actual time”.

Both measurements have different characteristics. For example
using RTC knowledge grows old, even if the knowledge base is not
used. If this behavior is not suitable for a domain NOR should be
used. An advantage of RTC however is that the semantics of
“outdated knowledge” is clear i.e. a system’s user can, by means of
real time, simply decide on the basis of his or her own time
feelings.

For the usefulness of information in a knowledge base different
definitions can be suitable according to the domain. We have used
the following definitions for usefulness measurements:.

e IPS (Information was Part of Solution): For each piece of
information it is counted how often it was used to help
finding solutions. To take the quality of the solutions into
consideration the steps are weighted corresponding to the
solution’s assessment.

e NAS (Number of Accesses during Search): This
measurement for usefulness also adds up the assessments
for the solutions for each piece of information. However in
addition to this, the number of times the information in the
respective solution process has been accessed is also taken
into account.

IPS and NAS both result in a very similar usefulness measurement.
The difference is that

e with IPS you are prevented from making a piece of
information useful more quickly as a consequence of
multiple sub solutions existing in a solution.

e and with NAS precisely this “becoming useful more
quickly” will be emphasized.

4 A FUNCTION FOR CALCULATING
RELEVANCE

The relevance of information is calculated as a function of its age
and usefulness, whereby the age counteracts the usefulness.

In this section the effects on relevance of the “becoming useful”
and “aging” processes are separately considered and corresponding
functions are stated. This leads us on to a formula for the
calculation of relevance which combines both aspects.

4.1 Function for the aging of knowledge

We will now introduce the function forget(a; ;) which we propose
for technical domains. As a starting point we considered the power
law of forgetting (see Introduction). The reason for this is that in
technical domains similar characteristics are desirable for the
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development of relevance dependent on the aging of knowledge as
in the human brain:

e  New knowledge has maximum relevance and is much more
relevant than old knowledge.

e Knowledge loses its relevance faster in the beginning. For
example after 10 years one week either way will no longer
have a great effect on the relevance of technical knowledge.

e  The relevance only approaches zero whereas knowledge is
never really irrelevant: the access just lasts longer. Real
forgetting, i.e. the irreversible erasure of information is not
desirable at first.

To make matters simpler the following assumptions were made
compared with the function of the power law of forgetting.

e Reduction in the range of values to [0, 1]: The value for
relevance should begin at 100% and approach 0%.

e A reciprocal function shifted to the left by 1 describes the
desired effects just as well, such as an exponential function,
is however more efficient for computers to calculate.

The first assumption is sensible because many parameters of the
Cognitive Psychology are not available in the moment of storing
the knowledge. For example in [15] it is described how the start
relevance depends on the estimation of the importance of the
information. We must assume however that all information in a
knowledge base is from the same importance because a computer
cannot make ‘“emotional” assessments. The aforementioned
“desired” characteristics remain, though.

The following definition describes the forget-function which we
applied:

Definition 1:

The process of gradual forgetting information i in a
knowledge base in technical domains can be described by
the following function:

1
Sorget(a;y): rel; g = a1 3)

With

Qi € [0,09f age of the information i in the task “4)
class tc

the part of relevance that is based on &)

age for the task class tc

rel;a.€ 710,17

Note: As time can be different for different task classes (e.g. when
using NOR, number of runs, as the measurement for time) age can
be dependent on the task classes. In the above definition this is
indicated by the index tc.



4.2 Function for “knowledge training”

The Exponential Learning Function shows characteristics which
seem to be adequate in technical domains:

e [f information is used often, it seems to be important. The
access time should be reduced, that’s to say the relevance
should be increased.

e The first accesses make information relevant more quickly
than later accesses. If for example the same component is
used for 10000 configuration processes, ten further accesses
no longer have particular importance. Experts have thus
learned this component is useful and will try it first.

e Relevance approaches any or the maximum relevance.

We reduce the range of values again to [0, 1] and use the reciprocal
function shifted left by one as before in the forget function.

The following definition describes the train function we have
used:

Definition 2:

The effect of the “training” of an information i in a
knowledge base in technical domains can be described by
the following function:

. 1
train(u;,): rel; .. =1 - T 6)
With
Ui € [0,09f Usefulness of information i for the @)
task class tc
reli . € [0,1] part of relevance that is based on ®)

usefulness for the task class tc

4.3 Relevance of knowledge

In equation (1) the relevance function for an information i results
from the addition of the forget and the train function. With
equations (3) and (6), the following definition results

Definition 3:

The relevance of information in a knowledge base is
described by the following function:

relevance(a;t,, u;,,) = ¢

. m Qe+ 1
+ (1-¢) .(1 ﬁ) [0, 1] )]
With
Qi € [0, oof Age of information i for a given task  (10)
class tc
Ui € [0, oof Usefulness of information i for a given  (11)
task class tc
ce 0, 1] Constant for adjusting the weighting of  (12)
usefulness and age
m Constant for adjusting the (13)

measurement of usefulness and the
measurement of time used
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The values can be interpreted as follows:

Table 1. interpretation of the relevance values.

0% toc | “normal” values for relevance (the range of values of the

relevance function is almost always in this range).

c Start value of relevance for new knowledge and threshold
value for old but often useful knowledge.

cto 100% | Above-average relevance, which can only be achieved for a
short period of time, if new knowledge is frequently useful

right at the beginning.

As already mentioned, the constants ¢ and m serve to weight the
forget and train functions relative to each other. This is necessary
for the following:

e The time and relevance measurements used must be
adjusted to each other

e Depending on the domain age and usefulness can be
varyingly important for the solution process

The constant ¢ often can be set to 50% (c= 0.5) to get the same
weighting for forget and train.
The following figure shows the relevance function from

i ith =0. =" .
equation (9) with constants ¢=0.5 and m: contour line ¢ = 0.5

Relevance ri,

10 usefulness
Uige

Relevance function with ¢=0.5 and m=1

Figure 2.

As the values for usefulness and age increase to the same extent the
relevance stays at ¢=50% (see Contour line ¢=0.5 in the figure). If
the usefulness grows faster, relevance of over ¢ and up to 100%
(“behind” and “left” of the contour line c) can be achieved.
Correspondingly the relevance slowly approaches 0% when
usefulness grows slower in relation to age.

5 EXAMPLE OF APPLICATION

Before starting a configuration with RKF the objective
specifications have to be defined. This happens by selecting a root
(possibly also the root of a sub-tree) in the compositional hierarchy
and a set of requirements which should be met by the
configuration: e.g. functionality, components, parameters or



properties which a configuration should definitely have (e.g. colour
“red”).

Besides the aforementioned requirements, optimization criteria are
typically also part of the objective specification. For example it
would be desirable to configure the cheapest, most lightweight or
fastest system possible. With RKF the optimization criteria are
implicated by the selected task class which is also a component of
the objective specification.

Starting from the selected root node of the objective
specification it is attempted to recursively define all sub-
components from the compositional hierarchy (and in other ways
connected components). To this each component is specialized by
means of the taxonomic hierarchy until a suitable and constructable
part (leaf concept that can be instantiated) has been identified. For
every component its parameters also have to be defined. RKF
supports a depth first search in the taxonomic hierarchy whereby
such leaf concepts are preferred which have a high relevance with
respect to the selected task class. The determination of the range of
values in the compositional hierarchy i.e. how often a component
should be used as a sub-component can be supported by the
relevance of specific values with RKF.

After some or even all configuration steps i.e. after every
selection and setting of parameters of a (sub-) component, the
consistency of the (sub) system must be guaranteed. If a conflict

LaserPrinter

n.2] 1.1 [1.1]

has occurred, it must be resolved e.g. by rejecting a selected
component or a set parameter (backtracking). The actual
configuration methods differ mostly in how they select components
and resolve conflicts (sequence of selecting components,
calculation algorithms and heuristics).

The provisional result is a parts list with a structure
corresponding to the compositional hierarchy which describes all
components together with their parameters, that belong to the
configuration (solution). This solution is assessed.

Now the learning phase follows: The usefulness of all included
specializations in the taxonomic hierarchy 1is increased
corresponding to the solution’s assessment. Equally the usefulness
of specific values for the parameters of the components and the
compositional relations are increased.

In the case that the configuration found is still not good enough
relating to the above assessment, the configuration can be repeated
in an optimization loop.

Our first configuration attempt with RKF has been carried out in
a relatively simple domain: A PC needs to be configured using
RKF from its individual components such as the drives,
mainboard, memory etc. To this a depth first search and
chronological backtracking has been implemented which is
controlled by relevance. Figure 3 shows the compositional
hierarchy of this domain.

BigTower MidiTower
300W 200W
$130,00 $45,00
-1 [1..10] [1..6]

| Screen | | Chassis | |Keyboard| | Mouse |

Drive | Drive

Mainboard

[~ ]
A consists of

one to 10

[1..10] components of

0.2\ (.4 concept B
: [0.2 [1.1 [1..2] [0..1] [0..1] [0..1] | B

SCSI- Graphic- Network- Sound-
| Memory | | Controller | | Processor I | Controller | | Controller | | Controller | | Modem |

Figure 3: compositional hierarchy of the domain in our example

As a task specification one of these concepts are to be chosen. As a
rule this is the concept “PC”. Examples of task classes are “Home-
PC”, CAD-PC” and “Server-PC”.

Figure 4 shows part of the taxonomy of the example domain.
The above concepts are ancestor nodes of those concepts
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connected with lines below. For better clarity the alternatives of
leaf concepts have been represented as a list one below the other
(without further lines).



PC-
Component

Memory

SCSI-Drive

EIDE-Drive
EIDE-
Harddisk

ISDRAM1OO | SDRAM133 | I Floppy-Disk

SCSI-CD-
ROM

EIDE-CD-
ROM

Atapi- | | SCSI- || SCsl- ” SCSlI- |

DVD Harddisk CD-ROM DVD
I I I I
» r SD32-100 SD64-133 Mitsumi DD IDE13 NEC-CD NEC-DVD SCSI9 TEAC-SCD |[Pioneer-svD
B2 32MB 64MB 35" 13,6GB 9ms IDE 40x IDE 8/40x 9GB 8,5ms SCsI32x || scsl 10/40x
o $44,00 $75,00 $15,00 $175,00 $44,00 $94,50 $250,00 $67,50 $135,00
(O]
O SD64-100 SD128-133 TEAC DD IDE20 Mitsumi-CD | [Pioneer-DVD SCSI18 NEC-SCD
c 64MB 128MB 35" 20GB 9ms IDE 48x IDE 10/40x 18GB 6ms SCSI 40x
o $72,50 $142,00 $16,50 $195,00 $47,50 $125,00 $675 $85,00
O\ oz SD256-133 IDE25 Creative-CD Hitachi SCSI36 Toshiba-SCD
1 128MB 256MB 25GB 8,5ms IDE 52x IDE 8/40x 36GB 7,5ms SCSI 40x
Y— $136,50 $385,00 $230,00 $53,00 $117,50 $872,00 $85,00
©
@ | | sp2s6-100 IDE37 Toshiba-CD Plextor-SCD
| L 256MB 37GB 9ms IDE 48x SCSI 40x
$325,00 $345,00 $55,00 $89,00

Figure 4. part of the taxonomy of the PC-domain. The thickness of the lines indicate the relevance for the task class “Home-PC”

The thickness of the lines indicate the relevance for the task class
“Home PC” i.e. this form of PC most often contains a SD64-100
memory module, a Mitsumi DD-Disc drive, an IDE13- hard drive

EIDE- EIDE- EIDE-
Harddisk Harddisk Harddisk

and a NEC-CD drive. The figure also shows how RKF supports the BREE GIE SET3 DET3
depth first search in this hierarchy: Paths of high relevance develop B i st RS o
because whenever a daughter concept was useful, the respective "DE20 TDE0 DE20 DEZ0
father concept was also useful. The concept "PC-Component” has A A e A
very minor relevance because it is not found in the compositional DEZS DE25 DEZS DE25
hierarchy. Instead of this the search always begins with a more oo E> Beooe” E> oo E:> oo
specific concept (in the “drive” and “memory” examples). In other DE37 DE37 DE3 DE37
task classes of the same domain, the relevance can be completely A A s A A s
different. For example the relevance of the SCSI hard discs for the — — —
“Server PC” task class is much higher than that of the EIDE hard 2265 8ms 2265 8ms 2265 8ms 2265 8ms
disks. W% $175,00 $175,00 $175,00
The flexibility of RKF turns up as soon as a new component 2765 oms 2768 oms 2765 oms 2765 oms
$315,00 $315,00 $315,00 $315,00

appears. Because of its low age it has a high relevance at the
beginning despite its small usefulness. In the following example
two new hard disk models (IDE22 and IDE27) are added to the
taxonomy of the knowledge base.

Figure 5. alteration of relevance over time for the task class “Home PC”
after adding two new models of hard disks

The thickness of the lines in Figure 5 again represents the
relevance of the individual concepts. The two new hard disks have
a high relevance at the start because of their low age. Over the time
period tl to t3, the hard disk IDE 22 proves its worth for the
“Home PC” task class and bit by bit replaces the hard disk IDE13
which until now was the most relevant, because of its aging
without new usefulness. The second new hard disk does not prove
its worth and loses its relevance quickly because of aging.
Incidentally the relevance of the father concept “EIDE hard
disk” does not change if new concepts are added. That means that
for the “Home PC” task class no “relevance trail” will develop for
the SCSI hard disks, only due to the fact that a new disk has been
added there. RKF reacts conservatively here: It is very unlikely that
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RKF would find the new SCSI-hard disk without other heuristics
(e.g. user-interaction). On the other hand RKF is flexible enough to
adapt to market trends: If it suddenly became “modern” to have
SCSI drives within the task class “Home PC”, the relevance of
these concepts would increase, because of the new demand and
finally because of good overall rating. The relevance of the EIDE
drives would become less because of aging.

6 SUMMARY AND OUTLOOK

The development of Relevant Knowledge First (RKF) was
influenced by the effects of cognitive psychology. First of all age
and usefulness were defined for use in RKF, and a function has
been specified, which calculates the relevance of information from
both these values. The specific characteristic of this method is that
knowledge can not only be learnt, but also be “forgotten” without
deleting information. This is always an advantage, if the
information in a knowledge base is subjected to change.
Knowledge bases in technical domains are usually dynamic due to
innovations. As an example, the configuration in a PC-domain was
presented using RKF. In this example first positive results of this
method could ascertained.

Despite the positive findings we have already made using RKF
the following questions need to be discussed:

One significant problem is the initialization of the usefulness for
the different task classes: Can the initialization be performed
automatically? I would say it depends on the way the assessment of
the solutions works: If an assessment could be found, that can be
calculated without any user interaction this could be achieved. In
this case we seem to find a machine that can tell us the future.
Because no such oracle has been found yet it might help to have a
look at past configuration results. For example PCs sold before the
configuration system for PCs was installed.

On the other hand this reminds us of neural networks during
their training phase. One could say that the learning part of RKF
has some similarity, whereas RKF additionally takes aging
particularly into account.

Another issue to discuss, is the definition of the relevance
function given in this article. Of course this is only one possibility
and yet we have many other ideas which differ slightly. For
example for some domains it seems sensible to stress when
information was successfully used recently.

I’m looking forward to the discussion on these issues during the
workshop.
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Modeling Structure and Behavior for Knowledge-Based
Softwar e Configuration

Chrigtian K ihn”

Abstract. There are several approaches to knowledge-based
configuration, which are successfully applied in technical domains.
Nevertheless they appear not to be sufficient for configuring
software-based systems, as they primarily proceed in a structure-
based manner, but do not take the system’s behavior into account.
In this context, the configuration of software-based systems does
not mean the programming of software, but the composition of
existing software modules into an individual software variant. Our
approach uses state-based behavior descriptions for domain
objects, which can be directly used for making decisions during the
configuration process. Our goal is to apply this approach for a
knowledge-based configuration of future software-based vehicle
electronic systems, which implement customer-individua vehicle
functions.

1 INTRODUCTION

The configuration of complex software-based systems which can
carry out a high number of variants can be a difficult and time-
consuming task. In this context, configuration does not mean the
programming of software, but the composition of existing
components into an individua software variant. In the area of
Artificial Intelligence, various methods for configuration have been
developed that could already be successfully applied, especially for
technical systems. The majority of these methods are structure-
based, i.e. the configuration process as well as the specification of
the configuration objectives are based on the structure of the
system to be configured. For the configuration of software-based
systems these structure-based approaches seem to be suitable, but
not sufficient. In particular, the consideration of the software
system’s behavior appears to be very significant. What software
does can be more important than how it is structured. There are
existing approaches, which in principle take behavior during
configuration into account. However the application of behavioral
knowledge is rather limited to the evaluation of solutions or partial
solutions. An extension of modeling techniques is needed, to
adequately enable model software behavior, which can be utilized
for configuration.

Once again it must be reiterated that our approach is not aimed
at the process of individua software development or programming.
It isintended for building up a high number of individual software
systems which are based on the same set of basic components or

* DaimlerChrysler AG, Research and Technology, HPC T721, D-70546
Stuttgart, Germany, e-mail: christian.kuehn@daimlerchrysler.com
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modules. At the time of configuration the process of module
development has already been finished. Furthermore our method is
intended rather to configure combined hardware/software systems
(embedded systems) than pure software systems. Nevertheless we
will focus on the software aspect in the following. Software can be
considered as a domain, while software modules are understood as
domain objects and will be referred to as concepts in the
knowledge base (software modul e concepts).

In the following section (sec. 2) a short introduction into current
knowledge-based configuration approaches will be given with a
focus on structure-based and behavior-based techniques. The limits
of these approaches will be pointed out. Section 3 describes our
proposed extension of current structure-based configuration
knowledge modeling by behavior models, which serve as a basis
for the configuration process (sec. 4). In section 5 the configuration
of software-based vehicle electronic systems will be illustrated as
an example of application. This paper ends with a summary and
brief outlook (sec. 6).

2 APPROACHESTO KNOWLEDGE-BASED
CONFIGURATION AND THEIRLIMITS
FOR SOFTWARE CONFIGURATION

Knowledge-based configuration belongs to the class of synthesis
tasks. For both the representation of knowledge and the reasoning
process different methodologies have been developed. The
following examples are the most relevant (see [10]):

e Structure-based approach:
In the structure-based approach a compositional,
hierarchical structure of the domain objects serves as a
guideline for the control of problem solution.

e Constraint-based approach:
Representing restrictions  between objects or their
properties, resp. by constraints and evaluating these by
constraint propagation. The constraint-based approach is
not in competition with the structure-based approach but is
frequently combined with it.

*  Resource-based approach:
Resource-based configuration is based on the following
principle, that interfaces between components are specified
by the exchanged resources. Components make a number of



resources available and also consume resources themselves.
A task specification existsin form of required resources.

Case-based configuration:

Case-based problem-solving methods are therefore
identified, so that knowledge concerning already-solved
tasksis saved and is used for the solution of new tasks. The
reason for thisisthat similar tasks lead to similar solutions.

Next to these approaches for knowledge-based configuration there
are several other techniques, like rule-based techniques and
especially techniques that combine different methods, e.g. using
simulation, optimization or spatia reasoning throughout the
configuration process. Some of these approaches which look at
behavior, will be dealt with in the following subsection (2.2). We
will now consider the structure-based approach for software
configuration.
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Under the term configuration, the step by step assembly and
parameter setting of objects from an application domain to a
problem solution or configuration is understood, where certain
restrictions and given task objectives should be fulfilled (see [10],
[17D).

A configuration problem comprises the following components
(see[10]):

Structure-based configuration

A set of objects in the application domain and their
properties (parameters).

A set of relations between the domain objects, while
taxonomic and compositional relations are of particular
importance for configuration.

A task specification (configuration objectives) which
specifies the demands a created configuration must fulfill.

Control knowledge about the configuration process.

The process of configuration consists of a sequence of
configuration steps. As the domain model describes the set of all
possible solutions (configurations), each configuration step can
limit this set until it is reduced to a final solution. In order to
distinguish between the knowledge representation level and the
solution level, the objects on the knowledge representation level
will be caled domain objects or concepts, and the solution
elements will be called instances of these concepts. Possible
configuration steps are specidization (refining an instance to a
more specific concept), decomposition (top-down instantiation of
an aggregate’s components), integration (bottom-up including an
instance into an aggregate), and parameterization (determining an
instance's property value). Examples of configuration systems
based on these types of configuration steps are PLAKON [4],
KONWERK [6], [8], and EngCon [1].

An overview of the technologies, applications and systems is
given in the above mentioned literature.
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2.2

Some new approaches take the dynamic system’s behavior over
time into consideration; this concerns principally the integration of
simulation techniques in knowledge-based configuration (see e.g.
[3], [9], [15], [16]). The aim on one hand is to reduce partia
solutions and calculate values through simulation. On the other
hand simulation can be used for testing the behavior of a fully or
partly configured system and therefore facilitates the verification
with the subsequent evauation of (partial) configurations.

For verification and evaluation of a configuration or partial
configurations the results of other (heuristic) problem solving
methods are verified through simulation. This can be integrated
within a configuration system in the following ways (see [9]):

Utilizing behavior madelsfor configuration

Mapping of the knowledge base and the partia
configuration onto a suitable model for simulation,

Simulation of this model and

The evaluation of the simulation through the configuration
system.

There are simulation procedures which are integrated into
configuration both in the area of quantitative continuous
simulation (e.g. [9], [15], [16]) and in the area of condition-based,
qualitative simulation (e.g. [3]).

2.3 Limitsof thecurrent techniquesfor software

configuration

The above described structure-based techniques seem to be
suitably applicable to configure complex software-based systems,
as these systems are based on a module structure. Although these
techniques provide a good basis for configuring software systems,
they are not yet sufficient as most of them are confined to the
structural construction of systems without taking the systems
behavior into consideration. The reactive system behavior can
become very complex, especially for software-based systems.

An area of application similar to configuration, is the planning
that also belongs to the class of synthesis tasks. For planning, time
and temporal aspects play a central role (see [2]). However in
planning, the target object is a sequence of operations, which
convert a dtarting state into a target state. In contrast to
configuration, here the organization of the different planning steps
aong a temporal axis is of great importance. However in
configuration the aim is to compose a system (i.e. finding a
structure), which in our context has a desired reactive behavior.
Both tasks are similar, but the focus is different.

Often in the context of the “software” domain, a clear module
structure which can be transferred to the knowledge base has
aready been worked out during the software development process.
In contrﬂst to this, specific knowledge about properties and

behavior ~of the software modules have to be supplemented.

! In this context behavioral knowledge does not mean the detailed
behavior e.g. on code level, but abstract knowledge about the behavior that
can be utilized for configuration.



Although on principle the above-mentioned approaches to the
integration of simulation into the knowledge-based configuration
take the behavior of a configuration system into account, they are
not sufficient for the development of complex, software-based
systems, since they are not designed for the high variance of
potential system behavior. Instead of this, a modeling is needed
which alows an adequate, abstract software modeling, which
makes direct conclusions possible from the modeled behavior of
software objects (meaning software modul es as domain objects).

Therefore we propose an approach which forms the basis of a
combination of structural configuration knowledge and behavior-
based configuration knowledge. (The structural knowledge means
domain objects with properties, which are organized in taxonomic
and compositional hierarchies. The behavior-based knowledge
being statecharts allocated to the domain objects.)

3 EXTENDING CONCEPT HIERARCHIESBY
ABSTRACT SOFTWARE BEHAVIOR
MODELS

The aim isto model knowledge of the usable software modules for
configuration, so that reasoning from this knowledge is possible.
This is described in the demands on modeling techniques and
problem solving methods for software configuration in [14]. A
declarative, generic modeling of software modules as abstract
concepts is proposed. These concepts (as well as the other
components), are arranged in a concept hierarchy and are provided
with attributes. For example, several concepts of the same software
module can be specified, but with different ranges of detail.
Likewise, the same concept can be described through its generic
representation of several software modules, when these modules
are represented by an abstract superconcept because of common
properties.

Of course, with a description of a software module by a domain
object (a so-called concept), there are numerous properties that can
be specified, eg. development data (version, authors, short
documentation), hardware alocation (suitable processors, required
memory of the module (ROM), required memory during runtime
(RAM), applied periphery components, properties for application
(input/output interfaces). We want to extend these “simple”
concept properties for software concepts by behavior models as
complex concept properties.

There are different ways of describing behavior. A simple way
to describe the behavior of a software module, is by using the
explicit alocation of one or more buzzwords which describe the
eigibility and possible applications of the module, e.g. light
activation or light dimming.

The functionality of a module can be represented in more depth
by state models, e.g. finite state machines or Petri nets, just as with
rules. There are different possibilities. It is not intended to model
the behavior as detailed as on code level, but to give an abstract
description of the behavior. In the following, statecharts [13] are
used as a description method for the behavior of modules, which
we will go into in more depth in the subsequent sections.
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3.1 Assigning state behavior to domain objects

Statecharts are an extensive method, their functionality is described
in detail in [13]. In contrast to state machines, statecharts allow
(among others):

e Modularization (that means that single states can be refined
to statecharts themselves),

e Pardldism (that means that several states can be active at
the sametime, i.e. states can be orthogonal) and

¢ Real-time conditions.

Especialy in the context of embedded systems, statecharts are
often used for system (and software) specification. In this way
statecharts are frequently used for the generation of executable
code (e.g. C or C++) for embedded systems (see [5], [11], [13]). In
contrast to this, in our approach statecharts serve exclusively for
the abstract description of (software) behavior as a starting point
for selecting existing software modules and appropriately
combining them. The aim is not to generate code (see above).

The same state-based behavior, which is described in our
approach by statecharts, can equally be described with other
techniques, e.g. with finite state machines, regular expressions, or
the explicit set of all traces or sequences of state changes over time
(as can be seen in figure 2). While the modeling by the user or
knowledge engineer is generally simpler and more adequate on
statechart Ievelz, the internal handling of behavior is however
simpler using one of the other techniques — eg. finite state
machines — as operations such as comparison or specialization are
easier to perform. Thus each modeled statechart can be converted
into an internal representation before it is used in the configuration
process.

In the approach described here, only parts of the general
statechart concepts are utilized. It concerns state transition
diagrams, whose transitions are labeled with triggering conditions.
Corresponding to this a state can have transitions to several target
states, whereas transitions are flagged with different conditions.
Conditions can base on external events or on internal events (for
example entry into or exit from states). In addition such events can
be combined by Boolean operators with further conditions, e.g.
with information about the activity or inactivity of other states. The
usable operators for describing conditions (in addition to the
Boolean operators and, or, not) are listed in table 1.

2 In particular, statecharts are fundamentally concerned with finite
specifications, whilst traces can be infinite. In comparison to finite state
machines, statecharts are much more compact. Regular expressions are too
difficult to handle for the user.



operator

description

in(instance, state)
some-in(set of instances, state)

all-in(set of instances, state)

The specified state has to be active.
The specified state has to be active for
one of the instances.

The specified state has to be active for

all of the instances.
entry(instance, state) Transition to the specified state takes
place.
Transition to the specified state takes
place for one of the instances.
One instance passes into the specified
state, afterwards all instances of the set
are in this state.

some-entry(set of instances, state)

all-entry(set of instances, state)

exit(instance, state) Transition from the specified state takes
place.

Transition from the specified state takes
place for one of the instances.

One instance exits the specified state,

afterwards no instance of the set is in this

some-exit(set of instances, state)
all-exit(set of instances, state)

state.
timeout([event], duration) Transition is triggered by a real-time
condition: after the specified event has
happened (or after entering the current
state, if no event is given), and the given
duration of time has past.

extern Transition is triggered external.

Tablel. Operatorsfor specifying conditions for state transitions

Statecharts are assigned to the individual domain objects (in this
case software modules) as properties of these components. For this,
state variables with a set of permissible states (which are
aternatively, i.e. exclusively, active) can be assigned to the domain
objects. In our approach the statecharts of different concepts can be
based on the same states, i.e. a domain object’s statechart can also
use other domain objects’ states, or at least reference other domain
objects' statesin its conditions for transitions. To do this a domain
pattern can be specified which describes the referenced states.

An important point about configuration is that during the
configuration process it is not necessarily definite, which domain
objects are relevant for the solution, i.e. which will be instantiated
as a part of the solution (consider the distinction of concepts and
instances in chapter 2). To access any set of instances’ states in the
statecharts we introduce predicate logical condition operators for
transitions (some-in, all-in, some-entry, al-entry, some-exit, all-
exit). Figure 1 shows a state transition taking place, if at least one
vehicle door is opened or all doors are closed, as an example.

A classification in a concept hierarchy requires that objects can
be specialized, decomposed, and parameterized together with their
behavior (see above). Whereas parameterizing the behavior models
does not play a significant role in our approach, we are focusing on
specializing modeled behavior (in the taxonomical hierarchy) and
decomposing modeled behavior (in compositional hierarchies) in
the following.
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Figurel. Example of astatechart

3.2 Behavior modelsin thetaxonomical structure

Let us consider the specialization of concept C to concept C'. Each
property of C' — also the behavior — must potentially be a property
of C. For behavior that means that the set of C' traces must be a
subset of the C traces (this also corresponds to the comprehension
of behaviora inheritance in [11] and [12]). The superconcept’s
more extensive set of traces means a greater scope of behavior
aternatives, whereas specialized objects have less aternatives for
their behavior as they are described more specifically. Figure 2
shows the specialization of behavior of an example concept. For
building up the taxonomical hierarchy it is enough to model the
behavior of the domain objects on the lowest specialization levels.
All higher levels can be automatically produced, for example by
unifying the behavior traces (or unifying the finite state machines
corresponding to the statecharts, resp., depending on what internal
representation is used; see above).

3.3 Behavior modelsin the compositional
structure

As an aggregate A is composed from components (e.g. from C1
and C2), the corresponding statechart can also be composed from
the components' statecharts. Considering the traces we can build
combinations of the states in the aggregate’ s components up to new
states in the aggregate’ s traces, as can be seen in figure 3. Although
in the example the statechart corresponding to A consists of two
parts graphicaly, it is a closed model whose parts are connected
with each other by the entry conditions.

Decomposing an object into its components permits a high
number of optionsin general, as not all potential components of an
object (or a module resp.) need be choosen (and instantiated) in a
given configuration. A decomposition is only permissible if the
restrictions between the partial components' statecharts, which are
given by domain patterns, are fulfilled. In the example (fig. 3) the
pattern variables ?x and ?y of the component C2 can be mapped
onto the states ¢ and a of the component C1.



@—>(b)—>(d—>(@—>...

(@—> (b)) —>(©) —>())—>(d)—>(@ —>..
(@—(b)—»(d)—>(b)—> (d)—> (@) —...
@—>®)—>() —*>O)—>()—>(b) —>(d) —>@ —..
(@)— (b)—>(c) —»(b)—»(d)—>(b) —>(d) —» (@) —...
(@— (b)—>»(d)—>»(b)—> (c)—>(b) —>(d) —> (@) —...
@O —>d—>bO—>d—>bO—>@—>@—"..

@ OO OO OO A @ ..

is-a

@—>O)—>d)—>E@—>...

(@—>(b)—>(c) —>»(b)—>(d)—>(a) —...

(@—> (b)) —>(¢) —> () —>(c) —>(b) —>(d) —» (A —>...

@O —>O)—>()—>0) —>() —>{b)—> () —>(@—>...

Figure2. Specialization of a concept’s behavior, described by
statecharts and state traces

In the following section it will be described how the behavior
models can be used to draw conclusions during the configuration
process.

4 CONFIGURATION PROCESSUSING
BEHAVIOR KNOWLEDGE

Both the structural knowledge (arrangement of domain objectsin a
taxonomic hierarchy with relationships and parameters) and the
behavior knowledge (state-based behaviora description as
statecharts or any other internal representation) can serve as a
starting point for configuration decisions. In this context, behavior-
based decision-making should not compete with structure-based
decision-making, rather they should complement one another.

Also the specification of a configuration goal can comprise of
both structural and behaviora requirements. This means that when
the configuration objectives are entered, the target object and
required properties3 can be specified just as well as particular
requirements for the behavior of the system to be configured,
which in our approach can be specified by (incomplete) statecharts.
The total behavior should not have to be stipulated by the user (just

3 Seefor example [18].
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as little as the whole structure of the system), this is “configured”
in the solution process.

Whilst we will not be going further into how knowledge
structure is utilized for configuration decisions (for this see eg.
[7], [10]), it will be described how the behavior knowledge can be
used to perform the four types of configuration steps given in
section 2 (specidlization, decomposition, integration and
parameterization). Correspondingly it could be possible to extend
the control of the PLAKON, KONWERK or EngCon systems (see

(41, (6], [1]).

Specializing an instance. The specialization of a software
module instance means to transmute this instance into a more
specific module, i.e. (among other effects) to reduce the potential
value ranges of its properties. For the behavior this means that the
set of possible traces will be reduced to a subset (see above). In
this way, the behavior model description can be transmuted — by
transmuting the instance into a more specific subinstance — into a
specialized behavior, which is suitable for the behavior demanded
in the task specification. To ensure this, the specialized behavior
has to be checked against the statechart in the task specification.

Decomposing an instance. While a module instance is
decomposed, its accessory submodules could be instantiated and
become elements of the current solution. As well as the modules
being decomposed, the behavior models belonging to these
modules are also decomposed. Concomitant to the decomposition
and instantiation of components, relating the participated
statecharts to each other can be performed on the basis of bindings
in the domain pattern. That is to say, variables in the domain
pattern can be bound to the respective instance. This enables the
accessing of respective instances in the statecharts' conditions.

Integrating an instance. Integrating a component into an
aggregate means exchanging a generic subconcept in the aggregate
by a specific instance of this concept. As said before the behavior
of the instance might be more precise than the concept’s behavior
(as the set of traces might be reduced). It has to be guaranteed that
this specialized behavior still suits the other subconcepts or
instances of the aggregate. If this is not given, the configuration
control will not permit this integration step. As with integration, an
existing instance (reducing its concept’'s scope) is assigned to an
aggregate, the integration can aso be seen as a kind of
specialization of the aggregate.
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Figure3. Consideration of behavior during aggregation of C1 and
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Parameterization of an instance. Fundamentally, parameters in

the behavior description can be handled similarly to the remaining
parameters (properties) of an instance, i.e. parameterization aso
takes place here by a reduction of the range of values for the
behavior parameters.
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The configuration process, consisting of specidization,
decomposition, integration and parameterization steps — as well as
further techniques such as constraint propagation, which are not
described further here — should result in a set of instances, where
each can have behavior. This behavior has to be unequivocal for
the configuration solution. As the behavior of al instances are
based on the same set of states, al behavior models can be seen as
one behavior model. This total behavior must fulfill all behavioral
requirements given in the task specification by the user.

5 APPLICATION EXAMPLE:
CONFIGURATION OF SOFTWARE-BASED
VEHICLE ELECTRONIC SYSTEMS

In the field of current vehicle eectronics, the trend of increasing
the functionality using software can be noted. The introduction of
software provides the possibility of using universal control unitsin
the future, instead of specialized control systems for different
functions (e.g. control systems for engines, gears, suspension, €tc.).
These can

be programmed easily.

be modified later.

carry out several sub functions at the same time.

By giving different vehicles individual software configurations,
higher diversity and more customer-appropriate vehicle
construction can be achieved. This trend leads to increased
demands on the development of the electronic system within the
vehicle. On one hand there will be an immense variety of possible
variants, whereas on the other, the variants will be subject to
increasing change through the simple realization of software
updates.

The knowledge-based software configuration approach based on
the above described software modeling, gives the ability to support
the creation of the high number of vehicle software variants in
vehicle development as well as in sales. In sales, the knowledge-
based configuration can help to realize individual customer-desired
functions, by using an appropriate software configuration for each
car. To make this possible, such a configuration has to be based
exclusively on hardware and software components which are
permitted for the respective vehicle series. Particularly in sales,
individual programming of control units performed by engineers
and specialists should be avoided. The task rather concerns the
composition of the vehicle software from single modules and their
parameterization. An example for a behavior model of a software
module interior lighting, which can be specialized to a daylight-
independent interior lighting and a daylight-dependent interior
lighting, is shown in figure 4.
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exit(?pl.exiting-light-idle)
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entry(?pl.exiting-light-idle)

Pattern:

?pl passenger-light-software,
?ps passenger-seat-software
?pd passenger-door-software , ..
?ge gear-software , ..

?ds daylight-sensor-software , ..

Figure5. Statechart description of an individual customer demand for
the courtesy light

A scenario by way of example: Let's say a customer (e.g. a taxi
driver) wants his car to be equipped with a particular courtesy
light, that helps the passenger to locate the seat belt lock and the
handle. This should be achieved by the automatic illumination of
the interior lighting on the passenger’s side as soon as the driver
switches the automatic gear stick to “P” (parking). If the passenger
does not leave the car within a predefined period, the light should
switch off automatically.

A sales employee could record such a customer demand by
means of a (not necessarily complete) statechart, which could serve
as a task specification for the configuration system (see figure 5).
The configuration system’s task is now to determine the software
modules to be used, to parameterize them, to distribute them onto
the existing control units and to determine their sequences. This
includes the determination of the bus communication for each
control unit.

6 SUMMARY AND OUTLOOK

Configuring complex software-based systems, which are able to
carry out reactive behavior — e.g. the software-based electronic
systems of vehicles in the future — can be a very intricate task.
Configuration techniques that exceed current configuration
approaches are required. The system behavior should especially be
taken into account during configuration. We suggest a modeling
approach for knowledge on software, which is based on a software
module concept hierarchy, implying taxonomical, compositiona
and interface relationships. Beside other module properties, each
module concept can be given a description of the module behavior
on an abstract level, eg. using statecharts. These behavior
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descriptions can be used for drawing configuration decisions such
as specializing, decomposing, integrating or parameterization of
module concepts. As the individua configuration steps can be
based on this behavior knowledge, our approach extends to current
structure-based configuration methodologies.

In opposition to simulation-based configuration approaches our
method alows performing of the basic configuration steps
(specializing, composing, integrating or parameterization) directly
based on the behavior model, whereas when using simulation,
configuration decisions first have to be driven (using a heuristics)
and afterwards the results can be evaluated by simulation.

This paper is confined to the basic types of configuration steps.
There are further techniques, especially constraint propagation,
which promise to have favorable effects if they were also extended
to use behavioral configuration knowledge. By way of contrast to
the behavior descriptions given here, which are each assigned to
the domain objects (and always assigned to a particular domain
object), constraints represent restrictions between severa domain
objects. In this way they should also be able to describe behavioral
restrictions between domain objects. A corresponding extension of
the current constraint techniques for configuration, which so far
disregard tempora (and therefore behavioral) dependencies is
needed. This topic may be dealt with in the future.

For the future, the implementation of a prototypica
configuration system is planned, which comprises the methods
outlined in this article. It shall be used for configuring vehicle
software systems to implement customer-individua vehicle
functionality.
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Abstract. Some experiments on randomly generated par-extended by constraint propagation conducts improvement
tial constraint satisfaction problems as well as an exam-steps is used to produce rosters. Soft constraints in com-
ple from the domain of real world nurse rostering illus- bination with iterative search allows on-line modification
trate the advantage of the cycle-cutset method as a repaiof the problem specification. Additionally, iterative search
step in iterative search. These results motivate the integraconverges quickly on rosters of sufficient quality.

tion of adopted algorithms on solving tree-structured con-

traint probl dth | tset method int d Refer to Fig. 1 for a small and simple example. This figure
straint probléms and the cycle-cutset method into mo ernpresents a simplified roster. Each cell is labeled by a shift

constraln_t-based optimization with branch-and-bound andy, ¢ iq gjther a early-morning shift (MS), a late shift (LS), a
propagation of global constraints. night shift (NS), a longer day-turn (DT), or an idle shift (-).
The corresponding constraint problem contains a constraint
variable for each cell in the roster. The available types of
shifts form the domain of these variables. Constraints con-

The GWI Group is the number two provider of integrated cern either shift assignments within the same row of the
software for hospitals in Germany. Process managementirg_)‘_c'ter’ e.g. due t_o wor_king time restr_ictions and compati-
hospitals requires the generation of several schedules for in® ility of consecutive shifts. Or constraints refer to all shifts

stance on nurse rostering, transport of patients, and caordiMthin a column of the roster to ensure a minimal crew at

nation of diagnosis processes. The availability of newthera-the ward and to state preferences on larger standard crews
pies in combination with increasing cost pressure motivates
further optimizations of these schedules by intelligent opti- The nurse rostering system uses an iterative search accord-
mization systems. The GWI-SIEDA GmbH pioneered this ing to Algorithm 1. An initial assignment to all variables is
approach by the development of a constraint-based nursgenerated in line 1. The loop from line 2 to 7 performs im-
rostering system that is used in a growing number of hos-provement steps. These steps start with a heuristic detection
pitals[Meyer auf’'m Hofe, 1997, Meyer auf’m Hofe, 2000, of a partX’u X of the current roster that is considered
Meyer auf’'m Hofe, 1998 to be responsible for some deficienciesofline 3). Fig. 1
presents a subproblem by grey shaded cells that can result

1 Motivation

[Meyer auf’'m Hofe, 199¥.

All these applications require the use of generic algorithms - : . . .
that work on declarative and easily maintainable problemfrom a hgunstl(_: t_o split the cham of night shifts of nurse
representations since the exact scheduling problem differé\lo' 1. This chainis tqo long. Line 5 prepares an exhaustive
typically from hospital to hospital. Thus, the above cited search for better assignments to the variable¥ U X7
system uses very general methods: Extergtatial con- of the chosen subproblem. Acall to a brar}ch_-and-bound
straint satisfaction problems (PCSHFreuder and Wal- procedure completes the improvement step in line 6.

lace, 1992 are used to represent the rostering problem.As mentioned above, Fig. 1 presents an example for a sub-
An iterative search where a branch-and-bound algorithmproblem X’ U X that may be chosen in order to repair
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Th | Fr [Sa|Su|Mo|[Tu|We|Th|Fr|Sa|Su|Mo|Tu|We

123456789 10[11]12]13]14
nurse #1 [NS| - | - [NS|NS|NS|NS|NS|NS| - | - |[MS|MS|LS
nurse #2 |MS|MS(MS| - |DT|DT| - - |IDT|NS| - - |[MS|MS
nurse #3 [MS(MS| - [ - |[MS|MS|MS|MS|MS| - |NS|NS|NS|NS
nurse#4 | - INS[NS| - - IMS|MS|MS|LS|LS]| - |DT| - (DT
nurse #5 [DT[DT| - [MS|MS|LS|LS|LS| - | - |MS|MS|LS|MS
nurse#6 |LS|LS|LS| - |LS| - |DT|[DT|MS|MS| - - |DT | DT
nurse #7 (LS| - | - [LS|LS|LS|LS|LS| - | - |LS|LS|LS|LS

Figurel. A rosterand a subproblem representing a repair step.

Algorithm 1: ITERATIVEIMPROVEMENT(P = (X, D, C, var ¢, >))

1: Compute an initial assignmentto all variables inX.

2: loop

3:  SetX’'uU Xy C X to hold a region wherel possibly is suboptimal and r forms a tree-structured subproblem.

4: if X' =0 then break, end if

5.  Generate an entryonflicts[z «+ d] for eachr € X’ U Xr andd € D that holds all conflicts with
AL X\ (X'UX7).

6: If BRANCHANDBOUND(P, 8 Vp(Al (X \ (X'UX71)), AL (X \ (X'UX7), X', X, conflicts) leads to an
improved solution then assign this improvementito

7: end loop

8: return A

a highly relevant deficiency of a schedule. As mentioned2 Nurse Rostering as Partial Constraint

above, all constraints are either oriented along the rows  Satisfaction

or the columns in the roster. As it will be shown later,

the constraint graph of this subproblem is a hyper tree.Partial Constraint Satisfaction with Fuzzy

This observation motivates a further investigation of effi- Constraints

cient procedures for solving tree-structured constraint prob-

lems [Freuder, 1982, Freuder, 1990, Deché¢ral, 1990, As it is well known, constraint problems consist of con-

Freuder and Wallace, 1992As a consequence, this pa- Straint variables and their domains which is a set of la-

per addresses opportunities to extend branch-and-boungels that can be assigned to the variable. Constraints post

search by the cycle-cutset methidkechter and Pearl, 1987, restrictions on consistent assignments of labels to two or

Dechter, 1990 This improved branch-and-bound is then more variables. The standard constraint problem is to as-

used to perform the the repair step in Algorithm 1. For this Sign labels to all variables in such a way that all constraints

reason, line 3 of Algorithm 1 returns two sets of variables are satisfied. Things get a bit more complex on partial con-

to indicate a subproblen¥ ' andX 7. The variables inX r straint satisfaction where solutions to a constraint problem

are supposed to formteee-structured subproblethat can ~ are only required to satisfy the constraints as good as pos-

be solved by efficient algorithms. In contraat! is thought ~ sible. Such forms of constraint problems are appropriate

to be a cutset: A set of variables that need to have a certo represent all kinds of optimization problems. This sec-

tain value assigned in order to enable the use of efficienttion describes a notion of partial constraint satisfaction with

algorithms for tree-structured problems. fuzzy constraint§Meyer auf’'m Hofe, 200Dthat uses a par-
tial ordering of fuzzy sets of constraints to distinguish more
from less important conflicts. The standard PASReuder
and Wallace, 199Pconsiders soft but crisp constraints, i.e.
solutions are not necessarily required to satisfy all con-

) o ) straints but all constraints are either completely satisfied or
This paper suggests to apply efficient algorithms for SPe-completely violated. In contrast, fuzzy constraints may be

cial constraint problems — for instance of a tree-like Struc'dpartially satisfied by a solution.

ture — as arepair step in iterative search to solve real worl h ) . .
problems like nurse rostering. Therefore, the next section-€t ¥ be the set of variabled) the domain of the variables,

briefly illustrates partial constraint satisfaction and tree- 2ndC’ be the setof constraints that describe constraint prob-
structured constraint problems accompanied with the rele/M P Each constraint € € has a set of local variables
vance of these definitions for nurse rostering. Starting with Y2 ¢-

reformulations of standard algorithms, the next two sec-An assignment to the variables in sgt' is a set of label-
tions develop algorithms for solving k-tree structured sub-ings{z + d|x € X',d € D}. A}l X" selects fromA
problems in real world applications. Concluding remarks the assignments to the variables¥ri’. Additionally, A|
sum up the results. denotes the value that assigns to variable.
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Afunctione. : D¢ — [0; 1] maps a degree of constraint leaf node/

violation to each assignmenitto the local variablesar .. are/ constraint variable root node/
A 0 degree of constraint violation means thiasatisfies the constraint o 70 variable
constraint perfectly. A degree of constraint violation indi- eaf®
cates a complete violation. Degrees between these extremes node .

i i i node/
represent a partial violation. Constramtm

Since assignments may violate constraints to a degree
from0to 1, the conflicts of each assignmehtan be repre-
sented by a fuzzy set(A) wherep (Al var.) is the mem-
bership of constraintin this set. This view makes it easy to
sum up conflicts by use of fuzzy set uniéh = C, U Cs Figure2. Components of a tree-structured constraint network.
where the membership of constrainto C; is the maxi-

mum of¢’s membership t@, andCs.

Finally, a partial ordering- among fuzzy sets of constraints so-called cutset: If Fhese variabl_es are labeled with unique
describes which conflicts are more important than others. Avalues then the striped constraint degenerates to a unary
fuzzy set of constraint€ is more important than another constraint. As a consequence, the rest of the constraint
fuzzy set of constraint€’ iff C1 = C,. An assignmentt problem has a tree-structul®echter and Pearl, 1987,

is a solution of constraint problef iff an assignmentt’ ~ Dechter, 199D

with lessimportant conflicts —i.€/(A) > C(A') —does A constraint graph iglain iff two nodes are connected by
not exist. at most one hyper-arc.

PCSPs according to this definition provide a very flexible |n Fig. 2, the numbers of nodes represent a total ordering
formalism to represent problems like nurse rostering. Nurseof the nodes. Theidth of a node: ; of the constraint graph
rostering concerns classical binary constraints — for in- with respect to a particular ordering is defined to be the
stance to represent compatibility of consecutive shifts —number of nodes . with &1 > 2 wherez, andz. are

as well as global constraints which affect a large numberconnected by different arcs (or constraints). Tidth of

of local variables. As an example for such constraints in the constraint graph with respectto a particular ordering
nurse rostering, consider theepAROxconstraint that is for s the largest width of a node: is called to be théest
instance used to prefer attendance of a standard crew at thgrdering in a particular constraint grapfff the width of
ward and a balanced working time account. The degree ofthe constraint graph with respecttds minimal. Thewidth
violating this constraint is defined with respect to two pa- of a constraint graph (in general) is the width with respect
rametersf and g, wheref (d) maps a weight to each value g the best orderinfFreuder, 1982

in the domainD andg is a goal sum of this weights. The de- ] ) ) .
greey s 4(A) of violation a constraint of this type grows A _constralnt problem whose constraint graph is of width
with the distance between the goal syrand the sum of 1 is called a tree-structured problem. The smallest node

weights of the values that assigns to the local variables. ~ according to> is the root node. All nodes which are not
connected to--larger nodes are leaf nodes. An ordering

proving width 1 is also called tree-ordering if for each con-
lg—3 £(d)] straint the local variable which is the smallest duestis
{ocdiea connected with a smaller variable.

Prgld) = [var.| - max{f(d) |d € D}

Fig. 2 presents such a tree-structured problem. The numbers
of the nodes indicate a tree-ordering. Each node is at most

Let for instancef map a 1 to the morning shift and a 0 to ) ;
connected with one node of a smaller index.

all other shifts. Then an APROXconstraint is appropriate
to state a preference on a standard crew of 2 nurses duringonsequently, a tree-ordering can be used also in the
the morning shift on day 2 in Fig. 1. The constraint has a nurse rostering application to prove that a subproblem has a
goal sum of 2 and all constraint variables concerning shiftstree structure. Since each cell in a roster corresponds with a
on day 2 as local variables. Consequence: The degree otonstraint variable in the constraint problem, Fig. 3 presents
constraint violation grows with the difference between the 3 tree-ordering for the subproblem of Fig. 1 numbering the
scheduled crew size and the preferred crew size during thﬁodes in the constraint graph from 1 (root node) to 21. The
time period of the morning shift. constraints on a roster either connect cells in the same row
of aroster — maximal and minimal working time, preferred
working time, constraints on minimal resting time, and so
Tree-structured Subproblems on — or the same column of a roster — for each required
shift type a constraint on minimal and preferred crew size.
Fig. 2 presents the constraint graph of a constraint problemHence, all variables referring to cells of the same row or
The nodes in this graph represent variables. The hyper-arcsolumn are connected by constraints. The arrows in Fig. 3
represent constraints between the connected variables. Theoint from each constraint variable to a variabler. iff
tree-structured subproblem consists of the numbered nodeboth are local to the same constraint and > z.. Since
and constraints. The striped constraint disturbs the tree-at most one arrow leaves from the same variable, the sub-
structure of the problem and the striped nodes represent @aroblem has width 1. This small example shows that more
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Figure3. Constraints connectonly variables within the same row or the same column. Consequence: The subproblem’s constraint
graph has the form of a hyper-tree.

efficient algorithms for solving tree-structured subproblems1993. This procedure loops over all admissible assign-
are also relevant to improve nurse rostering if they are notments to the local variables of the constraint (line 4). For
restricted to subproblems of a plain constraint graph — ineach of these “tuples”, fuzzy setupleConflicts holds
the nurse rostering application many constraints overlap inthe propagated constraint with a membership according to
more than one variable. the tuple’s degree of violating the constraint. Additionally,
tuple Conflicts is loaded with the conflicts that have been
detected in advance to each of the assigned values (line 7).
3 Cycle-Cutset and Branch-and-Bound After this procedurefuple Conflicts holds for each con-
straint the maximal degree of constraint violation that fol-
This section introduces an extension of the branch-andows either from the propagated constraint or that has been
bound with cycle-cutset that is derived directly from the lit- detected in advance for one of the assigned values. Then,
erature. Algorithm 2 presents a version of the branch-and{ine 10 collects for each labeling of a single variable the
bound as it is referred by Algorithm 1. The branch-and- conflicts according to the best tupl¢’ it appears in. Fi-
bound receives as arguments: The constraint probffem  nally, conflicts is loaded with the newly detected conflicts.
the bounds, the best yet found solutiof, the currently ~ Provided thatp. can be computed efficiently, the effort for
explored assignment, and the distanc that is the fuzzy  the min-max-propagation grows wit®|">*<! which is the
set of constraints reflecting’s constraint violations. Fur-  number of tuplest’.

; . i
thermore, X” and Xr_specify which part ofP has to Algorithm 4 TREESOLVE finds optimal solutions to tree-

be searched. The variables i are known to form & - g cyreq problems withC| calls of algorithms for con-
tree-structured subproblem. The branch-and-bound has tg P 9

) . ) . Straint pr ion. For n me, th&oPAGATEI
branch over the possible assignments to the variabl&s'in svnon EngE:g\,;ittlk? theomagj,:nﬁisfo 21’ tat%?\ a§cord:z to
whereas the variables i¥ + will be labeled by a special ynony propag g

algorithrt Algorithm 3. The basic idea is to propaga@e the cqnfli_cts
’ from the leave nodes to the root node. Consider again Fig. 2
Line 1 leads to a backtracking if the conflid®f the cur- as an example. The loop over line 2 considers at first leaf
rently explored assignmentexceed boung@. Then, line 2 node 7. Algorithm 5 DRECTEDPROPIs called to propagate
determines whether the branch-and-bound has to perform ghe constraints linking node 7 as a root node of a subtree to
branching or not. If both¥’ and X are empty, them is the branches of the subtree. However, node 7 is a leaf node
a new solution. Hence, line 4 returns this new solution andand, consequently,IRECTEDPROPhas nothing to do. This
its conflicts. If X1 represents a non-trivial tree-structured situation changes on node 5 representing variableAfter
subproblem, line 6 calls Algorithm 48 VETREEto solve DIRECTEDPROPON this variable, theonflicts of the labels
the remaining problem. I’ is not empty, line 3 chooses of variablezs are set according to the best opportunity to
a variable and the loop in line 10 loops over all admissi- label the variables ; to s forming the subtree below:.
ble assignments to this variable. Then, line 12 calls con-It can be shown thatonflicts[zs + d] comprises under
straint propagation to find out which conflicts arise on the these circumstances exactly the conflicts of the optimal as-
new assignment < d. Line 14 implements the final step signment to the variables in the subtree that also asgigns
in branching: A recursive call of the branch-and-bound in- to 5. The condition for constraint propagation infECT-
cluding the new assignment and a new distance. EDPRoOPguarantees that constraints of deeper subtrees will

. . . nsider for nstraints of higher .
This version of the branch-and-bound uses constraint prop-be considered before constraints of higher subtrees

agation to detect conflicts which conclude from the cur- After leaving the propagation phase, the loop starting at
rently explored assignments. Arragonflicts stores for  line 5 collects labelings to build an optimal solution in the
each assignmentto a yet unlabeled variable the correspondsame manner as the branch-and-bound algorithm: Select
ing detected conflicts. Algorithm 3 presents a generic pro-a new labeling for a variable according to the yet known
cedure for the propagation of fuzzy constraints: The min- conflicts and propagate the consequences of this new la-
max-propagationSnow and Freuder, 1990, Dubas al., beling by the same constraint propagation as it is used in
the branch-and-boundto find new conflicts.

I The literature on cycle-cutset assumes an algorithm whefe
needs to be computed for any branch in the search tree. Hence, tree-structured problems can be solved efficiently,
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Algorithm 2: BRANCHANDBOUND(P, 3, 5,4, A, X', X1, conflicts)

P is the constraint probleng is the bound: The fuzzy set of constraints representing the conflicts of the best yet
found solutionS. Initially, the bound maps full membership to all constraints &nd the empty setA is the partial
assignmentdescribing the current branch of the search tree that is initially the em{fy #&t.fuzzy set of constraints

that represents known conflicts concluding from assignmer¥ ’ is the set of variables to be labeledy N X' = ¢

is a tree-structured subproblemnflicts describes the known conflicts. The result of the algorithm is a tUplé)
representing either the old solution or a new improved one.

1: if not@ > & thenreturn (S, 8}, end if.
2. if X' = 0 then

3: if X7 = 0then

4: return (A, §).

5 €dse

6: return SOLVETREE(P, (3,6, A, X1, conflicts) .

7. endif

8: else

9: Chooseamr € X'.

10:  for all d € D with 8 > conflicts[z + d do

11: for all c € C with z € var. do

12 conflicts +~PROPAGATION(c, 3 6 U conflicts[x < d], A U {z + d}, conflicts ), where Propagation is one of
the procedures for constraint propagation described below.

13: end for
(S, B8) «+ BRANCHANDBOUND(P, 3,6 U conflicts[z + d],

14: AU{z «d}, X'\ {z}, X1,

conflicts).

15:  endfor.

16:  return (S, 8).

17: end if

Algorithm 3: MINMAX PROPAGATION(c, 3, 8, A, conflicts)

c is the constraint to be propagated. Argumeritis a partial assignment that may be used for instance to describe
the branch of a search treeanflicts[z « d] is a fuzzy set of constraints that holds the conflicts that follow from
assigning labef to variablex.

1: for all = € var. andd € D do

2:  Add all constraints with membershipto best Conflicts[z + d].
3: end for.

4: for all A" € DY composed of admissible Iabellnge

5. SettupleConflicts to be the fuzzy set mapping membership(A’) to constraint.
6: foral z € var. do

7: tuple Conflicts < tupleConflicts U conflicts[z «+ A'] x].
8: endfor.

9: foral z € var. do
10: if bestConflicts] A’} {x}] = tupleConflictsthen
11: bestConflicts[A'| {x}] + tupleConflicts.
12: end if.
13 endfor.
14: end for.

15: for all = € var. andd € D do conflicts[z + d] < bestConflicts{x + d] end for.

A labelingz « d is admissible iff eithefz < d) € A or A does not assign a value to variableand 8 >
5 U conflicts[x + dJ.

if the constraint graph is plain and propagation of the con-but without using REESOLVE (bb). The diagrams show

straints is efficient. Academic papers often concentrate onan average performance on randomly generated PCSPs of a

binary constraints since these constraints guarantee an effiplain constraint graph and with binary and crisp constraints

cient max-min-propagation. of low satisfiability. The constraints have a randomly cho-
sen weight and the preferengeis defined according to

Fig. 4 shows the effect of introducing cycle-cutset into the the weight sum of violated constrainiEreuder and Wal-

branch-and-boundp+cycle-cutset) and of using thisal-  |ace, 1992. The curves show the decrease in the weight

gorithm for steps of repairiterative cycle-cutset) com-  of constraints violated by the best yet found solution over
pared to the branch-and-bound with constraint propagation
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Algorithm 4: TREESOLVE(P, 3,6, A, X1, conflicts)

Let > be a tree-ordering on the variables of the subproblem(let« {c | |var. N X7| > 2} be the constraints
connecting variables of the tree-structured subproblem, i.e. the set of constraints oft he tree-structured subproblem.

. for all z € X ¢ ordered by> starting with the largest variabtio
DIRECTEDPROR(z,Cr, 3,4, A, conflicts).
end for.
. if not3 > thenreturn (@, 3), end if
: for all z € X ordered by> starting with the smallest variable (root nodie)
Choose a valué € D with minimal é Ll conflicts[z + d].
for all ¢ € C with z € var. do PROPAGATION(c, 3,8 U conflicts[z < d], A, conflicts) end for.
d « 6 U conflicts[z + d].
end for.
: return (A, é).

Qe Rr®LNE

[Eny

Algorithm 5: DIRECTEDPROR(z’, Cr, 3, 6, A, conflicts)

1: for all ¢ € Cr wherez' is minimal local variable of due to> do
2:  MINMAXPROPAGATION(c, 3,8, A, conflicts).

3: end for.

4: return conflicts.

time. Diagram a) shows the performance on nearly tree-currently explored branch of the search tree @ a yet un-
structured problems: All plain but connected graphs with labeled variable and the currently known conflictsof- d

10 nodes and 9 arcs form a tree. As a consequence, botdo not exceed the bound [Meyer auf’'m Hofe, 1999,
algorithms using cycle cutset converge very quickly on Meyer auf’'m Hofe, 200D Thisshallow propagatiomleter-
the optimal solution. With increasing number of the con- mines conflicts with a constraintaccording to possible ad-
straints, the branch-and-bound with cycle-cutset becomesnissible assignments to the local variables.ddn the one
worse than branch-and-bound without cycle-cutset sincehand, suclshallow propagatiois useful to detect conflicts
the solved problems loose their tree-like structure. In con-early in a kind of extended forward checking as performed
trast, an iterative search exploiting cycle-cutset convergesn line 12 of Algorithm 2. On the other hand, efficient al-
still far more quickly on optimal solutions than the branch- gorithms can be found for many relevant constraints. As
and-bound. Apparently, especially the integration into iter- an example consider Algorithm 6H3LLow PROPAPPROX
ative search makes cycle-cutset a really attractive methogiresenting a shallow propagation for the constraints of type
for solving constraint problems. APPROXthat has been defined in section 2.

However, algorithm REESOLVE is only applicableto sub-  Let A be the partial assignment describing the currently
problems of glain constraint graph. Real world problems Vvalid branch in the search treel’s degree of violating a
imply only in very rare cases plain constraint graphs sinceconstraint of type &pRroxis determined according to the
these applications depend very often on constraints of largedistance betweeh” . .. f(Al =) and a goal surg. Al-

arity (global constraints) that often overlap in more than onegorithm 6 determines the conflicts for currently unlabeled
variable. The &#PRoxconstraint of section 2 provides an Variables by a simple procedure that at first sums up the
example for such large arity constraints. minimal sumf5™"and the maximal sunfs™* of weights
resulting fromf on admissible values (in the loop starting
at line 2). The second loop starting at line 6 uses these re-
sults to determine for each admissible labeling— d the
minimal and maximal sum of weigh&™™; and =% that

can result from extending < 4 with admissible labelings.

A complete satisfaction of the constraint is considered to be
possible if the goal sum lies between these values. Other-

ously recognized conflicts. Both requirements in combina- WiS€, an optimistic estimate on the degree of constraint vi-
olation that results from assigningo = is computed from

tion make it hardly possible to implement this kind of prop- ~'< ; > )
agation efficiently for special types of large arity constraints /=« O fz*a. The effort for this algorithm grows linear
— but efficient propagation of large arity constraints is With the size of the domaii and the arityjvar.| and is,
one of the key factors for the success of constraint-basedhus: very efficient.

problem solving. Fortunately, Algorithm 2FEBANCHAND- Such algorithms detect conflicts with partial assignments
BounD can make use of a reduced form of constraint as required in line 12 of Algorithm 2 and in line 7 of Al-
propagation that distinguishes only admissible from non-gorithm 4. However, shallow propagation is not appropri-

4 Solving Tree-structured Problemswith
Shallow Propagation

Algorithm MINMAX PROPAGATIONIoOKs for optimal sup-
port with respect to the propagated constrantl previ-

admissible labelings. A labeling «+ d is called to be ad-
missible iff it is an element of assignmentdescribing the

ate for the task of collecting all conflicts in a subproblem
as required in line 2 of Algorithm 5 since shallow prop-
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Figure4. The basic effect of cycle-cutset as step of repair within iterative improvement.
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agation only distinguishes between admissible and non-their local variables) to the cluster that overlap with more
admissible labelings. These algorithms fail, thus, to prop-than one variable. The procedure exits immediately with re-
agate conflicts detected in deeper subtrees to higher nodesult conflictsif x’ is either not the smallest local variable of
of a tree-structured problem. As a consequence, the call ta constraint o’ is not the smallest variable of the cluster.
In these cases, IRECTEDCLUSTERPROPIS ano operation
because the cluster containinghas to be propagated later
tree-structured subproblems which form a hyper tree whereon in order to follow the tree-structure of the connections
between the clusters. At the end of the first phaséand

C' are the components of a cluster whereis the small-
est variable — and, therefore, the interface to the clusters
which are higher in the tree. This cluster contains all con-
The idea is to group the variables of a constraint problemgiraints withs’ as local variable and additionally all con-
into clusters in such a way that the arcs between the clusiraints that overlap in more than one variable.

DIReECTEDPROPIN Algorithm 4 shall be replaced by Al-
gorithm 7 DRECTEDCLUSTERPROR that is able to solve

hyper-arcs are allowed to share more than one variable.

Algorithm 7 DIRECTEDCLUSTERPROP is based on
Freuder's idea to solvk-structured tree§Freuder, 199D

ters form a tree. These clusters form subproblems that can . .
The goal of phase two is to collect for each assign-

entz’ « d to variablex’ the conflicts of the best as-

H H ' /
algorithms on solving tree-structured problems are able t05|gnmeqt to tr,“:f variables Of. the clusters that labels
with d sincez’ is the only variable that may also be part

of clusters which are higher in the tree. This phase starts

be treated as single constraint variables where the set of all
solutions to a cluster can be considered as the domain. Nom):n

combine solutions to the clusters in a consistent way. The
complexity of this algorithm depends on the sizef the

largest cluster.

the cluster containing variable’ wherez’ is the small-
est variable due to-. Line 1 collects constraints with’
as smallest local variable. As in Algorithm SIRECTED-

collect the conflicts within the subtree belaw. The fol-

with line 10, an enumeration of all admissible assignments
to the variables inX’ \ {z’}. This loop collects all con-
Algorithm 7 applies this idea in a two phase procedure. flicts that have been detected for the current assignmentinto
The first phase spanning over the lines 1 to 8 determinestuple Conflicts. Shallow propagation of all constraints in
C' adds all conflicts with constraints of the current clus-
ter. bestConflicts is set according to the result of the best
assignment to the variables in the cluster. As a final re-
PrOP, these constraints have to be propagated in order tosult, conflicts is set to the least important conflicts that
have been detected. The effort for this algorithm grows with
lowing loop starting with line 3 adds all constraints (and |C’| - |D|'X'"1 multiplied with the effort for constraint
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Algorithm 6: SHALLOW PROPAPPROXc, 3, 4, A, conflicts)

As mentioned in the text, this constraint has a goal sum g and a funttsra special attribute that maps each value
in D to a real number. Left be an assignment to the local variables. Thés,degree of violating the constraint is
defined as follows:

. lg — Z{m(—d}GA f(d)]
era(A) = o “max{/(d) |d € D}

1 e o, fmin . g,

2: for all z € var. do

3: 5 — 5% 4+ max{f(d) | # + dis admissibl¢.

4;  fmin o pmin 4 onind £(d) | » « dis admissiblg.

5: end for.

6: for all x € var. andx « dis admissibelo

7. fEES — 5 —max{f(d') | # + d’ is admissiblg + f(d).

8  f il [ — min{f(d') | z + d'is admissibl¢ + f(d).

9. if fi* < gthen
10 Addcwith a degree O T 7epy 10 conflictslz « d.
11:  dseif f3% > gthen .
12: AQd c with a degree C"lvarc|~m;f{<_f?;f| 7y 10 conflicts[x « d].
13:  endif.
14: end for.

Algorithm 7: DIRECTEDCLUSTERPROR(z', Cr, B, 8, A, conflicts)

: 0"« {c € Cr | x is minimal local variable of due to>}. X' « |J_ ¢/ vare.
if C' = @ then return conflicts, end if
: forall ¢ e Cr do
if | X’ Nnvar.| > 2 then
if 2" is not minimal local variable due ts then return conflicts, end if
Add all variables invar. to X’. Insertc into C".
end if
: end for
: for all d € D do Add all constraints with membershipto best Conflictsz’ «+ d]. end for.
10: for all A’ € DX'\M="} of admissible labelingdo
11:  Initialize tuple Conflicts to hold an empty set for eagh« d with # € var. \ X’ andde D.
12: forallx € X' andd € D do tupleConflicts[z' « d] + tupleConflicts[z’ + d]U conflicts[A’| {=}]. end for.
13: for all ¢ € C' do tupleConflicts «— SHALLOWPROR(c, 3,8, AU A’, tuple Conflicts). end for
14: foralde Ddo

15: if bestConflicts[z’ + d] = tupleConflicts[z’ < d] then bestConflicts[z’ « d] + tupleConflicts[z’ « d].
end if.

16: endfor.

17: end for.

18: for all d € D do conflicts[z’ + d] « bestConflicts[z' + d] end for.

propagation when only one local variable is notlabeled. 5 Conclusion

This paper suggests to apply efficient algorithms for spe-
Refer again to Fig. 3: The size of the subproblem is 21. Thecial constraint problems — and exhibit for instance a k-tree
largest cluster in this nurse rostering example is of size 6structure — to real world applications. An example from
(row for nurse 3). This means that rather large subproblemsa nurse rostering domain as well as first empirical results
can be optimized within iterative repair at comparably low on randomly generated constraint problems illustrated the
costs. The effort for the large repair step of Fig. 3 should bepotential of such algorithms to improve the performance of
pretty much the same as the effort for a sequence of repairepair steps in search by iterative improvement.
steps each treating a single cluster by the branch-and-boun
— but the results will differ in most cases. The application
of DIRECTEDCLUSTERPROPconducts a global optimiza-

rlihe paper sketched necessary modifications of algorithms
taken from the literature in order to integrate special pur-
jpose algorithms into state of the art optimization by branch-

cluster with respect to the shift assignments that are Cur_and-bound extended with constraint propagation.

rently valid in the other clusters. The suggested use of efficient algorithms within iterative
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improvement raises new questions on opportunities to con-
trol the search. Iterative improvement as presented in this
paper is based on the heuristic detection of subproblems
in the application that are responsible for suboptimal solu-
tions. The suggested extensions reduce the effort for many
extensive repair steps. As a consequence, further strategies
for search control have to consider both: Assumptions on
reasons for deficiencies in the current solutmlassump-
tions on the effort for finding an improvement whereas the
latter depends strongly on the applicability of efficient al-
gorithms.
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Abstract.

This paper proposes a new planning architecture for agents
operating in uncertain and dynamic environments. Decision-
theoretic planning has been recognized as a useful tool for
reasoning under uncertainty; it calculates an optimal plan
using a given planning model (state set, action set, proba-
bility distributions over possible state transitions, and utility
function). In a dynamic environment, however, the current
situation may be different from what an agent expects and
the current planning model may not be feasible. It is, there-
fore, important for an agent to continuously examine the sit-
uation and to use an appropriate planning model. For this
purpose, we propose to employ a knowledge-based meta-level
reasoner to on-line select an appropriate planning model for
an object-level decision-theoretic planning, based on the given
knowledge of classification of the situation. This architecture
could also be effective in reducing the computational cost of
decision-theoretic planning by limiting the search space ac-
cording to the situation. T'wo applications of the architec-
ture to a dynamic robot planning and to a decision-making
in highway driving show the generality and the usefulness of
the architecture.

1 Introduction

To design planning algorithms for an agent that operates in
the real world, we need to consider the following two issues:
uncertainty and limitation of computational resources. Vari-
ous activities of an agent such as sensing and motion inher-
ently include uncertainty; an agent’s computational power is
definitely limited. It is, therefore, important for an agent to
cope with uncertainties without largely increasing the com-
putational cost.

Decision-theoretic planning [2] has been recognized as a
useful tool for reasoning under uncertainty; it is usually de-
fined by the following:

e state set S.

e action set A.

e probability distribution over the possible state transitions
for executing action a« € A in state s € S. Exogenous
changes are also included here, if any.

e utility function to evaluate each state or each state-action
pair.

In this paper, we collectively call them a planning model. Un-
der this model, an agent usually determine an action (or ac-
tion sequence) which maximizes the expected utility.

Many works have adopted decision-theoretic planning to
planning tasks under uncertainty (e.g., [11] [6] [13]). These
works, however, assume that the environment is static.

Decision-theoretic planning is usually costly because it has
to consider multiple outcomes of actions and the planning
cost often increases exponentially to the search depth. This is
a drawback when used in a dynamic environment where the
allocated time for planning is limited. Recently Markov de-
cision processes (MDPs) have been attracting much interests
as a basic representation for planning under uncertainty [7].
Although several approaches (e.g., [4]) have been developed
to efficiently obtain optimal policies for MDP problems, they
still seem inappropriate for large-sized planning problems un-
der time pressure.

One approach to reducing the computational cost is to
properly control the allocation of computing resources to each
decision-theoretic planning activity. Many works have recently
been focusing on the concept of limited rationality [15], in
which the cost of planning is explicitly considered and com-
putational resources for object-level planning is allocated so
that the overall utility including both plan efficiency and plan-
ning cost is maximized. Some of examples are: flexible com-
putation [10], decision-theoretic meta-level control of (object-
level) reasoning [15], and expectation-driven iterative refine-
ment (EDIR) using anytime algorithms [3] [14].

These works are mainly interested in optimal allocation of
computing resources within a given planning model. In a dy-
namic environment, however, we have to cope with the change
of situation by switching planning models. Since a planning
using a wrong model may lead to a fatal situation, it is im-
portant to frequently examine if the current model is fit to
the current situation and to switch to an appropriate model,
whenever necessary.

It could be possible to have a very large model which covers
all possible situations. However this approach may not desir-
able due to the following two reasons. First, adopting a large
model is computationally expensive in both model genera-
tion and model utilization because the number of transition
relationships between states grows exponentially to that of
states. Second, considering all possibility at once could some-
times hide the underlying structure of a planning problem.
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whole problem space only effective part of the space

FExamining the whole problem space or examining
only a part of the space.

Figure 1.

An example of such a case will be shown in the next section.

Based on the above discussion, we propose to put a knowledge-

based model selector on top of an ordinary decision-theoretic
object-level planner. Given the knowledge of the structure of
the planning problem, the model selector selects an appro-
priate planning model, thereby directing the efforts only to a
limited, effective (or correct) computation (see Figure 1).

Many layered architectures have been proposed for con-
trolling autonomous robots. Gat [9] proposed a three-level
control architecture. In his architecture, called ATLANTIS,
the controller is responsible for controlling primitive activi-
ties, which are usually reactive sensorimotor processes; the
deliberator controls time-consuming computational activities
such as planning and world model maintenance; the sequencer
coordinates such various activities by initiating and terminat-
ing them according to the current goal and situation. Pell et
al. [8] proposed a similar architecture for autonomous space-
craft. Such works mainly discuss how to integrate deliber-
ative and reactive activities and deal with the level of plan-
ning and executing actions. Since this level corresponds to the
decision-theoretic layer in our case, our approach of putting a
knowledge-based model selector can also be adopted to these
control architectures.

The rest of the paper is organized as follows. Section 2
shows a simple example in which the analysis of the structure
of the planning problem is important. Section 3 describes the
proposed planning architecture. Section 4 describes the appli-
cation of the proposed architecture to a mobile robot planning
problem in a dynamic environment. Section 5 describes the
application to a tactical reasoning in driving used for an in-
telligent driver assistance system. Section 6 summarizes the
paper and discusses future works.

2 Importance of Knowledge of Problem
Structure: A Simple Example

This section shows a simple example in which considering the
problem structure is important. Figure 2 shows a situation
where we are going from city A to city B. We select the route
among the three, R1, R, and Rs. The degrees of congestion of
Ri1 and Rs are dependent on the current situation, while that
of R, is constant. We suppose there are two states: s; is the
state that R, is more congested than Rs; so is the contrary
state. We assume the loss table shown in Table 1, where C}
and C> are losses (it could be the necessary time of travel)
imposed by taking a specific combination of the state and the
route.

We here suppose that which state actually occurs depends

A route selection problem.

Figure 2.

o/ Ne
@® @

Pl/ \ Pt P2/ \ P2
& & ® & & ®™

@ (b)

Figure 3. Structure of probabilistic inference.

Table 1. A loss table.

route to take
Ry | Ro | Rs
S1 C1 | C2 0
So 0 Cla Cq

on some other factors such as the time of a day. For example,
we can consider the case where s; is more likely to occur in the
morning (We call this situation J1) and so 1s in the afternoon
(situation J2). Let P! be the probability that state ¢ occurs
in situation J; and @; be the probability of situation J; (see
Figure 3(a)). P/ can be regarded as the model of situation J;.
If we do not know this hidden structure of the problem (i.e.,
situation decomposition into J; and J2), we have to use the
probabilities of the states directly (see Figure 3(b)), which
would probably be estimated from the samples for a whole
day. Let P and PJ be such a probability of each state; P is

given by
Pl =Pl + QP!

As an example, consider the following parameters: C; = 50,
Cy = 20, P! = P} = 0.8, P§ = P} = 0.2. Using these
values, we summarize in Table 2 the expectation of taking
each route in the three cases: (1) the situation is known to be
Ji (i-e., @1 =1,Q2 = 0), (2) the situation is known to be J;
(@1 =0,Q2 = 1), and (3) the unknown situation where J;

(i=1,2)
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Table 2. Expected loss of taking each route. Underlined is the
optimal.
[ B[R] | E[R.] | ElRs] |
7 40 20 10
situation g 10 20 40
unknown 25 20 25

and Jz are equally likely to occur (@1 = @2 = 0.5). From the
table, we can see that if we know the current situation, we can
perform planning only for the situation, thereby obtaining a
more efficient plan.

If we know the probability of each model, we can select an
optimal action, for example, which minimizes the expected
loss. Suematsu and Hayashi [16] propose an algorithm to cal-
culate an optimal policy which maximize the expectation of
the average reward per step given a set of candidate models
and the probabilistic distribution over the set. However such
an approach could be computationally expensive, because ba-
sically all possibilities (models) have to be examined.

What we would like to stress here are that for efficient (or
tractable) model construction and utilization, we should use
as much knowledge of the problem structures as possible, and
that a planning architecture should be capable of effectively
utilizing such knowledge. These are the strong motivation for
us to propose the three-level planning architecture.

3 Three-Level Planning Architecture

Based on the above discussion, we propose a three-level con-
trol architecture shown in Figure 4. Each level is considered
to operate in parallel with the others. The functions of each
level is as follows.

Knowledge-based model selector

This level continuously examines the environment and classi-
fies the current situation into one of known categories. Based
on the selected category, the corresponding planning model
is selected and given to the next level. As a model selector,
we can use any classifier; for example, a Bayesian classifier

knowl edge-based
model selector history,

statistical data

i planning model

decision-theoretic state

planning estimation
i action command\

direct sensing

reactive local . environment
controller action /
Figure 4. Three-level planning architecture.

[5] can be used to assess the probability of each category and
the reliability of each planning model in the current situation.
Concerning the applications presented in this paper, in Sec-
tion 4, we use a simple frequency-based classifier; in section
5, on the other hand, we use a hand-coded state-transition
graph-based classifier.

Base-level decision-thoretic planner

This level performs planning using the given planning model
and the state estimation result to select the best action which
minimizes the expected utility, and sends the selected ac-
tion to the next level. Any decision-theoretic planners can
be adopted as long as they response to the dynamics of the
environment reasonably quickly. An appropriate example is
Real-time Dynamic Programming (RTDP) [1] which on-line
generates a decision tree with a limited depth.

Reactive local controller

This level has a set of actions, each of which is realized as a
local sensory-action feedback loop. The upper-level decision-
theoretic planner selects an action and this level executesit. In
addition, this level occasionally handles emergency situations;
in that case, this level overrides the upper levels.

4 Example Domain 1: Mobile Robot
Planning in Dynamic Environmen t

This section describes an application of the proposed planning
architecture to a mobile robot planning problem in a dynamic
environment (see Figure 5).

There 1s a mobile robot and a moving obstacle. The robot
and the obstacle have their own destination and the robot
does not know the obstacle’s destination. The task of the
robot is to reach the destination as early as possible without
colliding with the obstacle. The robot has several planning
models; only the knowledge of the destination of the obstacle
is different in these models. The robot uses one of the models
to predict the future movement of the obstacle for decision-
theoretic planning.

ﬁ destination
4
. ’
obstacle
« @ ) b
robot
\/
—
Figure 5. Example problem in dynamic environmert.
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set of possible .~
moving directions

at the next time step canonical trajectory

Figure 6. Motion uncertainty model of obstacle.

4.1 Model of Obstacle Motion

Obstacle motion is modeled by its canonical trajectory to the
destination and motion uncertainty around the trajectory (see
Figure 6). We represent the motion uncertainty by a set of
possible moving directions at the next time step and the uni-
form probabilistic distribution over them. W e repeatedly ap-
ply this uncertainty model to predicting the obstacle position
in a near future (a few time steps).

4.2 Decision-Theoretic Robot Motion
Selection

Each planning model is composed of the following:

e a state is represented by the position and the velocity of
the obstacle and those of the robot.

e an action is the motion (i.e., the moving direction and the
speed) of the robot at the next time step.

e a probabilistic distribution is calculated over the possi-
ble next position of the obstacle using the motion model
(canonical trajectory to a destination).

e a utility function to evaluate the expected time of the robot
reaching its destination.

The decision-theoretic planner repeats the cycle of estimat-
ing the current state (measuring the position of the obstacle),
searching for the best next action, and issuing a command
to the controller. The search is performed as follows. First
the robot predicts the possible pairs of the position and the
velocity of the obstacle and their probabilities at the time a
few steps later from the current time by using the motion
uncertainty model. For each pair of predicted obstacle posi-
tion/velocity and robot position, assuming that the obstacle
position will diverge around the canonical trajectory (see Fig-
ure 7), the robot calculates the time to the destination using
our path planner, which generates a minimum-time collision-
free path in the time space (see Figure 8). The robot selects
the best next action which minimizes the expected time to
the destination.

4.3 Selecting Motion Model of Obstacle

The top-level knowledge-based model selector estimates the
motion model of the obstacle (i.e., planning model) from the
history of obstacle motion. At present, we have tested the
following two types of model selectors.

. obstacle

uncertainty region

Q robot

Figure 7. Uncertainty evolution model of obstacle motion.
t
'y
obstacle
y
 robot
Figure 8. Path planning in time-space.

4.3.1 Static Model Selector

This is a very simple frequency-based selector which does not
consider much about the dynamics of the environment. Let M;
be models and P; be their probabilities. Each probability is
calculated from the relative frequency in the latest Ny trials?
Let n; be the frequency of the ¢th model in the trials. The
probability P; is given by

7

P, = .
Ny,

Let ¢* be the index of the most probable model. If Pi» is
above a predetermined threshold, the ¢*th model is selected;
otherwise, the model selector considers that the obstacle does
not have no canonical trajectory and considers all possible
moving directions of the obstacle derived from all possible
candidates for the canonical trajectory. These two cases are
analogous to the case in Section 2 where the situation is known
to be J; or J2 and the case where the situation is unknown,
respectively.

1 We assume that, after each trial, the robot can uniquely determine
the motion model of the obstacle during the trial.
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4.3.2  Dynamic Model Selector

This 1s also a simple frequency-based selector, but it inves-
tigates the underlyning dynamics of the environment (i.e.,
moving obstacle). That is, the selector considers the change
of the moving obstacle’s destination as a Markov process and
estimates the transition matrix M of the Markov process from
the history of obstacle motion. The element M; ; of the ma-
trix indicates the probability that the obstacle that took the
1th model at the latest trial takes the jth model at the next
trial, and is estimated by:

4,5

Miy] = Nz ) (1)

where n; ; is the frequency of the jth model taken just after
the ¢th model and N; is the frequency of the sth model.

4.4 Sim ulation Results

Figure 9 shows the problem setting for simulation. The robot
moves upward and the obstacle moves downward. There are
three motion models of the obstacle, which are referred to as
LW (leftward, from the robot’s point of view), ST (straight),
and RW (rightward). A canonical trajectory of the obstacle
is calculated for each pair of the current and the goal posi-
tion. The robot classifies the situation into one of these three
models.

In the simulation, we can consider two kinds of motion
models of the obstacle: one is the model that the robot ex-
pects for the obstacle (ezpected model); the other is the model
that the obstacle actually takes (actual model). If these two
models coincide, the robot motion is expected to be efficient;
otherwise, the robot is likely to exhibit an inefficient behav-
ior. Figure 10 shows two exmaples of trials. In Figure 10(a),
the robot thought the obstacle would move leftward (LW)
and the obstacle actually moved as expected (LW); in the
Figure 10(b), on the other hand, although the robot thought
the obstacle would move rightward (RW), the obstacle actu-
ally moved leftward (LW). The robot motion is much more
efficient in the first case than in the second.

Table 3 shows the result of simulation trials to see how
the relationship between the expected and the actual models
affects to the performance of the robot. In the table, each

robot goal

goal for LW

goal for ST

goal for RW

Figure 9. Problem setting.

robot goal ‘?/ obstacle start

3 obstacle start

robot start

obstacle goal

(a) expected=LW, actual=RW.

Figure 10. Results of two trials.
Table 3. Simulation results.
ACTUAL

NO ST LW RW
E NO 32.55 34.59 33.18 33.31
X (6.57) | (2.58) | (4.39) | (5.05)
P ST 38.21 29.63 31.26 35.34
E (12.14) | (1.02) | (3.49) | (6.82)
C Lw 37.01 31.35 29.72 34.39
T (8.49) | (1.81) | (2.39) | (5.71)
E RW 32.97 31.41 32.89 29.71
D (6.16) | (1.82) | (2.73) | (2.62)

row indicates the expected model and each column indicates
the actual model. The NO-row indicates that the robot has
no models of obstacle motion; the N O-column indicates that
the obstacle randomly selects one of the three models (LW,
ST, RW). For each combination of the two models, we ran
150 trials. In each box, the upper number is the mean of the
time steps the robot took to reach the destination. The lower
number in parentheses is the standard deviation of the time
steps. W e can see from the table that the robot motion (and
equivalently the planning result) is efficient if an appropriate
planning model is selected, and it is not otherwise.

Next we tested the three-level planning architecture through
a large number of concecutive trials. The knowledge-based
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Markov process used.

Figure 12.

model selector collects the history of the obstacle movement
and determines the current model based on the probability
estimation method mentioned above.

Comparison of planners with dynamic and static model selector.

The first test was done with the static model selector (see
Sec. 4.3.1). Figure 11 shows the result. The figure shows the
time elapsed by the robot to reach the destination (upper
part), the expected model of the obstacle (middle part), and
the actual model of the obstacle (lower part). In the upper
part, the ranges of trials where there was a discrepancy be-
tween the expected and the actual model are shown as shaded
regions. For the NO actual model, the NO is the best ex-
pected model, but in this case, we can say that there is always
a discrepancy; so the range corresponding to such a case is also
lightly shaded. In such shaded regions, the robot motion is not
efficient due to generating a plan based on an inappropriate
planning model.

The second test was done with the dynamic model selec-
tor (see Sec. 4.3.2). In this case, we used the Markov process
shown in Figure 12 as the underlyning dynamics to generate
the problem sequence. In addition, the expected motion model
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is selected so that the predicted expectation of the cost is min-
imized using the predicted probability of each model and also
using Table 3 as the expected cost for each combination of
the actual and the predicted model. Figure 13 shows the re-
sult. In the figure, the performance of the planning system
with the static model selector and that with the dynamic
model selector as well as the change of the evaluation of the
estimated Markov model®in the dynamic model selector are
shown. The result shows the dynamic model selector outper-
forms the static one because the dynamic model selector uti-
lizes the knowledge about the problem structure that the ob-
stacle changes the motion model according to some Markov
process.

5 FExample Domain 2: Intelligen t Driver
Assistance

This section briefly describes an application of the three-level
planning architecture to the intelligent navigator that can give
the driver timely advice on safe and efficient driving. For the
details of the intelligent navigator, refer to [12].

Usually tasks in driving can be divided into two levels [17]:
the tactical level determines maneuvers such as lane changing
and overtaking to meet the objective of driving (e.g., a tar-
get arrival time) under the constraints imposed by the actual
traffic condition; the operational level translates the selected
maneuver into actual operations of steering, accelerating, adn
braking.

In real traffic, sensory data based on which the intelligent
navigator generates advice is uncertain (e.g., measurement
error or occlusion). In addition, the situation is dynamic, i.e.,
the situation evolves as time elapses. Therefore, the tactical
level advice generation should be based on the prediction of
the future traffic condition with consideration of uncertainty.
We adopt a decision-theoretic planning for the tactical level.

Then, in order to adaptively select a planning model for
the tactical level and to activate the tactical level only when
it is necessary, we introduce a meta-level planning (called the
meta-tactical level). The resultant control architecture is com-
posed of three levels: meta-tactical level, tactical level, and
operational level, they exactly correspond to the three levels
shown in Figure 4.

Tactical Level Decision-Thoretic
Planning

5.1

Figure 14 shows a scenario where a decision-theoretic plan-
ning is employed to determine a maneuver. Our vehicle (painted
rectangle) is on the left lane ? and is approaching the exit to
take. Since the speed in the current lane is becoming a lit-
tle bit slow, the driver starts thinking of overtaking vehicles
ahead. The overtaking maneuver is generally faster, but there
may be risks of lane changing itself and of missing the exit
due to occluded vehicles ahead. Such a trade-off is formalized
in a planning model corrsponding to each situation.

In this application, each planning model is composed of the
following:

2 The model is evaluated by the sum of absolute differences of the
corresponding elements of the obtained transition matrix and the
true matrix.

3 Note that the slower lane is the left one in Japan.

Figure 14. An overtaking scenario.
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Figure 15. A part of state-transition graph for the

meta-tactical level.

e a state is represented by the position and the velocity of
our vehicle and those of other vehicles.

e an action is a maneuver. In the above scenario, there are
two actions: change lane for overtaking and go straight.

e a probability distribution is calculated over the possible
future placements of vehicles including occluded ones.

e a utility function which is a function of the expected time of
our vehicle reaching the exit and the loss of each maneuver.

We also have constructed planning models for other traf-
fic situations such as: overtaking near the target exit without
congestion; congestion around an entrance or an exit which
our vehicle does not take. All such models are manually con-
strcuted.

Meta-T actical Lewel as
Knowledge-Based Model Selector

5.2

This level continusouly watches important events on traffic.
Examples of possible events are: the average speed of the cur-
rent lane slows down; the exit is approaching. It also period-
ically updates the estimation of the arrival time. Since it is
inefficient to always check all events, only selected events are
monitored which are considered to be important in the cur-
rent state. To realize such an adaptive focus of attention, we
construct a state transition graph. Figure 15 shows a part of
the transition graph. For example, at state [Exit: Medium,
Lane: Left] (which means that the distance to the exit is
medium and the vehicle is on the left lane), possible events
are: (1) the speed becomes slower (Speed: Slower); (2) the
exit becomes near (Exit: Near). For each event, the corre-
sponding planning model for the tactical level is assigned.
This strcuture enables the meta-tactical level to adaptively
select appropriate planning models.
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5.3 Implemen tation and Experimen ts

The advice generation subsystem with the three-level archi-
tecture is connected to a road scene visual recognition subsys-
tem, which detects and localizes lanes and other vehicles, to
constitute the intelligent navigator. We constructed a proto-
type system and conducted experiments on an actual high way.
In one case, for example, our vehicle with the intelligent nav-
igator traveled about 12km, and during the travel, the intel-
ligent navigator generated advice 5 times, all on appropriate
timings.

6 Conclusions and Discussion

This paper has discussed the importance of analyzing the
problem structure and of the model selection mechanism for
an agent making a plan in uncertain and dynamic environ-
ments. A three-level planning architecture has been proposed
which has a model selection layer on top of an decision-theoretic
middle layer. We applied the architecture to two planning
problems. In a mobile robot planning in a dynamic environ-
ment, the model selector is implemented as a frequency-based
model estimator, which can select an appropriate planning
model adaptively. Model selection by the dynamic model se-
lector is done based on the expected loss due to model discrep-
ancy. In the intelligent navigator example, the model selector
is implemented as a state-transition graph, which selects plan-
ning models according to both the history of maneuvers and
the current traffic condition. These two application examples
show the generality and the usefulness of the proposed archi-
tecture.

This paper has focused only on the use of the knowledge-
based meta-level control for planning model selection. An-
other important role of the meta-level control is to limit the
search space adaptively according to the time pressure. The
following two approaches are possible: limiting the set of ac-
tion candidates and limiting the length of lookahead. These
kinds of meta-level control could be realized by a method
which explicitly considers the tradeoff between the amount
of search and the plan quality. However, formulating such
a tradeoff could sometimes be difficult in complex planning
problems in the real world. Therefore, our approach of em-
ploying knowledge-based control seems to have an advantage
in a practical use.

In this paper, we have manually constructed the meta-level
model selector by examining the problem structure. A future
work is to automate the construction of the model selector to
some extent, by using various machine learning techniques.
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4SP: A four-stage incremental planning approach

Eva Onaindia, Laura Sebastia and Eliseo Marzal 2

Abstract. GraphPlan-like and SATPLAN-like planners have shown
to outperform classical planners for most of the classical planning
domains. However, these two propositional approaches do not exhibit
good results for large-size problems due to the graph size they have
to handle.

In this paper we show a new approach for planning as an attempt
to combine the advantanges of a graph-based analysis and a partial-
order planner. The fast responses obtained in the experimental results
show that the application of thistechnique can report significant ben-
efitsin terms of areduction in search space and that the average per-
formance of this planner is much better: it takes a bit longer to solve
some easy problems but it is capable to easily solve large problems.

1 INTRODUCTION

Recently, a study to compare the performance and limits of six plan-
ners reports that, to date, no one planner has demonstrated clearly
superior performance [6]. The conclusion of the study is that the
best planner varies accross problems. The planners were tested on
the UCPORP suite problems and on a particular software testing do-
main from the authors [6]. No planner solved all of the problems.
Some planners as STAN [4] were faster in general and others solved
a few more problems the others did not. As for the software testing
domain, UCPOP [1] clearly dominated and solved many more prob-
lems than the others.

Moreover, we tested STAN [4] and Blackbox [5] on large prob-
lems from the blocks world domain and noticed that none of them
were able to solve problems involving more than fifteen blocks.

Our motivation is to develop a new planning approach which also
offers a good performance for large size problems. In order to tackle
this issue, we present a planner which integrates a graph-based pre-
processing technique that incrementally exploits the problem knowl-
edge and a partia-order planner (POP).

Our new planning approach, 4SP, executes a four-stage algorithm:

e First stage: itstask isto build up a graph that will contain the set
of all of the possible actions which can be executed at each time
point.

e Second stage: the result of this phaseisamore refined graph which
only contains a subset of actions that must necessarily occur in a
correct solution.

e Third stage: the purpose of this stage is to guarantee a partial
consistency between the actions in the graph. The graph obtained
from this phase will even comprise, in some particular cases, all
of the actions of a correct solution.

1 This work has been partially funded by the Spanish Government CICY T-
FEDER project 1FD7-0887

2 Dept. Sistemas Informaticos y Computacion, Technical Univer-
sity of Valencia, 46071 Valencia, Spain, email: {onaindia, Istarin,
emarzal } @dsic.upv.es

e Fourth stage: this stage is aimed at adding the missing actions in
the plan and finding an ordering relation for all the actionsin the
plan (total consistency). The result of this phase will be the fina
solution plan.

The experimental results show that a proper integration of agraph-
based preprocessing technique and a POP reports significant benefits
in terms of areduction in search space and it is al'so capable to solve
large size problems. The layout of the paper is asfollows: in sections
2 through 5 we will focus on each planning stage, section 6 shows
the obtained results and section 7 draws conclusions from this work
and summarizes some directions for future work.

2 THE FIRST STAGE

The first phase of the algorithm creates a graph inspired in a
Graphplan-like expansion. This graph, hamed problem graph, may
partially or totally encode the problem. The problem graph is a di-
rected, layered graph with two kinds of nodes (literals and actions)
and two kinds of edges (precondition-edges and add-edges). The lev-
els alternate action levels containing action nodes and literal levels
containing literal nodes.

e An action-level A; consists of al of the action instantiations
which are applicablein the previous literal-level L;_, and are dif-
ferent from any other action instatiation in the graph. That is, A;
is composed of al of the action instantiations a;;, which satisfy
these two requiments:

— all preconditions of a;, are present in the previous literal-level
Ljfl and

— a1, does not occur in any previous action level

o A literal level L; is a set of propositions implictly representing
the different world states reachable after executing actionsin A;.
More specificaly, let A; = {aj1,a;2,...,a;,} bethe set of ac-
tion instantiations that can be executed at action level A;; the set
of literalsin L; is defined as L;—1 U AddEff(a)® Va € A;, that
isliteralsin the previous level L;_, plus the add effects of each
actionin A;.

The first level in the problem graph is the literal-level Ly and it
isformed by all literalsin the initial situation. A; consists of all of
the action instantiations which are applicable in Lo. L; isthe set of
literalsin Lo plus the add effects of each action in A; and so forth.
The problem graph creation terminateswhen aliteral level containing
al of the literals from the goa situation is reached in the graph or
when no more new actions can be applied. Notice that the delete

3 AddEff, DelEff and Pre stand for the add effects, delete effects and pre-
conditions of an action respectively.
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effects of actions are ignored during the problem graph creation and
therefore interactions between actions are not taken into account at
this stage. This makes the first stage be a very fast polynomial time
process.

It must al so be noticed that a problem graph is neither a state-space
graph nor a Planning Graph [2]. There are two main differences with
respect to a Planning Graph:

a) levelsin the problem graph do not stand for time steps but for in-
stantiation steps which can entail more than one execution step.
An action level A; denotes that every action in A; will be exe-
cuted at atimestep ¢ > j and at least one action from A; _; must
be executed firstly.

b) since delete effects of actions are ignored in the problem graph we
do not have to deal with mutual exclusion relations among nodes
at this stage. The next phase will be responsible for identifying the
relation between two actionsin the same level: mutually exclusive
(they interfere with each other), complementary actions (one of
the actions adds an effect the other needs) or independent actions
(there isno explicit order between them).

Toillustrate the process of the problem graph creation we will take
the hanoi problem for three disks (big -B-, medium -M- and small -
S-) and three pegs (P1, P2 and P3) as an example (Table 1). Thefirst
step is to build the literal level Lo which comprises @l of the liter-
asintheinitial situation (literals are numbered as they appear in the
graph). Following, the action level A, is created by finding all pos-
sible applications of the operator Move ?disk ?placel ?place2 over
the literals in Lo, where ?placel and ?place2 may indicate a disk
or apeg. Once the first action level is created, the next literal-level,
Ly, will include the set of literalsin Ly plus the new effects added
by the two actions in A;. In Table 1 literals 2 and 3 are in bold to
indicate they also belong to the goa state. The column next to A;
shows the preconditions required by each action and the add effects
generated by the action (P stands for preconditions and E stands for
add effects).

Lo Ay Ly
B on P1 1 | MoveSM P2 | P={345}, | BonP1 1
E={78}
Mon B 2 | MoveSM P3 | P={34,6}, | MonB 2
E={8,9}
SonM 3 SonM 3
clear S 4 clear S 4
clear P2 5 clear P2 5
clear P3 6 clear P3 6
SonP2 7
clear M 8
SonP3 9

Table 1. Hanoi problem graph (1)

Next step is to generate the actions in A by applying the oper-
ator Move 7disk ?placel ?place2? over the literals in L;. Only the
instantiations which have not been inserted in the graph yet (that is,
instantiations different from Move S M P2 and Move S M P3) are
considered. In order to do this, we only take into account those in-
stantiations which involve at least one of the new literals inserted at
Ly (7,80r9), astherest of instantiations already appear at the previ-
ous action-level A;. The second level of actions and literals (A» and

L) are shown in Table 2. The new literals are those numbered from
10to 12.

A2 L2
MoveSP2M | P={4,78}, | BonP1 1
E={3,5}
MoveM BP2 | P={258}, | MonB 2
E={10,11}
MoveM BP3 | P={2,6,8}, | SonM 3
E={10,12}
MoveSP3M | P={4,8,9}, | clear S 4
E={3,6}
Move SP2P3 | P={4,6,7}, | clear P2 5
E={5,9}
Move SP3P2 | P={4,5,9}, | clear P3 6
E={6,7}
SonP2 7
clear M 8
SonP3 9
clear B 10
M on P2 11
M on P3 12

Table 2. Hanoi problem graph (2)

Step 3 followsthe same rules explained aboveto create A; and L.
All of the literals in the goal situation finally appear at Ls (Table 3)
and consequently the process of the problem graph creation finishes.

As L3
MoveBP1P2 | P={1,510},| BonPL | 1
E={13,14}

MoveB P1P3 | P={1,6,10},)] Mon B 2
E={14,16}
MoveM P2B | P={8,10,11}, Son M 3
E={2,5}
MoveM P3B | P={8,10,12}, clear S 4
E={2,6}
Move M P2 | P={6,8,11},| clear P2 5
P3 E={5,12}
Move M P3| P={58,12},| clear P3 6
P2 E={6,11}
MoveSP2B | P={4,7,10},| SP2B 7
E={5,15}
Move SP3 B P={4,9,10},| clear M 8
E={6,15}
MoveSM B P={3,4,10}, SonP3 9
E={8,15}
clear B 10
M on P2 11
M on P3 12
BonP2 13
clear P1 14
SonB 15
BonP3 16

Table 3. Hanoi problem graph (3)

The problem graph may include all of the actions of a solution
plan. For all of the tested domains (see section Experimental Re-
sults), except the hanoi problem, we obtained a problem graph which
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includes all necessary actions in avalid solution plan. However, this
cannot be guaranteed because, as it was said above, the problem
graph creation finishes at a level where dl the literals from the goal
situation are present, even though additional actions could be applied
at thisfinal level.

The advantage of the problem graph isthat itssizeismuch smaller
than the Planning Graph and the cost of creating this graph is hardly
appreciable even when dealing with large size problems.

3 THE SECOND STAGE

The goa of this phase is to extract the information concerning the
planning problem from the problem graph. At thisstage, anew graph,
named basic graph, is obtained. The basic graph is created by select-
ing from the problem graph only those actions which must necessar-
ily appear in avalid solution.

The basic graph is a directed, layered graph with only action
nodes. The number of levels in the basic graph is the number of ac-
tion levels in the problem graph plus two additional levels, an initia
and afinal action level. The former contains one action ap which has
effects and no preconditions; the final level includes one action a,
with preconditions and no effects.

The process to create the basic graph starts with preconditions of
ar, (goa literals). The objective isto find a set of actionsin the prob-
lem graph having these goals as add effects. The found actions are
inserted in the basic graph and their preconditions form a new set
of subgoals which in turn are solved by following the same process.
Once there are some actions in the basic graph, the new precondi-
tions can be achieved with actions from the problem graph or basic
graph. At the end of this phase the basic graph will be a subset of the
actionsin the problem graph which belong to a correct solution.

In order to find the correct action for each literal (subgoal), 4SP
applies the following property:

Property 1 (literal consistency) A literal p required by an action
ar (p € Pre(ay)) is said to be consistent if these two requirements
hold:

e thereis a sequence of actions a; — a;+1...ax—1 — aj such
that p € AddEff(a;) and p ¢ DelEff(a;) Vj € [i + 1,k — 1].

e for each action a; such that p € DelEff(a;) there is a sequence
a; = Qi+1...ax—1 — ap Withanactiona;,j € i + 1,k — 1],
such that p € AddEff(a;).

In order to check theliteral consistency itisnecessary to propagate
effects of an action a; each time a causal link a; — a; is asserted.
The propagated effects of an action a; are computed by means of the
following procedure:

1. PDelEff(ao) =DelEff(ao)
P AddEffao) =AddEff(ao)

2. Letpo,p1,...,pn bethe pathsin the graph that have a; as desti-
nation node. Let A = {ao,j—1,0a1,j—1,...,an,j—1} bethe set of
predecessor actions of a;, each corresponding to a path.

(@ PAddEffa;) = {x € PAddEf{a;) : a; € A/(Jay, € ANz €
PDelEff(ar)) — ar < a;}*

PDelEff(a;) = {z € PDelEff(a;) : a; € A/(Jar € ANz €
P AddEffar)) = ax < a;}

4 a;, < a; denotes action a;, is executed before action g;

(b) PAddEff(a;) =PAddEff(a;)—DelEff(a;)) U AddEfF(a;)
PDelEff(a;) =PDelEff(a;)—AddEff(a;)) U DelEff(a;)

3.1 Algorithm for the basic graph

The aim of this second phase is to obtain a basic graph where the
property of literal consistency is satisfied for each action precondi-
tion. In order to check whether aliteral is consistent or not the delete
effects of the producer action of a causal link must be propagated
according to the procedure stated in section 3. Figure 1 shows some
cases of inconsistent literals. In Figure 1., action a1, which is se-
lected to satisfy the precondition y of a2, provokes a conflict as it
deletes the precondition z of as. Figure 1.b shows a similar example
where the action a; whichisintroduced in the basic graph to satify a
precondition also deletes aliteral of the same needer action.

Figure 1. Some examples of inconsistent literals

The key point of the algorithm for the basic graph is to select the
proper actions to satisfy the preconditions of the actions inserted in
the basic graph. In order to select an action a; from the problem
graph to solve a precondition p of an action a; € A; in the basic
graph, the algorithm proceeds as follows:

1. Find a set of actions forp. Find all actions at any level 4; < A;
having p as an add effect.

¢ |f the actions found in the problem graph belong to different
action levels we say p is an OPEN literal. In thiscase aset R
containing al the different levels the literal belongs to is cre-
ated. When a literal is OPEN it is not possible to make a de-
cision about which action to choose and the literal remains as
OPEN until moreinformation is available.

e If al actions found in the problem graph belong to the same
action level we say p isa KNOWN precondition. In this case
it is not possible yet to choose the proper action to satisfy p
but at least the level of the producer action is known. All of
the actions which produce p are gathered in a cluster and the
common preconditions, add and delete effects of the cluster are
identified. From this point, the cluster is treated as a single ac-
tion (with its preconditions, add effects and del ete effects) until
one of the actions in the cluster is selected.

o |f there exists only one action to satisfy p then the action is
clearly identified and it is inserted in the basic graph. In this
case p isaCLOSED literal.

From a set of literals to be solved, 4SP selects first CLOSED lit-
erals, then KNOWN literals and finally OPEN literals.

2. Study the delete effects of the selected actior$p isaKNOWN
or CLOSED literal then one of the actionsin the cluster, or the se-
lected action, must necessarily be used to solve the precondition p.
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4SP analyzes the consequences of propagating the common delete
effects of the actions in the cluster or the delete effects of the se-
lected action respectively. The aim of the propagation isto find out
whether any other literal in the basic graph becomes inconsistent
after adding the causal link a; — a; for p (a; € A; will be the
selected action if p is a CLOSED literal or one of the actions in
the cluster if p isa KNOWN literal). Let’'s suppose that a precon-
dition ¢ of an action ay, in the basic graph (ax. € A, Ar > A;)
becomes inconsistent after propagating the delete effects of a;:

(@) If gisaCLOSED or KNOWN literal, an ordering between a;
and the producer action of ¢ for a;, isadded.

(b) If g is an OPEN literal, the new set of action levels for ¢ is
computed as R = {Ax}/h € [i + 1, k], and so only actionsin
an action level of R are now considered as potential producers
for ¢. In short, the range of action levels for a precondition ¢
is restricted by discarding all levels lower and equal than the
action level which deletes q. In both cases of Figure 1 literal «
of action a3 becomesinconsistent due to the propagation of the
delete effects of action a1. In figure 1-a), = could be achieved
with actions in the same level as a3 or from any lower level,
whereas in figure 1-b) x could only be achieved with actions
fromitsown level.

3. Select or limit the number of actions for p.

(8 When p is an OPEN literal the producer action for p is not
known, not even the action level for that action. As it was ex-
plained above, the number of action levels (R) of aliteral can
be restricted as long as new information is inserted in the ba-
sic graph. In this way, it may eventually happen that |R| = 1
and thus the literal becomes KNOWN or CLOSED. Otherwise,
when all CLOSED and KNOWN literals have been studied (at
this point one iteration of the algorithm is completed), the up-
per action level of all OPEN literals is removed. Actions from
lower levels are preferred because the lower the level of the ac-
tion is the less actions will have to be introduced to achieve its
preconditions. The behaviour of the algorithm alwaysfollows a
“principle of minimality” which isalso applied at other points.
Thiswill be explained later on.

(b) If pisaKNOWN literal, and therefore there is a potential set
of actionsto achieve p, the algorithm discards those actions for
which property 1 does not hold. That is, Va; /p € AddEff(a;),
if the causal link a; — a; violates property 1 for any other
literal in the basic graph then a; is removed from the set of
actions. Sometimes the application of this property is not suf-
ficient to discriminate among a set of actions and consequently
additional criteriaare to be applied.

The agorithm selects firstly actions in the basic graph than in
the problem graph when achieving a precondition of an action.
Thereasonisthat it is preferable to use actions already existing
in the basic graph than adding a new action (given two literals
p and g to be satisfied, if an action al in the problem graph
achieves p and an action a2 in the basic graph achieves both p
and g then a2 will be selected). On the other hand, when there
are several potential producer actionsfor aprecondition, and all
of them satisfy property 1, the algorithm selects the one which
has less preconditions unresolved. The application of these two
criteria indicate the process for creating the basic graph is ori-
ented towards obtaining the minimal set of actions. In case none
of the them allows to discriminate among the actions, any ac-
tion will be valid.

3.2 Properties of the basic graph

After the second stage two different results can be obtained:

e No basic graph existsThishappenswhenitisnot possibleto find
a sequence of actions to achieve a particular literal, and it is usu-
ally due to the lack of an operator to achieve such aliteral. Let's
take the example in Figure 2 where the action a; deletes the pre-
condition p of action ay,. In case there is no operator for achieving
p, the only way to satisfy the literal is with the effects of the ini-
tial situation and therefore the precondition p of the action a;, will
never be a consistent literal. Notice that the action a;, appearsin
the problem graph (and consequently in the basic graph) because
at the literal-level L; both p and g are present and g is a new lit-
eral achieved in the previous action-level A;. If no basic graph is
obtained the problem is unsolvable.

A0

Figure2. Nobasic graph

e A basic graph is obtained. Although the basic graph is created,

this does not guarantee the problem is solvable. That is, the fulfil-
ment of property 1 is not sufficient to discover unsolvable prob-
lems. However, if a solution existsfor aproblem, all of the actions
in the basic graph will be part of such a solution.
Basically, the basic graph comprises optimal sequences of actions
to achieve each subgoal literal independently. Only afew interac-
tions among actions are considered at this stage, as those due to
the introduction of causal links. For this reason, in most cases it
isnot possible to establish a set of consistent ordering constraints
among all of the actions in the basic graph.

Theissues of completeness, soundness and termination on unsolv-
able problems are tackled in section 4.

3.3 An application example

In order to show the process for creating a basic graph we will take
the example of the hanoi problem. The starting point is the problem
graph shown in Tables 1, 2 and 3.

The agorithm begins with the literals in the final situation: 2, 3
and 16. Literals 2 and 3 are OPEN because literal 2 can be achieved
with the initial action ag, as it is one of the initial effects, and ac-
tions at level As; literal 3 is aso produced by action ap and two
actions at level A,. The algorithm selects literal 16 (CLOSED) and
action Move B P1 P3 isinserted in the basic graph at A3. The pre-
conditions of the new actions are 1, 6 and 10. Literal 1 is CLOSED
(level Ap), literal 6 is OPEN (levels Ag, A> and A3) and literal 10
is KNOWN (two actions at level A»). Since literal 1 isa CLOSED
literal (asit only appears at Ayp), a new causal link between a, and
Move B P1 P3 isadded in the basic graph (Figure 3).

Next step is to study literal 10. There are two choices at A, for
literal 10 (Move M B P3 and Move M B P2). Both actions have a
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ove BP1P3

14,16,-1,-6 6
1,2,3.4,5.6
A0 A3 A4

Figure3. Basic graph 1 for the hanoi problem

common delete effect, literal 2, which makes precondition 2 of action
an beaninconsistent litera (after applying the effects propagation).

At least one of these two actions must be chosen to solve literal
10; precondition 2 of a,, isan OPEN literal so the number of action
levels for literal 2 isrestricted to {As}. A cluster with both actions
for literal 10 is created (Figure 4). We discard Move M B P3 be-
cause this action gives rise to a literal inconsistency as it deletes lit-
eral 6 whichisaprecondition for the action Move B P1 P3, whereas
Move M B P2 does not cause any conflict.

14,16,71,76

Move M B P2

11,75
6
Move M B P3

12,76

1,2,34,5,6

10,72

Figure4. Basic graph 2 for the hanoi problem

After some more steps, the situation is as shown in Figure 5. At
this point, we have no criteria to choose between the actions in the
clusters.

1. At least one of the two actions in the cluster at A; must
be chosen to generate literal 8. Both actions produce a litera
inconsistency (Move S M P2 deletes precondition 5 of action
Move M B P2 and action Move S M P3 deletes precondition 6 of
action Move B P1 P3) and we cannot discriminate between them
by any other criteria.

(a) If wetriedto solvethe conflict generated by Move S M P2 then
literal 5 would have to be achieved for action Move M B P2;
there are two actions that have literal 5 as an add ef-
fect (Move S P2 M in the basic graph and Move S P2 P3
in the problem graph) but both generate a literal inconsis-
tency (the former deletes literal 8 which is a precondition of
Move M B P2 and thelatter deletesliteral 6 whichisaprecon-
dition of Move B P1 P3).

(b) If wetriedto solvethe conflict generated by Move S M P3 then
literal 6 would have to be achieved for action Move B P1 P3;
there are two actions having litera 6 as an add effect
(Move S P3 M in the basic graph and Move S P3 P2 in the
problem graph); as the former isin the basic graph and it does

not cause any conflict we conclude that the correct choice to
solve literal 8 is by selecting the action Move S M P3.

2. Oncetheactioninthe cluster at A1 isknown we proceed with the
cluster at A2. Since we have selected Move S M P3 at Ay, itis
easy to see that Move S P3 M isthe correct action at A» because
all of its preconditions are already solved whereas Move S P2 M
would need an additional action to achieve its precondition 7.

3. Thesame criteriacan be applied to the cluster at A3, thusresulting
in the selection of Move M P2 B as all of its preconditions are
already solved with actions in the basic graph.

At this point the upper action levels for literals 5 and 6 are re-
moved. Literal 5 is then solved with action ap and literal 6 with the
action selected at A2, Move S P3 M.

2,85 1,6,10
34 "
2,3,16
10,11,72,~5 14,16,71,76 |

(a0

12,3456

Move MP3 B

6,-12

Figure5. Basic graph 3 for the hanoi problem

The resulting basic graph (Figure 6) comprises five out of the
seven necessary actions to solve the problem.

2.8.5
346 10,11,-2,75

89,376 849

1,2,3,45,6

3,6,78,79

2,5,-10,-11

Figure 6. Fina basic graph for the hanoi problem.

4 THE THIRD STAGE

Property 1 guarantess that, if a solution exists for the problem, all
of the actions in the basic graph will belong to a correct solution.
However, having obtained a basic graph is not a sufficient condition
to ensure the problem is solvable. On the other hand, even though
the problem is solvable, it may be impossible to set an order among
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all of the actions in the basic graph. In short, the set of actions in the
basic graph constitute a first approximation towards a final plan but
still some further refinements can be done on the graph.

The third stage is aimed at solving these issues and obtaining a
more refined graph. The behaviour of the third stage is guided by the
following property:

Definition 1 (partial consistency) A basic graph is said to be par-
tially consistent if it is possible to set a total-order relation between
each pair of actions in the same action level of the basic graph.

The application of this property will enable:

=

to discover unsolvable problems,

to get amore refined graph, closer to afinal solution plan,

3. to provide a support towards obtaining an optimal solution (the
shortest solution, i.e. the one with the less number of actions).

N

Let a1 and a2 be two actions of a same level action, Pre(a:) =
{z1,y}, Eff(a1) = {z1,-y}, Pre(a2) = {x2,y}, Eff(az) =
{z2,—y}. Clearly, it is not possible to set a correct ordering con-
straint between both actions. There are two different justifications
for this situation:

e |f z; and z, (or just one of them) were OPEN literals at sometime
during the second stage and no action deleted these literals during
the process, the agorithm will have assumed the lowest level as
their producer literal level. In some cases this is not the correct
option and the consequence isthat the subset of actionsin the basic
graph do not represent an optimal solution. Thistype of conflict is
named effect conflict and it isusually due to alack of information
during the second stage. The algorithm will choose then adifferent
producer level for z1, z» or both at this stage. In order to solve an
effect conflict the planner carries out the following operations:

a) eiminate the action that achieves the literal in the current solu-
tion

b) takethe next upper level asthe producer level for the literal

¢) resolve the process as usual by selecting an action in the new
level

e |f theonly possible way to satisfy z; and z» isby means of actions
a1 and a» respectively, then we say thisis a precondition conflict.
The name comes from the fact that the literalsinvolved in the con-
flict are the preconditions of the actions (in the example, a; needs
literd y and deletes y and likewise for a2). In this case, the literal
in conflict hasto be achieved again by anew action (from the prob-
lem graph) or an existing action (from the basic graph). Notice that
this is the same operation the planner carries out when solving an
action precondition. The only additional checking is to discover
the correct ordering for the new action as (a1 — a3 — ag or
az — a3 — al).

The third stage is mainly devoted to solve ordering conflicts
among the actions at the same level in the basic graph. In order to
do this, the algorithm performs operations like introducing new ac-
tions to solve conflicts or replacing one action by another one for
achieving a particular literal.

The partial consistency property alows for detecting unsolvable
problems. If an effect conflict or precondition conflict cannot be re-
solved by any means then the problem is unsolvable. Notice that all

of the actions, either in the basic graph or problem graph, are consid-
ered when solving a conflict. Therefore, an irresoluble conflict leads
to an unsolvable problem.

The issue of optimality is related to these two points:

e Asitwassaid above, the algorithm always applies criteriaso asto
generate the minimal set of actions: selecting firstly actionsin the
basic graph over those in the problem graph and preferring actions
which have the less number of preconditions unresolved.

e An effect conflict implies there is an aternative solution for
achieving aliteral. The algorithm tends to use actions at the low-
est levels for those OPEN literals which are never deleted by the
propagation of effects. This behaviour may yield a non-optimal
solution because a non-correct action level may be chosen for an
action. Thethird stage is aimed at solving this problem.

4.1 Example: Monkey test 1

Let’sapply property 1 to the basic graph obtained for the hanoi prob-
lem. It ispossible to set atotal-order relation between the two actions
at A3 by ordering Move B P1 P3 before Move M P2 B (the latter
deletes the precondition 10 of the former action). And for the two
actions at A2, the consistent order is to put Move M B P2 before
Move S P3 M. Consequently, the basic graph from the hanoi prob-
lem satisfies property 1 and no further operations are needed for this
problem at this stage. Obviously, there are two missing actionsin this
partial solution but they will be discovered by the POP at the fourth

stage.

Al Ll A2
GoToP1P2 | P={1,2} | M1 onfloor GoToP2P1 | P={1,6}
E={6} E={2}
GoToP1P3 | P={1,2} | M1at Pl GoTo P2 P3 | P={1,6}
E={7} E={7}
GoToP1P4 | P={1,2} | Box a P2 GoToP2 P4 | P={1,6}
E={8} E={8}
Bana P3 GoToP3PL | P={L,7}
E={2}
Knf at P4 GoToP3P2 | P={1,7}
E={6}
M1a P2 GoTo P3P4 | P={1,7}
E={8}
M1a P3 GoTo P4PL | P={1,8]
E={2}
M1a P4 GoTo P4P2 | P={1,8]
E={6}
GoToP4P3 | P={1,8}
E={7}
Climb P2 P={3,6}
E={9}
PBox P2P1 | P={1,3,6}]
E={2,10}
PBox P2P3 | P={1,3,6}
E={7,11}
PBox P2 P4 | P={1,3,6}]
E={812}
GelKnf P4 | P={5,8}
E={13}

Table4. Partial problem graph for the monkey problem
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Num | Literal Num | Literal

1 M1 onfloor 9 M1 onbox P2

2 M1 at P1 10 Bla Pl

3 Box1 at P2 11 Bl ai P3

4 Bananasai P3 | 12 Bla P4

5 Knifeat P 13 M1 hasknife

6 M1 at P2 14 M1 onbox P4

7 M1 at P3 15 M1 onbox P3

8 M1 at P4 16 M1 onbox P4
17 M1hasbananas

Table5. Literasin the problem graph from the monkey test1 problem

In order to illustrate the behaviour of the third stage (in particular,
the effect conflict) we will take the monkey and bananas problem
as an example. The literals in the problem graph are shown in Table
5, two action levels from the problem graph (levels A1 and A2) are
shown in Table 4 and the basic graph is represented in Figure 7.

The first aspect to point out is that the set of actions in the basic
graph does not yield an optimal solution. Actions Goto P1 P2 and
Goto P1 P4 would force the introduction of an additional action like
Goto P4 P1 or Goto P3 P1. When applying property 1 we notice
thereisaconflict at A1 as both movement actions require and delete
literal 2.

During the process of creating the basic graph, literals 6 and 8
were OPEN literals asthey are both generated by actions A1 and A2
(Table 4). Sinceno action at A1 would delete a precondition 6 or 8 of
actions at A2 in the basic graph, the algorithm selected actions from
A1 asthe producer actions for literals 6 and 8 (the lowest level), and
the consequence is that the comprised solution in the basic graph is
non-optimal.

At the third stage, the algorithm proceeds to solve the effect con-
flict between the two actions at A1. The planner attempts to take A2
as the new producer level for literal 8 and applies the procedure for
selecting an action. Two of the choices at A2 provoke again an or-
dering conflict (Goto P2 P4 and PushBox P2 P4 require and delete
literal 6 and so conflict with action PushBox P2 P3 which also needs
and removes literal 6); another choice would be Goto P3 P4 which
does not satisfy the requirement of minimality because its precondi-
tion 7 is unresolved.

Subsequently, the planner checks what happens when attempting
to find another way of solving literal 6 (leaving literal 8 at A1). There
are two possihilities, one does not accomplish the requirement of
minimality (Goto P3 P2) and the other choice does not involve any
conflict (Goto P4 P2). Then the planner chooses Goto P4 P2 to re-
place the action producing literal 6 at A1. The fina and optimal so-
Iution is shown in Figure 8.

5 THE FOURTH STAGE

As we explained above, the goal of the fourth stage is to obtain the
final plan. In principle, the third stage in 4SP could be omitted and
to execute directly the fourth stage after the second one. However,
the task of finding the correct ordering constraints in the plan is ac-
complished in two steps (firstly ensuring a partial consistency in the
graph and then finding an ordering for all of the actions in the graph)
because important benefits can be gained:

e First and foremost to delay the use of a POP until it is strictly
necessary. POP are very good at solving threats among actions,

4,13,15 17
GrabBan P3

17

-

1,2,3.4,5

Figure 7. Basic graph for the monkey test 1 problem after stage 2.

1,2,3,4,5 1,2
GoTo P1 P4

Figure 8. Fina Basic graph for the monkey test 1 problem (after stage 3).

413,15 17
GrabBan P3

17

which is the final step of our planning agorithm (finding a final
ordering relation among al actionsin the plan).

e By finding atotal-order relation between each pair of actionsin the
same action level it would be possible to obtain the final solution
plan without having to execute the fourth stage.

e The third stage is also used as a way to verify the basic graph
entails a solvable problem and an optimal solution. This point is
very important since the POP would be unable to discover the
solution is working with is non-optimal or there is no solution
for the problem.

Our partial-order planner [8] is based on the UCPOP planner [7]
and therefore completeness in guaranteed when starting from an
empty initial plan. The POP is given the plan obtained at the third
stage as an initial input plan. When the POP input is an empty plan,
a complete search space is generated and al choices to solve an
OPEN precondition or aconflict are considered in the resolution pro-
cess. However, when the input is not an empty plan, completenessis
not guaranteed because this non-empty plan is just the result of one
branching line of the search space which would have been generated
by a complete search method. A way to recover completeness in the
POP is by means of the White Knight concept [3].

Hard interactions among actions in different sequences of differ-
ent levels are not taken into account when building the basic graph.
Therefore, it might be impossible to establish an ordering relation
for the set of al actions in the basic graph. This means that, when a
precondition p of an action a; is deleted by one action a;, 4; < A;,
which belongs to another sequence of actions, p must be restored by
anew action (application of the white knight technique). This situa-
tion gives rise to two different types of basic graphs. Let A be the set
of actionsin abasic graph and S be the set of actions that constitute
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asolution plan for a given problem:

e complete basic graphs, when A = S. In this case, a total order
relation can be established among all actionsin A.

e incomplete basic graphs, when A C S. In this case, there are in-
consistencies between actions of different sequences. New actions
would have to be added to solve these interactions.

The difference between complete and incomplete basic graphs is
specially important from the point of view of the fourth stage. In the
case of complete basic graphs, the only remaining task is to sort the
actions in the basic plan, whereas in the case of incomplete basic
graphs, some actions will have to be added. In both cases, the re-
maining operations (ordering between actions and addition of new
actions) are discovered by the existence of threats between the steps
of the plan.

6 EXPERIMENTAL RESULTS

Due to a lack of time, the experiments shown in table 6 5 corre-
spond to a previous prototype of 4SP where the third stage is not
implemented. Therefore, 4SP is not obtaining the optimal solution
for problems such as monkey test 1, and it is not able to detect un-
solvable problems.

Problems were taken from the UCPOP suite and Blackbox soft-
ware distribution. All tests were run on a Sun Ultra 10 machine and
results are given in seconds. We have run 4SP, BlackBox v3.6 [5]
and STAN [4]. The results are classified into two groups: those for
complete graphs and those for incomplete graphs (Table 6).

Problem Blackbox STAN Our method |
Complete TT TT GT TT
graphs

Sussman 0.02 0.028 0.005 0.006
Tw_rever4 0.03 0.03 0.011 0.021
Tw_reverb 0.06 0.03 0.023 0.04
Towerd 0.07 0.032 0.013 0.013
Tower5 0.21 0.07 0.024 0.025
Tower6 0.6 0.16 0.046 0.047
Tower9 111 10.53 0.225 0.225
T_largeA 0.82 053 0.079 0.08
T_largeB 4.34 2.63 0.289 0.3
T_largeC — 82.143 1.792 18
T_largeD — — 4.508 452
Incomplete TT TT GT TT
Graphs

Hanoi3d 011 0.039 0.019 0.176
Hanoi4d 141 0.061 0.035 181
Ferry 0.04 0.012 0.005 0.073
Monkeytl 0.11 0.022 0.009 0.08
Monkeyt2 0.26 0.037 0.014 0.212

Table 6. Performance of Blackbox, STAN and our method on different
problems

In most of the problems where 4SP was able to obtain a com-
plete graph, the CPU time was reduced more than 50% compared
to STAN and BlackBox. For example, in the blocks world domain,
as the number of blocks increases, this difference is greater. Thisis

5 GT stands for the time used in the graph creation and TT for the total time.
We have used a blocksworld domain with 3 operators.

specially remarkable in TowerLarge problems. 4SP was able to solve
TowerLargeD problem that neither STAN nor BlackBox were able
to.

For those problems with an incomplete graph, 4SP behaves
dlightly worse that STAN and BlackBox, athough this difference is
not as significant as in the case of complete graphs. As the average
and standard desviation results show, 4SP behaviour is much more
stable.

Our STAN BlackBox
method
Average 0.454 6.025 7.034
Standard Desviation 1.017 20.469 26.812

7 CONCLUSIONSAND FUTURE WORK

We have presented in this paper our four-stage planner 4SP. 4SP re-
lies on the combination of an incremental preprocessing technique
based on graph analysis and a POP. The basic graph is used to build
a skeletal plan which is the POP's input. The most relevant aspect
in 4SP is that the basic graph obtained with this graph-based tech-
nique already comprises the final solution plan for most of the tested
domains.

Our objective was to develop a new planning approach by taking
advantage of partial-order planning properties and reducing the inef-
ficiency caused by the large search spaces generated by these plan-
ners. We have also shown that 4SP average outperforms other plan-
ning approaches as Graphplan or SATPLAN planners.

Thisis afirst prototype of our planner 4SP. The obtained results
confirm that the POP is still a bottleneck mainly for those problem
which give rise to an incomplete graph. For this reason we suggest
that the introduction of the third stage will significantly reduce the
amount of work done by the fourth stage.
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TowardsAgent-Based Multi-Site Scheduling

Jurgen Sauer!, Tammo Freese?, Thorsten Teschke®

Abstract. Scheduling problems are usually treated within single
plant environments or within companies with several production
locations. Due to the globalization of markets companies can no
longer be regarded isolated from each other. They are in fact
dements of spatialy distributed production and logistics
networks, where apart from the actua production process
transport and stock keeping gain importance. This contribution
analyses the organizational structures found in distributed
production networks and proposes an approach for their mapping
to multiagent systems for integrated production planning and
scheduling. Moreover, a platform for multiagent systems
deployment is outlined, which is apt to satisfy the major
requirements to an agent platform for dynamic, distributed
production and logistics networks.

1 INTRODUCTION

In the past companies have often been regarded as self-contained
units with well-defined business relationships to consumers and
suppliers. Measures of optimization were confined by a
company’s boundaries. Today, competencies for fast and
economical development and manufacturing of complex products
are distributed to different companies. This trend as well as the
markets evolution to buyer’s markets and shortened product life
cycles necessitate optimizations beyond a company’s boundaries.
Concepts like supply management, supply chain management and
eventually virtual enterprises have been devised in order to open
up new potentials of optimization by regarding a company’'s
interweavement with its suppliers and consumers ([1; 2]).

2 MOTIVATION AND PROJECT OUTLINE

The globaization of markets leads to the formation of spatially
distributed production and logistics networks. In addition to the
actual production process transport and stock keeping are of
increased importance, since they strongly affect a company’'s
ability to meet delivery deadlines. For this reason centralized
approaches to production planning and scheduling for companies
with a single production site cannot be transferred to distributed
enterprises directly. Moreover, schedule stability decreases in
centralized approaches, since even locally resolvable
perturbances like machine breskdowns change the central
schedule. Multi-site scheduling ([3]), instead, represents a

128 Fachbereich Informatik, Universitst Oldenburg, Escherweg 2,
D-26121 Oldenburg, Germany, email: sauer@informatik.uni-
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promising approach where planning and scheduling encompasses
two levels of hierarchy. On the upper, globa level a rough
schedule for the entire enterprise is generated based on imprecise,
cumulated information on available resource capacities. This
rough schedule defines targets for the enterprise’s individual
sites, which refine it into site-specific schedules. The distribution
of the planning and scheduling process effects an increased
schedule stability, since locally resolvable deviations do not have
to be regarded within global planning and scheduling.

The AMPA project (Agent-Based Multi-Site Planning and
Scheduling Application Framework) is concerned with
distributed planning and scheduling in dynamically changing
logistics networks ([4]). Starting from the notion of multi-site
scheduling, the dynamics of business relationships and the
individuality of companies within a logistics network has to be
considered by pursuing a multiagent approach. According to [5]
multiagent systems represent a suitable abstraction for modelling
scheduling problems. In order achieve the goals stated above, the
multi-site scheduling approach will be enhanced in many
respects. An integrated consideration of production and transport
planning and scheduling is striven for. Moreover, the restriction
to two levels of planning and scheduling hierarchy abolished,
yielding a more detailed decomposition of the planning and
scheduling problem. Finally, the strict hierarchical decomposition
of planning and scheduling problems regarded in multi-site
scheduling is complemented by a network dimension which is
especiadly suitable for representing inter-company relationships.
This imposes negotiation tasksin vertica (along the hierarchy) as
well as in horizontal (between departments of different firms)
direction.

Agents to be employed in the production, transport and stock
keeping domain differ regarding the knowledge as well the
heuristics and strategies used for performing their planning,
scheduling and coordination tasks. The development of software
agents and a respective agent platform within the AMPA project
will therefore pursue a component-based approach ([6]). Specific
types of agents can then be created by exchanging and
configuring software components (cf. [7] and [8]).

In order to realize such an approach three major steps have to
be performed. First, an adequate model of the organizational
structures with respect to multi agents has to be found. Second,
the planning and scheduling requirements and capabilities of the
agents on the different levels of the organizational model have to
be defined. And third, a communication model between the
agents along the hierarchy as well as between agents of different
company substructures has to be developed. The following
chapters focus on the first step and describe the basic notions of
the problem area as well as the organizationa model for the
design of an agent-based multi-site scheduling system.



3 BASICS

Within the scope of the preceding outline of the AMPA project’s
contents the major subjects “supply chain management”, “virtual
enterprises’ and “software agents’ and “multi-site scheduling”
have emerged. These shal be illustrated more detailed in the
subsequent sections.

3.1 Multi-Site Scheduling

Scheduling problems are usualy treated in a single plant
environment where a set of orders for products has to be
scheduled on a set of machines [9-12]. However, within many
industrial enterprises the production processes are distributed
over several manufacturing sites, which are responsible for the
production of various parts of a set of fina products. Usualy,
there is no immediate feedback from the local plants to the
logistics department and communication between the local
schedulers takes place without any computer-based support.

Due to the distribution of production processes to different
plants some specific problems arise in addition to the problems of
the dynamic complex scheduling environment:
¢ Interdependencies between production processes that are

performed in different plants have to be regarded.

¢ In global scheduling generalized and inprecise data are used
instead of precise data.

e Existing (local) scheduling systems for individual plants that
accomplish the loca redlization of globa requirements
should be integrated.

e The coordination of decentralized scheduling activities for all
plants within one enterprise is necessary since several levels
of scheduling with their specific scheduling systems have to
work cooperatively in a dynamic distributed manufacturing
environment.

e The uncertainty about the actua "situation” in individual
plants has to be regarded.

« Different goals have to be regarded on the different levels.

The multi-site scheduling approach [3] presents a hierarchical
two-level structure reflecting the organizational structure often
found in business.

On the upper globa level requirements are generated for
intermediate products manufactured in individual locations. Local
scheduling (at individual locations) deals with the transformation
into concrete production schedules which represent the assign-
ment of operations to machines. On both levels predictive,
reactive as well as interactive problems are addressed, not only to
generate schedules but also to adapt them to the actual situation
in the production process. Additionally, communication between
the systems is needed to support the consistent exchange of data
and to coordinate the local scheduling systems.
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Figure 1. Multi-Site Scheduling

The multi-site scheduling tasks can be characterized as
follows:

e Global predictive scheduling: A global-level schedulewith an
initial distribution of internal orders to local production sites
is generated.

e Global reactive scheduling: If problems cannot be solved on
the local level or the modified local schedule influences other
local schedules (inter-plant dependencies), globa reactive
scheduling can then cause a redistribution of internal orders
to locdl plants and adapt the global schedule.

e Local predictive scheduling: Based on the global schedule,
the loca plants draw up their detailed local production
schedules.

¢ Local reactive scheduling: In case of local disturbances, the
local reactive scheduler first tries to remedy them localy by
interactive repair.

e Communication and coordination: Both levels have to be
provided with data as actua and consistent as possible.
Therefore information has to be sent between the lecels, e.g.
the global schedule consisting of information on internal
orders, affiliated intermediate products, machine groups to
use, time windows that should (possibly) be met, and required
quantities of intermediate products, unexpected events that
effect the local resp. the globa level (e.g. the cancellation of
an order or breakdowns of machine groups).

For the solution of the predictive and reactive scheduling tasks
several problem solving approaches are useful. Some of them
have been checked for the MUST (Multi-Site Scheduling System)
approach [3]. Table 1 shows the tasks and some of the
appropriate methods from which severa are investigated in the
MUST project.



Table 1: Multi-Site Scheduling Tasks and Methods

Problem Area Techniques

Global Predictive Scheduling Heurigtics, Constraints, Genetic

Algorithms, Fuzzy-Logic

Global Reactive Scheduling Interaction, Heuristics, Constraints

Local Predictive Scheduling Constraints, Heuristics, Genetic
Algorithms, Neural Networks, OR-

Systems

Local Reactive Scheduling Interaction, Heuristics, Constraints,

Multi-Agents

Communication Blackboard, Contract Net

The approach is implemented in the distributed knowledge-
based scheduling system MUST. The system architecture reflects
the two level approach and consists of one globa scheduling
subsystem and several local subsystems, one for each individual
production site. All systems include the knowledge-based
techniques described for the predictive and reactive scheduling
tasks to be performed. Communication is realized using the
blackboard paradigm. The MUST subsystems are implemented as
decision support systems thus lacking one of the major
characteristics of multi-agent systems, which is the proactivity
(see 3.4).

3.2  Supply Chain Management

Decreasing transaction costs, advanced control of processes and
thinking in profit centers increasingly lead to companies
outsourcing those parts of the creation of value without core
competencies. The growing force to shorten delivery periods and
product innovation cycles while at the same time increasing the
rates of return induced by globalized markets requires an
intensified cooperation of all companies along the inter-company
supply chain ([1]).

The concept of a supply chain is insofar misleading as the
companies involved in the development and manufacturing as
well as transport, distribution and selling of a product usually do
not congtitute a chain, but rather a network. Supply chain
management coordinates the activities within this logistics
network under the overal goa of inter-company and intersite
optimization of a product’'s development and manufacturing
process as well as the innovation of processes.

Characteristic for supply chain management is the strategic,
long-term cooperation of companies as well as the small number
of suppliers for a particular product. Cooperations according to
the supply chain management approach rely on massive exchange
of information, which presupposes trust_between the partners
within the supply chain and the long-term abolishment of
information barriers between the individual companies.

Among the risks of supply chain management is the
development of unilateral dependencies and the potential abuse of
information on co-producers. Additionally, due to its long-term
orientation the concept of supply chain management is not
suitable for short-term cooperations ([2]).

3.3 Virtual Enterprises

A virtua enterprise represents a network of companies affiliated
in order to perform a particular, temporally limited task, thereby
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appearing as an entity. Opposed to the concept of supply chain
management, which regards strategic relationships of rather long-
term nature, virtual enterprises excel especially by their ability to
flexibly reorganize themselves. A virtua enterprise can be
viewed as atemporarily existing supply chain.

Virtual enterprises are established in order to be able to
flexibly react to the opportunities of highly dynamic markets. The
selection of partners is based on cost effectiveness and
uniqueness of their products instead of more traditiona factors
like organizational size, geographic location, IT infrastructure,
employed technologies and implemented processes. The
companies engaged in a virtual enterprise share their knowledge,
their competencies and business relationships in order to perform
the virtual enterprise’s task. This combination of forces is to
enable the companies to reach globa markets with products and
solutions that each of them could not have accomplished on its
own ([2]).

34 SoftwareAgents

Software agents represent a software development paradigm
which is appropriate for distributed problem solving. They are
employed in numerous systems of distributed artificial
intelligence (DAI). In common linguistic usage, an agent is
everyone who acts on behalf of another. In computer science the

concept of a software agent is not uniformly defined. In [13]

Franklin and Graesser present a comparison of numerous

definitions.

Wooldridge defines an agent as “a computer system that is
situated in some environment, and that is capable of autonomous
action in this environment in order to meet its design objectives’
([14]). Therefore, a fundamental property of an agent is
autonomy: an agent operates without direct interference by
humans or other systems, and has control over its behaviour and
its interna state. The concept of an intelligent agent extends this
definition by the capability of acting flexibly, whereby the notion
of flexibility comprises three characteristics:

e reactivity: agents perceive their environment and react timely
and appropriately to changes within this environment;

e pro-activeness. agents do not only react to observed changes
within their environment, but are capable of taking the
initiative in agoal-directed fashion;

« social ability: agents interact with other agents (and possibly
humans) by exchanging information formulated in a mutually
agreed communication language. Moreover, the notion of
social abilities comprises complex patterns of behaviour
based on communication protocols, e.g. for the purpose of
negotiation.

This concept of intelligent agents is perfectly suitable for the
domain of production planning and scheduling. First, an agent
has some kind of knowledge of the problem to be solved (the
scheduling problem) and its environment (e.g., other agents or the
shop-floor), and is capable of negotiation. Second, it is able to
quickly react to changes within its environment, e.g. a machine
breakdown. And third, agents are pro-active, allowing them, e.g.,
to improve their schedules while no other service request are
issued [15]. Therefore, this definition is adopted for the agents to
be developed within AMPA: Every agent shal be able to
schedule its activities (autonomy), to change its schedule in case
of disturbances (reactivity), and to optimize its schedule (pro-



activeness). Messages concerning changes, disturbances etc. are

exchanged using a communication language commonly agreed

upon (social abilities).
Additional features of agents that are studied in different
approaches of DAI are ([16]):

« mobility: mobile agents are able to move within electronic
networks;

e veracity: a truthful agent does not knowingly provide other
agents with false information, e.g., on its environment or its
internal state;

« benevolence: benevolent agents do not have conflicting goals,
and they try to achieve what they are asked to;

« rationality: rational agents try to achieve their goals. They do
not knowingly act in away conflicting with their goals.

The central problem of multiagent systems is how to achieve
coordinated action among agents in a way Yyielding problem
solving capabilities that exceed those of any individual agent.

4 MAPPING ORGANIZATIONAL
STRUCTURESTO SOFTWARE AGENTS

The basic elements of business organizations are posts and
relationships between them. Important dimensions of business
organization systems are specialization, coordination and the
directional system. The aspect of specialization is concerned with
the division of work, which is about different organizational units
performing partia tasks of different kinds. The division of work
attained by specialization requires the coordination of its entailed
activities. This task can be simplified by means of hierarchies.
The directional system specifies authorities to instruct,
responsibilities, and powers of decision which a superordinated
post has regarding to a subordinated post. Concerning the
structure of posts within the directiona system two typica basic
forms can be distinguished. The single-line system rests on the
principle of unity of command and organizes posts in a tree
structure. The multiple-line system aims at realizing the principle
of shortest paths in interdepartmental coordination problems and
organizes posts in a graph structure. In the latter form, a post can
be subordinated to severa posts within the hierarchy. This,
however, may entail questions of authority and the risk of unclear
responsibilities ([17]).

4.1

The organization model proposed by AMPA enhances the multi-
site scheduling approach delineated in section 3.1 in two respects:
first, the hierarchy considered by multi-site scheduling is
extended by additional levels, and second, the hierarchical, intra-
company perspective is complemented by a network-like, inter-
company dimension.

Hierarchical structures are a common representation for intra-
company directional systems for they are suitable for defining
powers of decision, authorities to instruct, duties of supervision
and tasks of inspection. This approach is also pursued within the
scope of AMPA. Therefore, posts are defined according to
resource-oriented aspects and arranged in a hierarchy. Potential
posts are, e.g., an entire company, production sites, job shops,
warehouses, transport vehicles, resource groups, or machines. A
post is represented by a planning agent.

Organization M odel
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Complex organization structures, however, are not exclusively
organised hierarchically. This applies especialy to legally and
economically independent enterprises, for relationships between
them do neither define powers of decision nor authorities to
instruct; they only represent the aspect of coordination between
their directional systems. In addition to the hierarchical, static
dimension of the intra-company directional system in AMPA the
network-like, dynamic dimension of the coordinating, logistical
relationships on all levels of hierarchy is considered by a special
type of relationship. Within AMPA organizations are accordingly
represented by an overlay of hierarchical and network-like
structures, thus achieving both vertical and horizontal integration.
The resulting organization model isillustrated by Figure 2, where
the enterprise under consideration is represented by dark nodes.
These nodes aso represent the problem area of multi-site
scheduling. External organizational units are depicted using pale
nodes.
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Figure 2. Organization Model

On a more formal level the approach pursued within AMPA
can be regarded as a combination of the single-line system and
the multiple-line system. This combination aims at clear
responsibilities on the one hand and improved ways of
coordination by shorter communication paths on the other. In
order to achieve these goals while avoiding the disadvantages
pointed out before two different types of relationships are
considered. Both are directed and define a potential usage of a
post by another, whereby subsequently the former post will be
referred to as supplier and the latter as consumer. Usage as
indicated by such a relationship is thus regarded as the supplier
providing services for the consumer.

Disciplinary subordination relationships are part of the
directiona system and serve the representation of the
organization model’s hierarchical intra-company dimension. In
addition to potential usage of a post by another they specify the
sole responsibility a superordinated post (the consumer) has for
its disciplinarily subordinated posts (the suppliers). In order to
achieve the therefore required unambiguousness a post may
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maximally be subordinated to one other post, i.e. the structure of
the disciplinary subordination relationships correspond to the
single-line system. The responsibility of a superordinated post for
its disciplinarily subordinated posts is expressed by the latter
posts opportunity to report order requests to the former post, if
these requests cannot be accomplished by a service provided by a
post subordinated to the latter. Moreover, a disciplinary
subordination relationship requires a subordinated post to grant
access to information on its state (e.g., its workload) to its
superordinated post. This information may affect the
superordinated post’s decision making process. In Figure 2
disciplinary relationships are depicted by solid arrows.

Functional relationships represent the network-like dimension
of the organization model and serve the coordination between
organizational units which are not connected by the directional
system. A functional relationship solely defines a usage
relationship between two posts, i.e. the supplier may neither
forward requirements to the consumer, nor does the consumer
have any kind of responsibilities for the supplier. Moreover, the
supplier is not bound to give away information on its state to the
consumer. In addition to one disciplinary subordination
relationships a post may engage in arbitrary functional
relationships. Hence, the system of functional relationships
corresponds to the multiple-line system. In Figure 2 functional
relationships are represented by broken arrows.

4.2 Mapping to Software Agents

In the AMPA project an enterprise is represented by a system of
agents. This allows a direct mapping of the enterprises’ structures
and their communication as well as the integration of existing
scheduling applications. The following steps describe how an
enterprise is mapped onto a multiagent system.

1) Identify agents: Every entity in an enterprise for which
AMPA should do the scheduling is represented by an agent.
However, if a scheduling system for one or more of the
entities exists, it need not be replaced, but it is represented by
a single agent which acts as a wrapper. Therefore existing
scheduling systems like the subsystems of MUST may be
integrated easily which leads to an open scheduling
environment.

Define scheduling tasks: Depending on the position in the
network different planning and scheduling tasks have to be
performed by the agents. These tasks have to be identified
and the appropriate scheduling knowledge, e.g. one of the
agorithmic solutions presented in table 1, has to be added to
the agent.

Add disciplinary relations: Between the Units which are
represented by the agents identified in step 1, there are
disciplinary relations. These organize the agents in a tree
structure. If the network of disciplinary relationships between
the agents has no tree structure, exactly one of the
relationships must be chosen for having a unity of command.

Add functional relationships: Aside disciplinary relations,
there are also functional relations between the units in an
enterprise. These should be adopted in the agent system.

The first three steps yield an agent structure that represents the
internal structures of an enterprise. The following step is to
embed this enterprise into its environment.

2)

3

4)
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5) Integrate suppliers and consumers. To achieve an
integration of an enterprise into its logistics network, the
suppliers and consumers of the enterprise have to be
represented in the agent system. If they adso use AMPA
agents, the correct agents must be identified. Otherwise,
wrapper agents encapsulate the communication with these
business associates. If a large group of similar suppliers or
consumers has to be integrated, it can aternatively be
represented by a single agent which wraps the
communication with al the members of the group. The
agents are integrated in the agent structure by adding
functional relationships to the agents for which they are
suppliers or consumers. For both communication possibilities
an appropriate communication model on the basis of the
contract net protocol has to be defined.

4.3 A platform supporting the agents

For deployment of the agent system, an agent platform is needed
that acts as an environment for the agents. It aims in supporting
the flexible and easy configuration of new agents to be
incorporated into the whole system. Based on a Java virtual
machine the platform supports amongst others:

e Distribution (agent context): The agents of an AMPA are
normally distributed in two different kinds. A group of agents
which runs on the same server is locally distributed. In a
global distribution, the agents run on different servers. As an
example, the agents of an enterprise run on one server,
whereas the enterprises which build a virtual enterprise or a
supply chain will normally run servers on their own.

e Communication (communication layer): To support different
kinds of distribution, there must be different kinds of
communication between local and global distributed agents.
An agent platform should have a communication interface
that encapsulates that hides this difference from the agents.
So an agent has no information whether its communication
partners reside on the same or on a different server.

« Platform independence: For deploying an agent system in an
heterogenous environment of computer systems, it is either
required to develop specific agents for every platform, or to
use a platform that offers an equa interface on al systems.
The first possibility is not suitable especialy in virtual
Enterprises, where a huge number of different systems is to
expect. Therefore it is more convenient to develop an agent
platform in Java which would be independent of the
underlying hardware structure.

e Security (security policy): An agent represents a real system
and acts at least in parts autonomously. In this context,
security must have a high priority. An agent platform has to
implement suitable security mechanisms that protect the
agents from unauthorized access. In contrast, authorized users
must have full control over their agents. To achieve a
combination of these requirements, the platform must have an
authorization concept that offers roles with different access
grants.

e Persistency: An agents needs access to persistent information
like the production schedule or the product ontology. To
achieve this in combination with platform independence, the
agent platform has to decouple the application layer (the
agent) and the persistency layer.



e User interfaces: In most cases, the possibility to observe and
agent and to intervene in its actions is very important for the
acceptance of an agent system. Therefore an agent system
should support connections of agents and user interfaces.

e Transactions. Complex scheduling processes involve many
subsequent negotiations with agents along the supply chain.
Sometimes they can only be executed partly what leads to an
inconsistent schedule. The agent platform should provide a
transaction concept which allows the rollback of failed
transactions.

e Configuration (configuration information, resources): The
persistency and security mechanisms require a possibility to
replace underlying database management systems and ERP
systems. Moreover, configuring the deployed agents is
necessary.

Figure 3 shows an architecture outline that targets to fulfil the
requirements above.

\ |/

communication layer

security policy

configuration information

resources

ERP
system

DBMS [?22?

agent context
Java virtual machine

Figure 3. Architecture of agent platform

The component structure of the platform and the agents used
within the platform alow for the easy configuration of different
systems. On the basis of a generic agent it is possible to generate
specialized agents for production, transport or stock. This is
realized by the exchange and configuration of components of the

agents[7].

44 Related work

A comparable approach is pursued by Swaminathan et al. in [7],
who represent the structural elements of a supply chain like, e.g.,
production and transport units by agents. In contrast to the
organization model proposed in this section hierarchical
relationships are not considered, i.e. a supply chain ismodelled as
aflat network.

Other agent-based approaches for enterprise modeling often
focus on the definition of ontologies supporting the description of
the workflows within the enterprises [18]. Within the
"Enterprise’-project agents are used to represent tools that
perform activities. These agents are integrated in a system for
workflow management. The TOVE project [19] uses agents to
represent the "classical" functions of production planning and -
control. In addition these agents are connected via information
agents providing the necessary information for the "functional"
agentsinvolved.

128

5 CONCLUSION AND FURTHER WORK

On the basis of the multi-site scheduling approach an extension in
several directions is proposed. Not only one enterprise with
distributed production has to be considered but also the suppliers
of the several units shall be integrated in the scheduling task. The
systems supporting the scheduling tasks are organized as agent-
based systems thus offering al the advantages of multi-agent
systems. The presented approach for an agent-based system
performing scheduling in production networks is still under
development. First steps have been the modeling of the
organizational structure for a multi-agent system. The next steps
are the prototypical implementation of the agent platform and a
number of agents using a common framework like Enterprise
Java Beans [20] or tools for the development of multi-agent
systems like ZEUS [21]. Within this prototype the position
depending scheduling knowledge and the extended negotiation
protocols will be integrated and tested.
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OCLGraph : Exploiting Object Structurein a Plan
Graph Algorithm

R.M. Simpson, T. L. McCluskey and D.Liu'!

Abstract. Inthis paper we discuss and describe preliminary results
of integrating two strands of planning research - that of using plan
graphs to speed up planning, and that of using object representations
to better represent planning domain models. To this end we have de-
signed and implemented OCL-graph, a plan generator which builds
and searches an object-centred plan graph, extended to deal with con-
ditional effects.

1 Introduction

This paper describes work that is part of a continuing effort to evalu-
ate the impact of modelling planning domains in an object-centred
way, using a family of planning-oriented domain modelling lan-
guages known as OCL [10]. The benefit is seen as twofold: (a) to
improve the planning knowledge acquisition and validation process
(b) to improve and clarify the plan generation process in planning
systems. With regard to (b), it is our belief that certain obstacles and
problems that researchers into planning algorithms encounter can be
aleviated using a rich, planning-oriented knowledge representation
language.

The object-centred language OC'L, and more recently the hier-
archical version OC Ly, [8, 9], have their roots in the ‘sort abstrac-
tion’ ideas used in the domain pre-processing work of [12]. OCL is
primarily aimed as a high level language for planning domain mod-
dling, the main feature distinguishing it from STRIPS-languages be-
ing that models are structured in terms of objects, rather than literals.
It aims to allow modellers to more easily capture and reason about
planner domain encodings independent of planning architecture, and
to help in the validation and maintenance of domain models. On the
other hand, OCL retains all the flexibility of a STRIPS-like encod-
ing. The rationale behind OCL has been sustained by the experience
of those applying planning technology. For example, the developers
of the planner aboard Deep Space 1 [11] stress the need to develop
clean, planner-independent languages that can be used to build and
statically validate domain models.

In this paper we seek to tie up the advantages in creating adomain
model in OCL with the use of a particularly successful form of plan
generation using a plan graph agorithm called Graphplan [2]. The
plan graph has been used as the basis for many experimental plan-
ning systems, and was the the basis of most of the planners in the
AIPS-98 planning competition. This paper describes our investiga-
tion into the use of an object-centred plan grapin a Graphplan-like
planning algorithm. Parallel work [9, 6] is investigating the use of
OCL in traditional plan-space search algorithms. The current effort
is therefore part of a larger project to implement many of the best

1 Department of Computing Science University of Huddersfield, UK
r.m.simpson@hud.ac.uk t.I.mccluskey@hud.ac.uk d.liu@hud.ac.uk

regarded planning algorithms in a manner both to process planning
problems expressed in OCL and to develop the algorithms in a man-
ner to take advantage where possible of the additional information
content of OCL models.

After introducing the reader to OCL and Graphplan, we detail the
design of a planner which draws from Graphplan in algorithmic de-
tails, and from OCL for its representation. We argue that the ‘ object-
graph’ algorithm embedded in OCL-graph is conceptually simpler
than the corresponding literal-based algorithm. Also we have ex-
tended the algorithm to deal with conditional effects using a strat-
egy similar to that used by [7] and to the factored expansion strategy
described by [1].

Our results suggest that the use of OCL (i) simplifies the plan
graph: proposition levels become object levels where it is implicit
that an object can only bein one ‘substate’ at one time (ii) simplifies
the detection of ‘mutex’ relations and (iii) provides a surprisingly
natural way of dealing with conditional effects. Finaly, our initial
implementations using tests from standard toy benchmark domains
suggest that there may be costs as well as benefits involved in using
arich domain model with existing planning technology.

2 Foundations of OCL

2.1 Overview

In OCL the world is populated with objects each of which existsin
one of awell defined set of states (called ‘substates'), where these
substates are characterised by predicates. On this view an operator
may, if the objectsin the problem domain are in some minimal set of
substates, bring about changes to the objects in the problem domain.
The application of an operator will result in some of the objectsin the
domain moving from one substate to another. In addition to describ-
ing the operators in the problem domain OCL provides information
on the objects, their object class hierarchy and the permissible states
that the objects may be in. The main advantage of the OCL concep-
tion of planning problems to agorithms is that they do not need to
treat propositions as fully independent entities rather they now be-
long to collections that can be manipulated as a whole. So instead
of dealing with propositions the algorithms deal with objects (typi-
cally fewer objects than propositions). This is a type of abstraction
which we believe most naturally co-insides with domain structure.
It provides opportunities to improve on existing planning algorithms
by adapting them to operate at the object level rather than the propo-
sitional level.
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2.2 Basic Formulation

A domain modeller using OCL aims to construct a model of the do-
main in terms of objects, a sort hierarchy, predicate definitions, sub-
state class definitions, invariants, and operators. Predicates and ob-
jects are classed as dynamic or static as appropriate - dynamic pred-
icates are those which may have a changing truth value throughout
the course of plan execution, and dynamic objects (grouped into dy-
namic sorts) are each associated with achangeabl e state. Each object
belongs to a unique primitive sorts, where members of s all behave
the same under operator application. In what follows we will explain
those parts of OCL sufficient for the rest of the paper, the interested
reader is referred to the bibliography for more information.

An ‘object description’ in a planning world is specified by atriple
(s, i, ss), where ¢ is the object’s identifier, s is the objects primitive
sortand ss isitssubstate - aset of ground dynamic predicateswhich
al refer to i. All predicates in ss are asserted to be true under a
locally closed world assumption.

Asarunning examplewewill use aversion of the Briefcase World,
asthisis simple and has been used in [1] as the basis of their discus-
sion on the implementation of conditional effects in ‘Graph Plan’.
Note that, however, this does not illustrate the full benefits of an
OCL encoding asthe briefcase world is structurally simple. Dynamic
objects in a briefcase world could be of sort bag (identifiers brief-
case,suitcase,..) or of sort thing (identifiers cheque,dictionary,suit,..),
and static objects may be of sort location (identifiers home,office ..).
Two examples of objects description are

(thing, cheque, [ at _t hi ng(cheque, hone),
i nsi de(cheque, bri ef case),
fits_in(cheque, briefcase)])
(bag, bri ef case, [ at _bag(bri ef case, hone)])

A world state is a complete set of object descriptions for al the
dynamic objects in the planning application, and is usefully viewed
as a total mapping between object identifiers and their correspond-
ing substates, as an identifier is allowed to be associated with ex-
actly one substate. States are constrained by invariants. These de-
fine the truth value of static predicates and the relationships between
dynamic predicates. In particular they are used to record inconsis-
tency constraints. A world state that satisfies the invariants is called
well-formed.

For each sort s, the domain modeller groups a sort’s substates to-
gether, specifying each group with a set of predicates called a sub-
state class definition. They form a complete, dioint covering of
the space of substates for objects of s. When fully ground, a sub-
state class definition forms a legal substate. To ensure that any le-
gal ground instantiation of a substate class definition gives a legal
substate, definitions usually contain static predicates. The substate
class definitions for the dynamic sortsthing and bag in the briefcase
world are;

subst at e_cl asses(t hi ng,
[ at _t hi ng(Thi ng, Locati on),
i nsi de(Thi ng, Bag),fits_in(Thing, Bag)],
[at _t hi ng( Thi ng, Locati on), outsi de(Thing)])
subst at e_cl asses(bag,
[ at _bag(Bag, Location)])

meaning that athing can only be either at alocation and in a bag that
it fitsinto or that it is at alocation but is not in any bag, and a bag
must be positioned at alocation. If 7 isavariable or an object identi-
fier of sort s, and se isaset of predicates, then (s, 7, se) iscalled an

object expression if there is alega substitution ¢ such that i = j
and se; C ss, for at least one object description (s, 7, ss). The third
component of an object expression is thus called a substate expres-
sion. Also, we define an object class expression (s, i, ce) to be an
object description that may contain variables and static predicates
in ce. When ground therefore, an object class expression becomes a
valid object description if the static predicates it may contain aretrue
in the domain model.

A planning task is defined by a well-formed world state, and a
goal consisting of any legal mapping of object identifiers to substate
expressionsi.e. agoal isa set of object expressions with distinct ob-
jectsidentifiers.

2.3 Operator Representation

An object transition is an expression of the form (s, :, se = ce)
where i is a dynamic object identifier or a variable of sort s, and se
and ce are such that (s, 7, se) isan object expression and (s, i, ce) is
an object class expression. If cc is an object transition, then we use
the notation cc.lhs and cc.rhs to refer to se and ce respectively.

An action in adomain is represented by operator schema O with
the following components: O.id, an operator’s identifier; O.prev,
theprevail condition consisting of aset of object expressions; O.nec,
the set of necessary object transitions; and O.cond, the set of (con-
ditional) object transitions. Each expression in O.prev must be true
before execution of O, and will remain true throughout operator exe-
cution. In the briefcase world we have operators put in, take out and
move. The put.in operator will have a prevail section which allows
usto specify that thebag isat alocation L but this does not change as
aresult of applying the operator. The necessary section specifies that
the thing must be at the same location as the bag and must be outside
all containers prior to the application of the operator but as a result
of applying the operator the thing will now be inside the bag but still
at the same location. The operator can be specified as follows:

operator(put_in(T,B),

% prevai l

[(bag, B, [at _bag(B, L)])

1.

% necessary

[(thing, T,[at _thing(T,L),outside(T)]
=>

[at _thing(T,L),inside(T,B),

fits_in(T,B)])

1.

% condi ti onal

LD

We define O.Pre to be the preconditions of O, i.e. the set of object
expressionsin O.prev and the set of |eft hand sides of O.nec. Hence
put_in.Preis [at_bag(B,L), at_thing(T,L), outside(T)]. If O is ground
we can define O.Rhsto bethe set of substates intheright hand sides
of O.nec.

The definition of the move operator illustrates the specification
of a conditional transition. In the example the conditional transition
asserts that if any ‘thing’ is at the same location as the bag (A) and
isinside the bag then it changes state to being at location (B) the new
location of the bag and remains inside the bag. Where there is more
than one transition in a conditional section they form a digunction.
The move operator is defined as follows:

oper at or (nove( X, A B),
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% prevai l
(1.
% necessary
[ (bag, X, [at _bag( X, A), ne(A B)]
=>
[at _bag(X,B)])
1
% condi ti onal
[(thing, T,[at_thing(T,A),inside(T, X),
fits_in(T,X)]
=>
[at _thing(T,B),inside(T, X),
fits_in(T,X)])
1)

3 TheGraphplan System

Graphplan [2] has proved to be one of the fastest plan generation
algorithms working with a traditional STRIPS-like planning repre-
sentation. Since its introduction a number of authors have proposed
amendments with a view to improving the efficiency of the algo-
rithm further e.g. [5]. Here we give only a very brief review of the
algorithm, given the amount of published literature already using it.
Graphplan works by building a plan-graph representing al possible
plans creatable from the initial state by application of the available
operators. If we consider the set of propositions true in the initial
state as being at level 1 in our plan-graph then at level 2 will exist
the set of al operations that are applicable, i.e. have their precondi-
tions fulfilled by the propositions of level 1. At level 3 will be the
set of propositions made true by the application of the operators of
level 2. This process continues by developing the graph in exactly the
same manner to additional levels. In the developing graph we record
the application of operators as links that connect the propositions of
the adjacent odd numbered levels. This process of moving from one
level of propositions to the next supported by the application of op-
erators is augmented by the application to every proposition at level
n with a special operator no-op that renders the proposition true at
level n + 2. Thisforward development of the graph faces a problem
in that clearly in all proposition levels other than level 1 there may
be propositions that cannot be jointly true. In the briefcase world the
bag ‘briefcase’ cannot be at home and at the office. Likewise in a
link layer actions may be mutually exclusive. The actions of moving
the briefcase home and the action of moving it to the office cannot
be simultaneously undertaken. We think of each proposition level
as recording what potentially might be true at the same instant. We
think of each link layer as recording the operations that might con-
sistently be applied in parallel or where no commitment to ordering
is required. The inconsistencies within a layer are recorded within
Graphplan by augmenting the graph further by noting these mutually
exclusive relations both between operations in the link layers and by
recording mutually exclusive relations at the proposition layers. The
development of the graph in this way from one proposition layer to
the next mediated by a link layer constitutes the forwards phase of
Graphplan.

To complete Graphplan a backwards search phase is required to
find if a lega plan that satisfies the goa condition has been gen-
erated. This backwards phase is undertaken after the generation of
each proposition layer, and starts by first searching the new propo-
sition layer to see if all the propositions of the goal state are sup-
ported at this level. If they are not then the backward phase can be
terminated and the next forwards phase started. If the goals are all

present then the goal propositions must be checked to ensure that
there are no recorded mutual exclusions between any of them. The
backwards phase continues finding a set of operations that support
these propositions and are themselves mutually consistent then re-
cursively checking the preconditions of those operations in the same
manner at the level two below. This process continues until we have
regressed to the propositions of level 1 which by definition must be
consistent with one another. If at any layer we find that the chosen
set of operators are not mutually consistent then we must backtrack
and see if an aternative set of operations can be chosen to support
the same set of propositions. In this way Graphplan will continue
interleaving its forwards and backwards phases to find an optimally
parallel short legal plan, if one exists.

3.1 Conditional Effectsin Graphplan

Sincethe original description of Graphplan anumber of authors have
described algorithms to extend Graphplan to allow the processing of
conditional effects [7, 1]. In their paper Anderson Smith and Weld
argue that the relatively simple approach of expanding the condi-
tional effects section into al combinations of possible groundings
is not feasible in cases dealing with significant numbers of possible
groundings. They propose instead what they call a ‘factored expan-
sion approach’. Their approach requires that a operator with condi-
tional effects be composed of clauses, one for the non-conditional
component of the STRIPS operator and one for each grounding of
the conditional clause conjoined with the non conditional element.
The resulting move — brie fcase operator with the cheque and the
dictionary is as follows:

nove- bri ef case (?l oc ?new)
reffect
(when (and (at briefcase ?loc)
(1 ocation ?new)
(not (= ?loc ?new)))
(and (at briefcase ?new)
(not (at briefcase ?loc))))
(when (and (at briefcase ?loc)
(1 ocation ?new)
(not (= ?loc ?new))
(in cheque briefcase))
(and (at cheque ?new)
(not (at cheque ?loc))))
(when (and (at briefcase ?loc)
(1 ocation ?new)
(not (= ?loc ?new))
(in dictionary briefcase))
(and (at dictionary ?new)
(not (at dictionary ?loc))))

A consequence of this approach is that each of the elements be-
comes a semi-independent rule which can be fired separately which
results in a requirement for more complex processing of mutex rela-
tions during the search phases of the Graphplan algorithm.

The approach we take in OCLGraph is similar to that of both An-
derson et a and Koehler et a [1, 7], in that when we ground the op-
eratorsthe result will have one clause (object transition) in the condi-
tional effects section for each object for which the grounding of the
conditional effects clause is consistent with the necessary and pre-
vailing sections of the operator. The growth of the number of clauses
in the conditional effects section as aresult of grounding is linear. It
is bounded by the number of objects in the problem domain of the
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correct object sort. We will delay further discussion until we have
presented the OCL Graph algorithm.

4 TheObject Graph
4.1 OCL Input

Wewill assumethat the domain model isinput using arestricted from
of OCL to coincide with theinput language specified in reference[2],
but extended to deal with conditional effects. In particular, OCL oper-
ator schemas are translated to a ground set. The conditional element
is expanded to include all consistent groundings of the conditional
element. During the grounding which is done as a preprocessor step,
static predicates are used to ensure consistent groundings. For exam-
ple the static information about which objectsfit in the briefcase and
which objects fit in the suitcase is used to ensure that a conditional
transition for moving the ‘suit’ which does not fit in the briefcase is
not generated. The ground operators to move the briefcase in aworld
containing a cheque a dictionary and a suit from home to the office
expands to:

oper at or (nove( bri ef case, hone, office),
% Prevai |
(1.
% Necessary
[ (bag, bri ef case,
[at _bag(briefcase, hone)]
=>
[at _bag(briefcase, office)])
1.
% Condi ti onal
[
(thing, cheque,
[ at _t hi ng(cheque, home),

i nsi de(cheque
=>
[at _thing(cheque, office),

i nsi de(cheque, briefcase)]),

(thing,dictionary,

[at _thing(dictionary, home),

i nside(dictionary, briefcase)]
=>
[at _thing(dictionary, office),

i nside(dictionary, briefcase)])

bri ef case)]

1)

A problem input to OCLGraph is defined by an initial state (ato-
tal mapping between dynamic object identifiers and substates) and
a goal condition (a mapping between object identifiers and ground
substate expressions).

4.2 Building Up the Graph

We build an *OCL-graph’ in the spirit of Graphplan by first substi-
tuting the idea of a proposition level with what we call an ‘object
level’, defined as a (total) mapping (caled level(n) where n is odd)
between the set of object identifiers O-ids and the partitioned set of
all possible substates for that object:

level(n) : O-ids = Table

where Table is a set of substates partitioned by the substate class
definitions. The intuitive idea is that if an object situation (s,i,ss) is

potentially reachable at level n through the execution of operators
then sswill be somewhere in the (partitioned) set ‘level (n)[i]’ .

Two immediate consequences of this representation are that:

(a) The size of every object level in a plan graph is always fixed
as the number of objects in the initial state, although the size of the
range sets of this map generally increases to the point where all legal
substates for the objects, as defined in the substate class definition,
areintherange.

(b) In a litera-based Graphplan any subset of the
propositions at each propositional levedd can form a
goa set which is potentidly satisfiable. For example in
the briefcase world, the set {inthing(chequebriefcase),
at_thing(cheque,home),outside(cheque)} would be acceptable
in principle, but would be found to be inconsistent through operator
back chaining. OCL restricts goal sets to a set of legal object
expressions - hence the above expression would not be allowed
as the cheque's substate expression is not well formed (it is not a
specialisation of either one of thing’s two substate classes).

4.2.1 Example

To create level(n+2) from level(n), we copy over the old mapping
(this parallels the use of ‘no-ops' in reference [2]) and add new sub-
statesto level (n+2)’srange if they are created by operator application
at level(n+1). Consider the briefcase world with only two locations
(home (h) and office (0)) and two things (cheque (c) and dictionary
(d)). In the initial state b, c and d are all at home, c isinside b and
disnot inside a bag. Then the development from the initial state in
level 1tolevel 3isasfollows:

level (1)[c] =

{partition 1:[at_thing(c,h),inside(c,b)}
level (1)[d] =

{partition 1:[at_thing(d,h),outside(d)]}
level (1)[b] =

{partition 1:[at_bag(b,h)]}

level (3)[c] =
{partition 1:[at_thing(c,h),inside(c,b)],
[at _thing(c,o0),inside(c,b)],
partition 2:[at_thing(c, h),outside(c)]}
level (3)[d] =
{partition 1:[at_thing(d,h),outside(d)],
partition 2:[at_thing(d, h),inside(d, b)]}
level (3)[b] =
{partition 1:[at_bag(b, h)],
[at _bag(b, 0)]}

The operators applicable at level 2 are take out(c,b), put.in(d,b), and
move(b,h,0), with the conditional effect of moving the cheque from
home to the office.

43 Links

Definition of ‘contains’ If SE is a set of ground object ex-
pressions, n is odd, then contains(level(n), SE) is true iff
for each (sji,se) in SE, there is a substate ss € level(n)[i] such
that se C ss.

An operator is applicable to level(n) if contains(level(n),O.Pre) is
true, where O.Pre are the operator’s preconditions as defined above.
For example, contains(level (3),[at_bag(b,0)]) istrue. Note that O.Pre
excludes any elements for the operators conditional effects.
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Definition of Links Assume operator O is applicable at
level(n). Then alink Ik(O, i, ss, mode) is stored in level (n+1)
if either (8) O changes i’ssubstate to ssor (b) (s,i,se) € O.prev,
ss € level(n)[i] and se C ss or (c) O is a no-op preserving
ss from level(n)[i] to level(n+2)[i]. We record mode as either
‘change’, ‘prevail’ or ‘no-op’ depending on each of the cases

(@ - (0).
In the running example we therefore store the following:

level (3)[c] =
{partition 1:[at_thing(c, h), outside(c)],
partition 2:[at_thing(c, h),inside(c,b)]}
level (3)[d] =
{partition 1:[at_thing(d,h), outside(d)],
partition 2:[at_thing(d, h),inside(d, b)]}
level (3)[b] =
{partition 1:[at_bag(b,h)],
[at _bag(b, 0)]}

level (2) =
{I k(no-op-1, c,
[at _thing(c, h),inside(c,b)],
| k(take_out (c, b), c,
[at _thing(c, h),outside(c)], change),
I k(take_out(c,b), b,[at_bag(b, h)], prevail),
I k(no-op-2,d,
[at _thing(d, h),outside(d)], no-op),
| k(put _in(d, b), d,
[at _thing(d, h),inside(d,b)], change),
I k(put _in(d, b), b, [at_bag(b, h)], prevail),
| k(no-op-3, b, [at_bag(b, h)], no-op),
| k(move(b, h, 0), b, [at_bag(b, 0)], change)}

no- op),

To process the conditional effects in the forwards phase of the al-
gorithm, new links and object substates at level n + 2 are added as
follows:

Definition of Conditional Links For each conditional effect
transition cc in an applicable operator O at level n + 1, if

I sse level(n): cclhs C ss

then add cc.rhs to level n + 2 and add link Ik(O,i,cc.rhs,cond)
to level(n+1) (hencethe link hereislabelled ‘cond’).

For the briefcase this adds a new substate to level(3)[c] and adds
anew link to record the application of the effect as follows:

level (3)[c] =
{partition 1:[at_thing(c, h), outside(c)],
partition 2:[at_thing(c, h),inside(c,b)],
[at _thing(c,o0),inside(c,b)]}

| k( nove(b, h,0),c,
[at _thing(c,o0),inside(c,b)],cond)}.

We have applied one of the conditional elementsin the ‘move’ oper-
ator. In applying such conditional elements we only consider opera-
tors that have already been applied, that is operators that have their
prevailing and necessary preconditions fulfilled at that level, these
operators already have their necessary effects and links recorded as
described above.

4.4 Mutual Exclusionsin OCL Graph

Theforward devel opment of the plan graph spreadsin the manner de-
scribed above. It is checked, however, by the use of mutual exclusion
conditions on both operators and substates in the object levels. Blum
and Furst's ‘ Interference’ statement ([2], section 2.2) is paraphrased
asfollows: ‘If either of actions O1 and O2 deletes a precondition or
Add-Effect of the other, they are mutually exclusive at that level. Sec-
ondly if actions O1 and O2 have preconditions which are recorded as
mutually exclusive then they are mutually exclusive’ Theideaisthen
to check each operator at each level against all the others, resulting
in aset of binary mutual exclusions.
We exploit the structure of OCL to give the following definition:

General Rule for Operator Mutex Formation For each ob-
ject identifier ¢ in the object level(n+2), two distinct operators
01 and O2 are mutually exclusive if Ik(O1,i,ss1,model) and
1k(02,i,ss2,mode2) are links recorded in level(n+1).

In other words, if two operators support the same object then they are
mutually exclusive to one another.

Therationaleis asfollows: if operators O1 and O2 change or rely
on the same object being in a particular substate, then they would in
genera interfere with each other. There are, however, some excep-
tions to the general rule above. Firstly, if ss1 = ss2, then at least one
of model or mode2 must be "change”. If ssl = ss2 and no mode is
"change”, then it does not follow that O1 and O2 are mutually exclu-
sive. In practice we say O1 and O2 conflict if there is a reference to
different substates of the same object in the preconditions or neces-
sary effects of the operators. Secondly if model = cond or mode2 =
cond then we do not add the conflict at this stage as the conditional
effect may not be used in the final plan even though the operator is.
We do not in the forwards development of the graph detect if the fir-
ing of one element in an operator will force thefiring of another. This
is contrary to the practice of [1].

The case made by [1] for the need to record such induced mutexes
derives from two cases.

e |f two components of an operator are such that the preconditions
of one of the components cannot be logically met without meet-
ing the preconditions of the second component then we need to
record that component one will be mutexed with all the operators
component two is mutex with.

e The second case is harder to paraphrase but essentialy if compo-
nent one can fire and due to absence of other information the only
way component two could fail to fireisif component one did not
fire then again we can deduce that one forces two and should be
mutexed with the operators two is mutexed with.

In OCL the first of the cases cannot arise as each element of an
operator will refer to a different object and hence the preconditions
for a conditiona transition to fire cannot be contained in the other
elements of the operator. The second case can arise. For example in
the briefcase world if at level one the cheque is inside the briefcase,
and we move it, then the cheque will aso move. There is no other
possibility as no other possible state of the cheque is recorded at this
level. At later levels other states of the cheque will aso be recorded
and hence there will not be the same guarantee that moving the brief-
case moves the cheque.

We could search for such cases but they are just a special case of
a conditional effect being forced as a result of the interplay of the
preconditions of aset of operators at agiven level. We could not deal

134



with the general case in the forward phase of graph development as
the set of operators will be dependent on the choices made in identi-
fying acandidate valid plan. Wetherefore | eave the backwards search
phase of the planner to take care of potential conflicts arising from
such conditional effects.

Employing this method to the example above, the mutexes turn out
to be:

mutex(2) = {

no-op-1, take_out(c,b)},
no-op-2, put_in(d,b)},
move(b, h, 0), no-op-3 },
nmove(b, h,0), take_out(c,b) },
nmove(b, h, o), put_in(d,b) } }

The mutex that we miss by delaying consideration of conditional ef-
fectsis{nove(b, h, 0), no-op-1} . That is we cannot move
the briefcase from home to the office with the cheque inside and si-
multaneous leave the cheque inside the briefcase at home. Note that
the exceptions to the general mutex rule rule collapses the mutex
formed by considering the ‘briefcase’ to binary mutexes.

Mutual exclusion conditions on object levels: In the original
Graphplan description, two propositions p1 and p2 were mutually
exclusive if all operators creating proposition pl were exclusive of
operators for creating p2. In the OCL formulation, we have two ob-
ject class expressions (s,i,cel) and (s,j,ce2) are mutualy exclusive
if

et Rt Nata et W

e fori <> j, for any operator O that supports cel and operator O1
that supports ce2, O and O1 are mutually exclusive (as defined by
the binary mutexes described above)

e fori =j, cel and ce2 cannot be satisfied by a common ground
substate

Thefirst condition issimilar to the original idea. The second arises
from the fact that an object cannot be in two substates at the same
level.

5 TheOCL-graph Algorithm
5.1 ForwardsPhase

Figure 1 shows the overall algorithm. Line 1 initialises thefirst level
in the plan graph using the initial state. If the goals are not trivialy
achieved (Line 3), the algorithm builds two new levels, a new object
level (n+2) and alink level (n+1) First in Line 7 the object states of
level nare copied to level n+2 and the no-ops links added (note each
no-op is given a unique identifier no-op-X). Following the addition
of the no-ops, the code in the internal loop (Lines 8 to 23) applies
the domain operators initially without reference to their conditional
effects and the new object level is augmented and appropriate links
added (lines 11,to 15). Following the application of an operator each
transition of the operator’s conditional effects is considered and if
its preconditions are met and do not conflict with the preconditions
of the prevail and necessary section it is applied and the appropriate
substates and links added to the corresponding levels. (lines 16 to 20)
After the loop adding all new substates to level n+2 and all links to
level n+1 completes, operator mutex sets are built and added to level
n+ 1inLine24.

5.2 Backwards Phase

Figure 2 details the definitions of ‘ACHIEVE’ which has overall con-
trol of the backwards search for avalid plan. ACHIEVE searches for

algorithm OCL-graph

In O-ids : Object identifiers; | : O-ids = Substates, Ops : Ground
Operators, G : Goals

Out P: Parallel Plan

Types level(n) (n odd) isamap O-ids = Table, level(n) (n even) isa
set of links

Types mutex(n) is a set of operator sets

1.Vie O-ids: level(2)[i] = {I[i]}
2.n:=1,
3. ACHIEVE(G,1, P);
4. while (P = null) do
5. level(n+2) :=level(n);
6. links(n+1) := { };mutex(n+1) ={ };
7. VieO-ids Vsse level(n+2)[i] :
add Ik(no-op-X, i, ss, no-op) to level (n+1);
8. VOE€Opsdo:
9. if contains(level(n), O.Pre) then

10. if not MUTEX(O.Pre,n) then
11. V(si,ss) € O.rhs: add ssto level (n+2)[i],
12. add Ik(O,i,ss,change) to level (n+1);
13. V (si,se) € O.prev:
14. if seC ss& ss € level(nt+2)[i]
15. then add 1k(O,i,ss,prevail) to level (n+1);
16. ¥ cc € O.cond:
17. if contains(level(n),cc.lhs) &
not MUTEX(Pren cc.lhs)
18. then add cc.rhsto level(n+2)[cc.i];
19. add Ik(O,cc.i,cc.rhs,cond), to level (n+1);
20. end if
21. end if
22,  endif
23. endfor;

24. calcuate all binary mutexes and add to mutex(n+1)
25. n:=n+2;

26. if contains(G,level(n)) then ACHIEVE(G, n, P);
27. end while

28. end.

Figurel. An Outline of the Object-Graph Planning Algorithm

a consistent operator set Y to achieve the goal set G, and if it finds
one first calls COND_PRECONDITIONS to determine which con-
ditional effects of the operatorsin set Y are required to achieve G
and adds the preconditions of those elements to the necessary and
prevailing preconditions of the operators Y. ACHIEVE then recur-
sively calsitself at level(n-2) with the set of preconditions of Y as
the new goalsto achieve. The definition of consistent in Line 6 isleft
open ended, and depends on whether mutexes are stored concern-
ing substates, as well as checking to see whether agoal expressionis
well formed with respect to the substate class definitions. The current
OCL-graph implementation does not memoize substate mutexes, but
thisis a subject for on-going research.

The strategy for selecting conditional effectsis shown in Figure 3.
In line 1 we determine which substate expressions of the Goal state
have not been supported by the necessary or no — op effects of the
chosen operator set O, these are the substate expressions that must
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procedure ACHIEVE(SS : set of substate expressions, n : odd
integer, P: plan);

Global levels, mutexes

Out apardlel plan P,

1.if n=1& contains(level(1), SS) thenP={ }
2. elseif n =1 and not contains(level (1),SS) then

3. P=null
4. ese
5 P =null;

6. chooseY :=aconsistent set of operators that
achieve a set of substates containing SS;
7. while(Y <> null & P =null) do

8. Y’ := union of al the operators necessary
and prevailing preconditionsin Y;

9. Y :={};

10.  while(Y” <> null & P =null) do

11. Y” := COND_PRECONDITIONS(SS,Y,n)

12. if Y <> null then

13. ACHIEVE({Y'UY"}n-2,P)

14.  endwhile

15.  if not(P = null) then

16. P := append(P',Y)

17.  dse

18. systematically generate another choice for Y

19.  endif

20. end while

21. end if

22. end.

Figure2. Achieve Procedure for the Object-Graph Algorithm

be supported by the conditional effects. Line 2 selects a set of those
transitions from the conditional effects of the operators O that sat-
isfies the unfulfilled goals SS'. The procedure then iterates on the
selected set of transitions if any to check their consistency. To check
the consistency of a selection we first determine those conditional ef-
fect transitions contained in the operator set O which are not needed
to support the goal (Spare). We then check that the preconditions of
each of the ‘Required’ transitions is consistent with the main pre-
conditions of the selected operator set O and that none of the Spare
conditional effects would if they are fired by the preconditions a-
ready required conflict with the outcomes of the operators selected.
If these conditions are met we have successfully chosen the condi-
tional effects needed and simple return them otherwise we must see
if an aternative set of conditional effect elements can be generated
to meet the requirement.

The primary method for determining that a set of object states are
consistent is the function ‘MUTEX’. Figure 4 It does the checking
very simply, by trying to find a set of consistent operators at the level
below which add these substate expressions. Operator sets are con-
sistent if no two operatorsin the set are mutually exclusive.

function COND_PRECONDITIONS(SS: goal set,
O : operator set, n : odd integer): set of substate expressions
Global levelsmutexes

1.SS := {SS- {se:se € Orhs}};

2. Required := a set of conditiona elements from
O.COND that achieve a set of substates
containing SS';

3. while Required <> null do

4. Spare:={0O.COND - Required};

5. if not MUTEX({O.PreU Required.lhs},n) &

6. V cc € Spare

7 if cc.lhs satisfied in {O.Pre U Required.lhs} then

not cc.rhs conflicts with
{O.rhsU Required.rhs}

8. then
9. return Required;
10. ese

11.  Required := choose new set from O.COND
that achieves the set of substates containing SS
12. endif
13. end while
14. return null;
15. end.

Figure3. Selection Conditional Effect Elements for Plan Inclusion

function MUTEX(SS : set of substate expressions, n : odd integer):
boolean
Global levels, mutexes

1.if n=1& contains(level(1), SS) then

2. MUTEX :=fase

3. elseif n=1 and not(l contains SS) then

4, MUTEX :=true

5. elseif 3, aset of operators that achieve a set
of substates containing SS, and
no two operatorsin'Y are mutexed then

6. MUTEX :=false

7.else MUTEX :=true

8. end.

Figure4. Detecting mutex relations in a set of Object Substates

6 Implementation

To try and establish the benefits of using OCL in a Graphplan like
algorithm we initially created two separate distinct planners, imple-
mented in Sicstus Prolog. The first, though it could process OCL
descriptions of planning domains, made no attempt to benefit from
the structure. Rather it was used to simply extract the elements of
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the standard STRIPS style operators. This implementation was de-
signed to form our base measure for conducting experiments in an
attempt to investigate the advantages in utilising the structures inher-
ent in OCL. Werefer to thisimplementation of Graphplan as‘vanilla
Graphplan. The second implementation “OCLGraph” tries to fully
exploit the structure of OCL. Though the results derived from these
implementations were encouraging they are not reliable as an objec-
tive comparison of the underlying algorithms. To try and rectify this
position we are currently developing anew version of OCLGraphin
Lisp with a view to comparing its performance against other public
domain versions of Graphplan. In particular “Sensory GraphPlan”
[3] isideal for this purpose asit provides a clean faithful implemen-
tation of Graphplan but also encorporates extensions to deal with
conditional effects.

7 Empirical Results

Tests have been carried out on a number of the standard ‘toy’ do-
mains, such as the Rocket, Robot and Flat Tyre world and the Brief-
case world for conditional effects. The tests have involved compar-
ing times of the vanillaversion of Graphplan against the Prolog OCL
version and comparing times of “ Sensory” Graphplan with the Lisp
version of OCL Graph.

The results of our tests are problematic in that a clear speed up is
indicated when we compare the Prolog version of OCLGraph with
our own vanilla version of Graphplan and on the most favourable
problems this can be by as much as 100 fold. However these results
are not replicated when we compare the Lisp version of OCLGraph
with “ Sensory Graphplan”. In this case the results mostly indicate no
significant difference but with some problems our OCL Graph per-
formed slower by an order of magnitude. The problems where our
software was performing worse than “Sensory Graphplan” were in
exampleswherethe goal statewasgenerated at arelatively early level
in the progress of the forwards phase of the algorithm but where ale-
gal plan was not generated until several levels deeper into the graph
expansion. This happens in examples such astasks in the “Flat Tyre
World” where the tools have to be returned to the “boot”, their initial
state, after being used to fix the tyre.

Clearly more work needs to be done with the code to ensure the
faithfulness in the implementations. That the code produces the ex-
pected resultsis not sufficient guarantee that the algorithms are accu-
rately implemented. The relatively poor results with our Lisp imple-
mentation may result from fewer mutexes being recorded in the for-
ward search than should be. A problem of this nature would degrade
performance but not prevent the eventual production of the correct
answer.

8 Analysis

We would expect the performance of a Graphplan-like algorithm to
be influenced primarily by control of the branching factor of the
graph. The factors influencing the degree of branching are:

e The most obvious factor is the creation of mutex relations during
the forwards phase of the graph expansion. The identification of
substate class definitions at domain design time in OCL provides
the algorithm builder with inexpensive methods for identifying
mutex relations between predicates referring to the same object.
However though OCL makes it easier to find mutexes it is not
clear that mutexes are found that would not be found in standard
Graphplan.

e In OCL versions of Graphplan the branching factor relating to an
action should be reduced by the fact that propositions are grouped
together into substate descriptions of specific objects. In a back-
wards search for a legal plan if we have selected an action as a
candidate for inclusion in the plan we need to check the produc-
ers of each of the substates of the objects referred to in the ac-
tion. In the non-OCL version we need to check the producers of
each of the separate propositions referred to in the preconditions
of the action. For example if we want to add to a candidate plan a
moveaction in the “Briefcase World” in the OCL version we need
to consider the producer of the briefcase and that of each object
in the briefcase. In a situation with two objects in the briefcase
we have three producers to include at the next lower level. In the
non-OCL version we need to check the producer of the proposi-
tion describing the briefcase’slocation and for each object in the
briefcase we need to check the producer of the proposition stating
the location of the object and the proposition stating that the ob-
jectisin the briefcase and potentially the static predicate that the
object fitsin the briefcase. Again with two objects in the briefcase
we need to check one producer for the briefcase but three for each
of the two objectsin the briefcase. The fan out from the non-OCL
version thus seems significantly greater than the fan out from the
OCL version.

e Another way the OCL formulation of Graphplan helps control
search manifests itself when dealing with conditional effects. As
detailed in [7], the backwards search needs to take account of the
unwanted firing of conditional effects, which would interfere with
the achievement of the plan goals. In OCLGraph as objects can
only be in one substate at a time we don’t need to both check that
(a) an object isin some desired substate, required for the achieve-
ment of the goal and (b) that it is not in some other substate to
prevent the firing of an unwanted conditional effect.

e The grouping of propositions into descriptions of object states as
donein OCL in some circumstancesincreases the branching factor
of the graph by introducing more action instantiations at a given
level of the graph than is done in the standard version of the algo-
rithm. This problem is best described with the aid of an example.
Consider enhancing the description of objects in the “Briefcase
World” to allow us to record states of the objects. For example
we might want to record whether or not the suit is “clean” or
“dirty”. In which case we might augment state descriptions of ob-
jects by introducing a predicate state(Object, Property). Such
predicates are then added to all state descriptions of objects. Such
a change would have no impact on how the move operator is de-
scribed in the STRIPS style representations used by the standard
Graphplan algorithm nor would it make any difference to the num-
ber of move operations applicable at any level in the graph. The
state of any of the objects, as described above would be unaffected
by the moveoperator and would be deemed to persist. In an OCL
version of the moveoperator there would be both a change to its
representation and potentially to the number of applicable move
operations at a level in the graph. In the representation of the
OCL version of the operator we would need to refer to the state
of the object being moved as the right-hand-side of a transition
must fully specify the resulting state of the object concerned. This
would have the consequence that at some levels of the graph we
would generate one move operator to move a“clean” suit fromthe
office to home and another operator to move a“dirty” suit. There
isno such duplication in the traditional Graphplan agorithm.
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It would seem then that the extra structure of the OCL representation  [11]

pulls in both directions. Both alows us in some circumstances to
reduce the branching factor of the graph and in other circumstances
increasesiit.

9 Conclusions

In this paper we have illustrated how a graph-based algorithm can be
extended to more structured representations of planning domains. We
have argued that there is potential for efficiency gains though there
are also threats. Our analysis and experimentation is not yet at a suf-
ficiently mature stage to accurately determine the extent of the trade
off between the competing factors. Our design of the Object-Graph
algorithm has uncovered various waysin which the extrainformation
content of OCL can be used to make the graph-based algorithm more
efficient but we have not been able to remove the potential threatsto
efficiency, though this may be possible in a hierarchical formulation
of Graphplan.

There are many avenues for future work. First we would like to
extend the experimental base to cover cases with a greater diversity
of graph sizes, and to experiment with more interesting domains pos-
sessing more structure. Secondly, there is a need to analyse the com-
putational complexity of the OCL-based algorithm in greater depth,
and compare it with the original. Thirdly, we need to extend the al-
gorithm to be able to accept the full OCL language, and to improve
the algorithm so that it uses yet more of the extra information given
in an OCL model. For example, domain invariants typically found in
an OCL model often read as mutex constraints on a pair of substates.
Finally, improvements to the basic algorithm such as dependency di-
rected backtracking [4] have not been implemented but there is no
reason to expect that they would not be equally applicable to our
version of the algorithm.
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Dynamic Scheduling of Progressive Processing Plans

Shlomo Zilberstein! and Abdel-Illah Mouaddib® and Andrew Arnt?

Abstract. Progressive processing plans allow systems to tradeoff
computational resources against the quality of service by specifying
aternative ways in which to accomplish each step. When the struc-
ture of a plan is known in advance, it can be optimally scheduled
by solving a corresponding Markov decision process. This paper ex-
tends this approach to dynamic scheduling of plans that can be con-
stantly modified. We show how to construct an optimal meta-level
controller for asingle task and how to extend the solution to the case
of multiple and dynamic tasks using the notion of an opportunity
cost. Several fast approximation schemes for the opportunity cost are
evaluated. The results provide an effective framework for managing
computational resources in highly dynamic environments.

1 INTRODUCTION

This paper is concerned with dynamic scheduling of progressive pro-
cessing task structures. In this framework, each task is mapped to a
progressive processing unit (PRU) composed of a set of modules that
can contribute to the quality of the result. The problem isto select at
run-time the best subset of modules so as to maximize the quality of
the result produced with limited computational resources.

While the general framework is extremely general, we focus in
this paper on a particular information retrieval application. Informa-
tion retrieval from a large collection involves uncertainty regarding
the duration of the process and the quality of the result. In addition,
there may be large variability in the number of requeststhat require a
response at any given time. By taking a context dependent, dynamic
approach to the problem we can significantly improve the average
quality of service provided by such systems.

A typical search engine is composed of several information re-
trieval modulesthat perform such tasks as query formation, query op-
timization, query evaluation, precision improvement, recall improve-
ment, clustering, and results visualization. For each one of these
phases, there are a wide variety of techniques that have been de-
veloped in recent years [12]. Currently, search engines are built by
choosing and integrating a fixed set of modules and techniques. The
choices are made off-line by the designer of the system. This static
approach excludes techniques that work well in special situations.
In addition, current information retrieval systems are optimized for
a particular load; they cannot respond dynamically to varying load,
availability of computational resources, and to the specific character-
istics of agiven query.

The ahility to dynamically adjust computational effort based on
the availability of computational resources has been studied exten-
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sively by the Al community since the mid 1980's. These efforts have
led to the development of a variety of techniques such as anytime
algorithms [1, 13], design-to-time [2], flexible computation [5], im-
precise computation [7], and progressive reasoning [8, 9].

In particular, the progressive processing approach offers a natu-
ral framework to describe the set of information retrieval techniques
availableto the system. Figure 1 shows a simpletask structure whose
input is a query composed of alist of keywords. The task structure
has three processing levels. The first level includes three aternative
techniques to improve theinitial query: (a) scan the query using con-
cept recognizers to identify company names, dates, locations, per-
sonal names, and so on; (b) examine the query for pairs of words
that have high statistical likelihood of being related and enhance the
query with that information; (c) perform part-of-speech analysis to
identify noun phrases within the query. The second level includes
two alternative techniques that can improve the query’s recall abil-
ity by expanding it to include related words and phrases: (d) use of
Local Context Analysis (LCA), a statistical method for expanding
queries that relies upon in-context analysis of word co-occurrence;
(e) use of InFinder, an association thesaurus that is faster than LCA
and does not capture context aswell. Finally, the third level performs
the actual query evaluation and returns the results. Quality in this ap-
plication is measured by the number of relevant documents within
the top n documents retrieved (i.e., precision in the retrieved set).

Evaluate query & return docs

® M

t H

Identify LCA concepts Add InFinder expansion terms

(d) G)]

?

Concept recognizers Identify & add Identify & add
statistical pairs noun phrases
(@) (b) ©

Figurel. lllustration of aprogressive processing task for an information

retrieval search engine

Thisinformation retrieval application provides a good example of
several fundamental issues:

1. Handling the duration uncertainty and quality uncertainty associ-
ated with each technique.

2. Handling the dependency of quality and duration on the quality of
intermediate results.

3. Handling arich task structure in which some levelsinclude several
alternatives or optional computational steps; optional steps can be
skipped under time pressure, leading to direct evaluation of the
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input query.

4. Selecting the optimal set of retrieval techniques in a dynamic en-
vironment taking into account the entire set of queries waiting for
execution.

The rest of this paper offers an efficient solution to the meta-level
control problem. Section 2 gives aformal definition of the problem.
We then solve the problem in two steps. In Section 3, we develop an
optimal solution for a single PRU, ignoring the fact that additional
tasks are waiting for processing. Section 4 shows how to handle mul-
tiple PRUs using the approach developed in Section 3 and summa-
rizing the effect of the waiting requests using the notion of an oppor-
tunity cost. In section 5 we address the issue of reactive control in a
highly dynamic environment by estimating the opportunity cost and
pre-compiling the control policies. We conclude with a summary of
the results and a brief description of related work.

2 THEMETA-LEVEL CONTROL PROBLEM

This section describes formally the problem of meta-level control of
the progressive processing model. Each information retrieval request
is mapped to atask structure described below.

Definition 1 A progressive processing unit (PRU) iscomposed of a
sequence of processing levels, (11,12, . .., Iz ). Thefirst level receives
the input query and the last one produces the resullt.

Definition 2 Each processing level, ;, is composed of a set of p;
alternative modules, {m},m7,...,m¥Y}.

Each module can perform the logical function of level [;, but it has
different computational characteristics defined below.

Definition 3 The module descriptor, P/ ((q',4)|q), of module m?
is the probability distribution of output quality and duration for a
given input quality.

Note that ¢ is a discrete variable representing quality and ¢ isadis-
crete variable representing duration. The module descriptor specifies
the probability that module m{ takes ¢ time units and returns a re-
sult of quality ¢" when the quality of the previously executed module
is ¢. Module descriptors are similar to conditional performance pro-
files of anytime algorithms[13]. They are constructed empirically by
collecting performance data for a sample set of inputs.

When the search engine responds to a particular request, it receives
an immediate reward defined as follows.

Definition 4 Atime-dependent utility function, U(q, t), measures
the utility of a solution of quality ¢ if it is returned ¢ time units after
the arrival time of the request.

We assume that there is a given constant 7' such that Vq,t >
T : U(g,t) = 0. That is, responding to a request more than T'
time units after its arrival has no value.

Suppose that a system maintains a set of information retrieval re-
quests, W, with arrival times {a1, a2, ...,an}. The set of requests
is updated dynamically as new requests arrive. The system processes
therequestsin afirst-in-first-out order using a progressive processing
unit to handle each request.

Given a set of requests, the module descriptors of al the compo-
nents of the progressive processing unit, and atime-dependent utility
function, we define the following control problem.

Definition 5 Thereactive control problem isthe problem of select-
ing a set of alternative modules so as to maximize the expected utility
over the set of information retrieval requests.

The meta-level control is “reactive” in the sense that we assume that
the module selection mechanism is very fast, largely based on off-
line analysis of the problem. Therest of the paper provides a solution
to this problem.

3 OPTIMAL CONTROL OF A SINGLE PRU

We begin with the problem of meta-level control of a single pro-
gressive processing unit corresponding to asingle task. This problem
can be formulated as a simple Markov decision process (MDP) with
states representing the current state of the computation. The statein-
cludes the current level of the PRU, the quality produced so far, and
the elapsed time since the arrival of the request. The rewards are de-
fined by the utility of the solution which depends on both quality and
time. The possible actions are to execute a module of the next pro-
cessing level or to skip that processing level. The transition model is
defined by the descriptor of the module selected for execution. The
rest of this section gives aformal definition of the MDP and the re-
active controller produced by solving it.

3.1 Staterepresentation

The execution of a single progressive processing unit, «, can be
seen as an MDP with a finite set of states S = {[l;,q,t]|li €
u} (J{[failure, t]} where 0 < ¢ < L indicates the last executed (or
skipped) level, 0 < ¢ < 1isthequality produced by thelast executed
module, and 0 < ¢ < T isthe elapsed time since the arrival time, a.,,
of the request. Note that quality is discretized and normalized to be
intherange [0..1]. All the intermediate modules use a uniform repre-
sentation of input and output (a“ query” in our application). Note also
that T' is the maximum delay after which we consider the response
to be useless. When the system is in state [l;, ¢, t], one module of
the i-th level has been executed. (Thefirst level isi = 1;4i = 0 is
used to indicate the fact that no level has been executed.) The states
[failure, ¢] represent termination at time ¢ without any useful result.
We distinguish between different failure states because failure can
occur before the deadline leaving some remaining time for the exe-
cution of other requests in the queue.

3.2 Transition model

The initia state of the MDP is [lo, ginit, t], Where ¢ is the elapsed
time since the arrival of the request (¢ = current time— a,,) and gin.+
isthe initial quality of the request (0 in our application). The initial
state indicates that the system is ready to start executing a module
of the first level of the PRU. The terminal states are all the states of
theform [iz, g, t] or [ failure, t]. Theformer set represents finishing
execution of the last level and the latter set represents failure. Other
statessuch as[li, gma=, t] (reaching maximal intermediate quality) or
[li, q, T'] (reaching the deadline before the execution of the last level)
are not considered terminal states. A terminal state can be reached
from state [l;, g, T'] by executing aseries of skip actions until afailure
state is reached. Similarly skip actions take the automaton from state
[li, gma=, t] to the last level because no execute action can improve
the intermediate quality.

In every nonterminal state the possible actions are: E! 41 (execute
the j-th module of the next level) and S (skip the next level). To
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complete the transition model, we need to specify the probabilistic
outcome of these actions. Equations 1-4 define the transition proba-
bilitiesfor a given nontermina state [I;, g, t].

The S action is deterministic. It skips the next level without
affecting the quality or elapsed time. (It can be implemented as an
additional “dummy” module whose execution takes no time and has
no effect on quality.)

Pr(lliv1,q,t] | [li,q,t],8) =1
when0 <i<L-1 @
Skipping the last level resultsin failure.
Pr([failure,t] | [lL-1,9,t],S) =1 2

The EZ,, action is probabilistic. Duration and quality uncer-
tainties define the new state. Equation 3 determines the transitions
following successful execution and Equation 4 determines the
transition to the failure state when the deadline, T', is reached.

Pr([li+17q’at+6] | [liqut]vEngl) =

P! ((¢',0)lq) whent+6<T ?)

(2

Pr([failure,T] | [li,q,t],EfH) =

> PLL(d0)la) @

q',6>T—t

3.3 Rewardsand thevalue function

Rewards are determined by the given time-dependent utility function
applied to thefinal result (produced by thelast level of the PRU). The
utility depends on the quality of the result and the elapsed time. Keep
in mind that in our application the intermediate results are useless
and therefore have no direct rewards associated with them. We now
define a value function (expected reward-to-go) over all states. The
value of terminal statesis defined as follows.

V([lL,Qa t]) = R(qat) = U(qat) (5)

V([failure,t]) = R(0,t) = U(0,¢t) (6)
The value of nonterminal states of the MDP is defined as follows.
V([li,q,t]) =
V([li+1,q,t]) Ifa=S,0<i<L-1

V([failure,t]) Ifa=8,i=L-1 @)
EV([liyq,t] |El ) fa=E]_,0<j<p;

max
a

Suchthat BV ([l;, ¢, 1] | EL,,) =

> P, 0)lg) V([failure, T]) +

q',6>T—t

S P 0)g) V(i d st +4))
q',0<T—t
The value function is defined as maximum over al actions with the
top expression representing the value of a skip action for any level
lisuchthat 0 < 7 < L — 1, the middle expression representing

the value of a skip action for level i1, 1, and the bottom expression
representing the value of an execute action.

This concludes the definition of an MDP. This MDP is a finite-
horizon MDP with no cycles. It can be solved easily using standard
dynamic programming a gorithms or using search algorithms such as
AO*.

Theorem 1 Given one progressive processing unit « and a time-
dependent utility function U(q, t), the optimal policy for the corre-
sponding MDP is an optimal reactive control for u.

Proof: Because there is a one-to-one correspondence between the
reactive control problem and the MDP (including the fact that the
PRU transition model satisfies the Markov assumption), and because
of the optimality of the resulting policy, we conclude that it provides
optimal reactive control for the progressive processing problem. O

3.4 Choice of unit resolution

The number of states of the MDP we must solve to control asingle
PRU is bounded by the product of the number of levels L, the max-
imum number of alternative modules per level max; p;, the number
of discrete quality levels, and the maximum execution time. While
the maximum execution time can be quite large, the time unit used
for the purpose of meta-level control is an arbitrary system parame-
ter. A small time unit leads to a more effective control at the expense
of alarger state-space. The choice of a unit of quality has a similar
effect. These unitsintroduce atradeoff between the size of the policy
and its effectiveness. We evaluate this tradeoff below be measuring
the policy size and construction time for different unit sizes. For the
sake of simplicity, the same unit reduction factor, «, is used for both
time and quality.

In this experiment, quality (¢) and time (t) have the following
ranges:

0<¢g<100

0<t<T

where T, the failure state deadline, is between 300 and 1000. The
unit resolution, u, defines the number of base level units grouped
together into alarger unit size. The following table shows the number
of discrete states per each level of the MDP for T = 300 and v =
1,5,10, 20, 40, 80.

Tablel. States per level asafunction of unit resolution

[[u [ #oftvalues | #of g values | states per level

1 301 101 30401
5 61 21 1281
10 31 11 341
20 16 6 96
40 8 3 24
80 5 2 10

The experiments were conducted with five randomly generated
PRUs for each of the four types described in the table below. Type
A isrepresentative of the characteristics of an actual information re-
trieval application, while the others are used to test scalability.

For each PRU, the corresponding M DP was solved using the above
six different unit values. For each resolution «, an optimal policy
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Table2. States per level asafunction of unit resolution

[ PRUtype ] L | Modulesperlevel [ T |
A 3 6 300
B 3 15 300
C 3 6 | 1000
D 3 15 | 1000

P, was constructed. The value of the initia state, [lo, qo, to], for
u = 1 represents the precise initial state expected value. The policy
Py, was used to select actionsin asimulation starting from the initial
state of the MDP. The simulation traced the precise state (with units
size u = 1) while selecting actions based on the approximate pol-
icy. This simulation was repeated 1000 times for each u, recording
the returned value (reward) of the initia state. Finally, we computed
the relative error between the value achieved using P, and the exact
value for each type of PRUS, using five random cases of each type.
The results are summarized in the following table.

Table3. Theeffect of unit resolution on policy value and construction time

PRU Exp Avg Const Avg Avg
Type Vaue | u | TimeH:M:S) Value | % Error
1 1:28:07.624 | 36.488 -0.297
5 0:.00:10.474 | 36.591 -0.017
10 0:00:00.897 | 35.905 -1.891
A 36.597 20 0:00:00.093 | 35.499 -3.001
40 0:00:00.011 | 34.789 -4.942
80 0:00:00.004 | 28.397 -22.406
1 3:27:20.762 | 14.301 0.329
5 0:00:25.289 | 14.188 -0.469
10 0:00:02.109 | 13.303 -6.676
B 14.254 20 0:00:00.223 | 10.219 -28.310
40 0:00:00.027 4.449 -68.786
80 0:00:00.008 | -10.279 | -172.112
1 4:16:10.096 | 30.074 -1.167
5 0:00:30.377 | 30.067 -1.189
10 0:00:02.492 | 29.981 -1.472
c 30.429 20 0:00:00.026 | 29.137 -4.245
40 0:00:00.031 | 22.781 -25.135
80 0:00:00.008 | 19.436 -36.127
1 13:18:36.698 | 21.464 0.401
5 0:01:35.471 | 21.039 -1.585
10 0:00:07.781 | 21.191 -0.876
D 21318 20 0:00:00.805 | 14.678 -31.338
40 0:00:00.094 | 15.604 -27.007
80 0:00:00.023 | 14.084 -34.118

Several important observations can be made based on the above ta-
ble. First, it confirms the intuition that the value of a policy degrades
gracefully as the unit size increases. But more importantly, the table
shows that a unit size of 10 leads to a dramatic reduction in policy
construction time with only a small relative error. For example, for
type A PRUSs, the time reduction is from more than 88 minutes to
less than 1 second. The loss of value is less than 2%. These results
confirms the applicability of the approach to redlistic problems by
adopting a good unit resolution.

4 OPTIMAL CONTROL OF MULTIPLEUNITS
USING OPPORTUNITY COST

Suppose now that we need to schedule the execution of multiple
PRUs. We assume that there are n + 1 requests whose arrival times
aeap < a1 < ... < an. One approach to construct an optimal
schedule is to generalize the solution presented in the previous sec-
tion. We can construct a larger MDP for the combined sequential
decision problem including the entire set of n + 1 PRUSs. To do that,
each state must also include 7, the request number, leading to a gen-
eral state represented as [i, , q, t]. Note that ¢ is the elapsed time
since the arrival of the first request.

This rather complex MDP is still a finite-horizon MDP with
no loops. Moreover, the only possible transitions between different
PRUs are from a terminal state of one PRU to an initial state of a
succeeding PRU. Therefore, we can solve this MDP by computing
an optimal policy for the last PRU for any starting time between 0
and T + an+1 — ao, then use the value of itsinitial statesto compute
an optimal policy for the previous PRU and so on.

Theorem 2 Given a set, W, of progressive processing units and a
time-dependent utility function U(q, t), the optimal policy for the
corresponding MDP is an optimal reactive control for W.

Thisisan obvious generalization of Theorem 1. The complete proof,
by induction on the number of PRUS, is omitted.

We now show how to reformulate the effect of the remaining n re-
quests on the execution of the first task. Thisreformulation preserves
the optimality of the solution, but it suggests a more efficient control
structure developed in Section 5.

Definition 6 Let V;*(t) = V ([z, lo, g0, t]) denote the expected value
of the optimal policy for thelastn — 7 + 1 PRUs.

To compute the optimal policy for the i-th PRU, we can simply use
the following reward function.

Ri(qat) = U(qat+a0 - ai) + V([Z + ]-alanOat]) (8)

In other words, the reward for responding to the :-th request is com-
posed of theimmediate reward (defined by the time-dependent utility
function) and the reward-to-go (defined by the remaining PRUS). Al-
ternatively, the reward can be represented as follows.

Ri(g,t) = U(q,t + a0 — ai) + Vi4a(t) ©)

Therefore, the best policy for the first PRU can be calculated if we
use the following reward function for final states:

RO(qv t) = U(q7 t) + Vl* (t) (10)

Definition 7 Let OC(t) =
at timet.

Vi (0) — Vi* (¢t) be the opportunity cost

The opportunity cost measurestheloss of expected value dueto delay
in the starting point of executing the last n tasks (all the tasks except
the first one).

Definition 8 Let the OC-policy for the first PRU be the policy com-
puted with the following reward function:

R(g,t) = U(g,t) — OC(t)

The OC-policy isthe policy computed by deducting from the actual
reward for the first task the opportunity cost of its execution time.
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Theorem 3 Controlling the first PRU using the OC-palicy is opti-
mal.

Proof: From the definition of OC(t) we get:
Vi'(t) = Vi (0) — OC(t) (1)

To compute the optimal schedule we need to use the reward function
defined in Equation 9 that can be rewritten as follows.

Ro(g,t) = Ulg,t) + Vi'(0) — OC(¢) (12)

But this reward function is the same as the one used to construct the
OC-policy, except for the added constant V;*(0). Because adding a
constant to a reward function does not affect the policy, the condi-
tions of Theorem 2 are met and the resulting policy is optimal. O
Theorem 3 suggests an optimal approach to scheduling the entire
n + 1 requests by first using an OC-policy for the first request that
takes into account the opportunity cost of the remaining n requests.
Then the OC-policy for the second request isused taking into account
the opportunity cost of the remaining n — 1 tasks and so on. To be
able to implement this approach we need to have the control policies
readily available. Thisissue is addressed in the following section.

5 REACTIVE CONTROL BASED ON
ESTIMATED OPPORTUNITY COST

In the previous section, we presented an optimal solution to the con-
trol problem of multiple progressive processing units without ac-
counting for its computational complexity. In particular, the oppor-
tunity cost must be computed and revised quickly each time a new
request arrives. Once the opportunity cost isrevised, anew policy for
the current PRU must be constructed. Finding the exact opportunity
cost requires the construction of an optimal policy for the entire set
of tasks. In practice, this may slow down the operation of the infor-
mation retrieval search engine.

In order to provide an effective reactive controller for dynamic
progressive processing, it is necessary to:

1. use afast approximation scheme to estimate the opportunity cost;
and
2. use pre-compiled policies for different opportunity cost functions.

The rest of this section explains this method in more detail.

5.1 Estimating the Opportunity Cost

The opportunity cost is defined in terms of the function V4* which
represents the value of an optimal policy for the remaining tasks in
the queue. Thus, it can be estimated by approximating this function.

5.1.1 Naive approximation

A naive approach to approximating the cumulative value of the re-
maining tasks is to add the value of each task without taking into ac-
count the opportunity cost. In this calculation, the start time of each
task is the expected end time of the previous one. The following set
of equations summarizes this approximation scheme.

Vi (8) = V(llo, go, t + a0 — ar]) + V5 (t + 1)
V() = V([lo, o, t + a0 — ai]) + Vi (t+ 307 ) (19)

Vi (t) = V(llo, g0, t + a0 — an])

where V[l, q, t] isthe value function defined in Section 3 for asingle
PRU. Therefore, V71" can be approximated as follows.

VI8 =) Vio,go t+ao+ (> 1) —a]  (14)
i=1 Jj<t

The expected duration of task ¢, 7;, depends on the duration of the
previous tasks. Let 7(d) be the expected duration of the optimal
single-PRU policy when starting at time d (relative to the arrival time
of the request). Then 7; is computed using 7 with the expected start-
ing time of task i relative to itsarrival time.

T0=0

i =7(t+ a0+ (ZKZ. Tj) — @s) (15)

The function 7 (expected duration) can be computed for any finite-
horizon MDP once the optimal policy is available by simply using
durations as rewards. The function can be computed once off-line,
making it easy to revise the opportunity cost when a new request is
added.

5.1.2 Learning an approximate opportunity cost function

Another approach isto estimate the opportunity cost using some fea-
turesthat characterize the remaining PRUsin the queue. Using adata
set of pre-computed opportunity costs for many different queues, we
can use these features to quickly approximate the opportunity cost
for the current queue. The features used is our experiment are:

1. Thetota number of PRUsin the queue.
2. The average waiting time of a PRU in the queue.

We performed some experiments to determine the effectiveness of
this approach. The dataset of queues was generated using a simple
model of query arrival time (a random number between 0 and 3 re-
quests arrive over a period of ten time units). The exact opportunity
cost was computed at each of the time units for 100 randomly gener-
ated queues.

Two different estimation methods have been tested. The first was
the k-Nearest-Neighbor algorithm, where we use a Euclidean dis-
tance metric on the features to determine the & closest data queues to
the test queue. The estimated opportunity cost for each time unit is
then the average of the opportunity costs over the k data queues for
that time unit.

The second method was kernel regression, where we give al of
the data queues a weight based on their feature-based Euclidean dis-
tance to the test queue. The weighing function for data queue i is as
follows.

—D(i,test)?

w; =€ W (16)
Where D(z;, test) isthe distance between ¢ and the test queue, and

W isthe kernel width. The estimated opportunity cost for time unit
t isthen the weighted average over all of the data queues.

> wiocy;
> wi

To determine the effectiveness of each of these methods we used
leave-one-out cross validation. In L-O-O CV, for each data queue ¢,
we omit 7 from the data set and then use our approximation method
to estimate the opportunity costs for . We then compute the error e;

est_ocy =

(17)
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between the estimated values and the actual values for i. Two differ-
ent methods for computing e; were tested.

Method 1:
10 | |
OCtyctual — OCtest
ei = —gctual o 10 18
(Z OCt,ctual ) / ( )
t=0
Method 2:
tlgo |Octactual - OCtest'
e; = — 10 (19)
t=0 OCtactual

Method 1 averages together the fraction error from each time step,
while Method 2 finds the error of the sum of all the opportunity costs.
Then, the total cross validation error is the average of al of thee;.

Figures 2 and 3 show that an acceptable error of less than 0.1 is
achieved using 1 Nearest Neighbor or Kernel Regression with avery
small width. An estimate with such asmall error suits our needs.
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Figure2. Leaveone out cross validation error for k£ nearest neighbor
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Figure 3. Leave oneout cross validation error for kernel regression with
width W

5.1.3 Comparison of opportunity cost approximation
methods

We now compare the performance of the naive method for opportu-
nity cost approximation against the best feature-based function ap-

proximation technique, 1-Nearest-Neighbor, described above. Per-
formance using no opportunity cost is given for comparison. This
is based on an optimal policy for a single task, ignoring the entire
gueue of requests. Unlike the naive method, in this case the the re-
ward function does not take into account the reward-to-go.

To perform this comparison, 50 different PRU arrival queues were
randomly generated for each of the four PRU types described in Ta-
ble 2. They were generated by having a random number between O
and 3 requests arrive at each time unit over a period of ten time units
(using a unit size of 10 seconds). Note that all the PRUs in a given
gueue correspond to the same task structure. For each arrival queue,
we estimated OC'(t) at each of the possible arrival times using both
estimation methods. We then computed the actual opportunity cost.
Table 4 gives the average relative error for each of the methods. As
expected, INN generally outperforms the naive method.

We aso observed how often actions chosen by the estimated OC
policy differed from those specified by the optimal policy. These val-
ues are also given in Table 4. We see that both of the estimation
methods perform very well, with the INN method actually generat-
ing a policy identical to the optimal for PRUs of type A. Ignoring
the opportunity cost leads to a large action error (up to 35%). It is
interesting to note that in PRUs of type D, the action error is small
for all three approaches. The large number of alternatives and high
level of uncertainty about duration make the value of the second-best
action closer to the value of the best action. Note also that in this
case the naive method provides the more accurate estimate of OC,
but it also leads to larger action selection. A possible explanation is
that while the estimate is more accurate in general, it is less accurate
for some critical cases in which a small error makes a difference in
action selection.

Table4. Comparison of OC approximation methods

PRU | OCEst Est OC | Action
type | Method Error Error
None N/A | 20.345
A Naive 34.102 2.014
INN 7.178 0.0
None N/A | 18.422
B Naive 10.550 5.586
INN 2.813 4678
None N/A | 35.185
C Naive 6.042 0.971
INN 2.668 0.233
None N/A 1.453
D Naive 1142 1.302
INN 2.255 0.376

5.2 Pre-compiled control policies

To make the meta-level control truly reactive for largetask structures,
one may want to avoid computing a new policy (for a single PRU)
each time the opportunity cost is revised. To avoid this, the space of
opportunity cost can be divided into a small set of regions represent-
ing typical situations. For example, there could be just three regions
that capture low, medium, and high loads. For each region, an op-
timal policy would be computed off-line and stored in alibrary. At
run-time, the system will first estimate the opportunity cost and then
use the appropriate pre-compiled policy from thelibrary. These poli-
ciesremain valid as long as the overall task structure and the utility
function are fixed. Because the dependency of the control decisions
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on the opportunity cost ismonotonic (higher costsimply lesstimefor
execution), we anticipate that a small set of classes that correspond
to qualitatively different action selection will be sufficient.

Another advantage of the use of pre-compiled policies is the abil-
ity to react quickly to dynamic changes. Control policies can be
switched during the execution of a single request if the opportunity
cost changes. This is possible because the policies share the same
state space.

6 CONCLUSION

We present an innovative approach to meta-level control of progres-
sive processing based on reformulating it asaMarkov decision prob-
lem. It is shown that an optimal policy for a set of tasks can be con-
structed by controlling a single PRU, taking into account the oppor-
tunity cost of the remaining tasks. To apply this model to control the
operation of an information retrieval search engine, a fast approxi-
mation of the opportunity cost is developed. Finaly, a highly reac-
tive controller isdescribed that uses alibrary of pre-compiled control
policies to operate in a dynamic environment.

A less complex model of progressive processing that relies on
heuristic scheduling has been developed [9]. Thetask structure, how-
ever, islimited to alinear set of levelswith one module per level and
no quality uncertainty or quality dependency. The heuristic sched-
uler isfast, but it cannot solve the more complex task structure pre-
sented in this paper and it does not provide optimal control. Heuris-
tic scheduling of computational tasks has also been studied by Gar-
vey and Lesser [1993] for the design-to-time problem-solving frame-
work. The latter framework represents explicitly non-local interac-
tions between sub-tasks.

The progressive processing framework relates to a large body of
work within the systems community on imprecise computation [7].
Each task in that model is decomposed into amandatory subtask and
an optional subtask. A variety of scheduling algorithms have been
developed for imprecise computation under different assumptions
about the optional part. Our model allows for aricher representation
of quality and duration uncertainty and quality dependency. Unlike
impreci se computation, the schedule constructed by the MDP sched-
uler isaconditional schedule; the selection of modulesisconditioned
on the actual execution time and outcome of previous modules.

The application of dynamic programming to solve meta-level con-
trol problems have been previously used by Hansen and Zilberstein
[1996] to contral interruptible anytime a gorithms. Optimal monitor-
ing of progressive processing tasks using a corresponding MDP has
been studied by Mouaddib and Zilberstein [1998] with respect to a
simpler task structure and without the notion of quality uncertainty
and quality dependency.

The notion of opportunity cost is borrowed from economics. It has
been used previously in meta-level reasoning by Russell and Wefald
[1991]. Horvitz [1997] uses a similar notion to develop a model of
continual computation in which idletimeis used to solve anticipated
future problems.

The use of pre-compiled control policies to construct a highly re-
active rea-time system has been studied by severa researchers. For
example, Greenwald and Dean [1998] show how areal-time avionics
control system can use alibrary of schedules that cover all possible
situations. Each schedule is conditioned on the state of the flight op-
eration.

In collaboration with the Information Retrieval Center at UMass
we are currently developing the stochastic module descriptors for
the components of the search engine. By definition, IR tasks involve

large collections and a substantial amount of test data allowing us to
test the applicability and scalability of this resource-bounded reason-
ing technique.
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