Dynamic Scheduling of Progressive Processing Plans

Shlomo Zilberstein! and Abdel-Illah Mouaddib® and Andrew Arnt?

Abstract. Progressive processing plans allow systems to tradeoff
computational resources against the quality of service by specifying
aternative ways in which to accomplish each step. When the struc-
ture of a plan is known in advance, it can be optimally scheduled
by solving a corresponding Markov decision process. This paper ex-
tends this approach to dynamic scheduling of plans that can be con-
stantly modified. We show how to construct an optimal meta-level
controller for asingle task and how to extend the solution to the case
of multiple and dynamic tasks using the notion of an opportunity
cost. Several fast approximation schemes for the opportunity cost are
evaluated. The results provide an effective framework for managing
computational resources in highly dynamic environments.

1 INTRODUCTION

This paper is concerned with dynamic scheduling of progressive pro-
cessing task structures. In this framework, each task is mapped to a
progressive processing unit (PRU) composed of a set of modules that
can contribute to the quality of the result. The problem isto select at
run-time the best subset of modules so as to maximize the quality of
the result produced with limited computational resources.

While the general framework is extremely general, we focus in
this paper on a particular information retrieval application. Informa-
tion retrieval from a large collection involves uncertainty regarding
the duration of the process and the quality of the result. In addition,
there may be large variability in the number of requeststhat require a
response at any given time. By taking a context dependent, dynamic
approach to the problem we can significantly improve the average
quality of service provided by such systems.

A typical search engine is composed of several information re-
trieval modulesthat perform such tasks as query formation, query op-
timization, query evaluation, precision improvement, recall improve-
ment, clustering, and results visualization. For each one of these
phases, there are a wide variety of techniques that have been de-
veloped in recent years [12]. Currently, search engines are built by
choosing and integrating a fixed set of modules and techniques. The
choices are made off-line by the designer of the system. This static
approach excludes techniques that work well in special situations.
In addition, current information retrieval systems are optimized for
a particular load; they cannot respond dynamically to varying load,
availability of computational resources, and to the specific character-
istics of agiven query.

The ahility to dynamically adjust computational effort based on
the availability of computational resources has been studied exten-

1 Department of Computer Science, University of Massachusetts, Amherst,
MA 01003, USA, email: zilberstein@cs.umass.edu

2 CRIL-IUT de Lens-Université d’ Artois, Rue de I’ université, S. P. 16, 62307
Lens Cedex, France, email: mouaddib@cril.univ-artois.fr

3 Department of Computer Science, University of Massachusetts, Amherst,
MA 01003, USA, email: arnt@cs.umass.edu

sively by the Al community since the mid 1980's. These efforts have
led to the development of a variety of techniques such as anytime
algorithms [1, 13], design-to-time [2], flexible computation [5], im-
precise computation [7], and progressive reasoning [8, 9].

In particular, the progressive processing approach offers a natu-
ral framework to describe the set of information retrieval techniques
availableto the system. Figure 1 shows a simpletask structure whose
input is a query composed of alist of keywords. The task structure
has three processing levels. The first level includes three aternative
techniques to improve theinitial query: (a) scan the query using con-
cept recognizers to identify company names, dates, locations, per-
sonal names, and so on; (b) examine the query for pairs of words
that have high statistical likelihood of being related and enhance the
query with that information; (c) perform part-of-speech analysis to
identify noun phrases within the query. The second level includes
two alternative techniques that can improve the query’s recall abil-
ity by expanding it to include related words and phrases: (d) use of
Local Context Analysis (LCA), a statistical method for expanding
queries that relies upon in-context analysis of word co-occurrence;
(e) use of InFinder, an association thesaurus that is faster than LCA
and does not capture context aswell. Finally, the third level performs
the actual query evaluation and returns the results. Quality in this ap-
plication is measured by the number of relevant documents within
the top n documents retrieved (i.e., precision in the retrieved set).

Evaluate query & return docs

® M

Identify LCA concepts Add InFinder expansion terms

(d) ©

t i

Concept recognizers Identify & add Identify & add
statistical pairs noun phrases
@ (b) ©

Figure 1. lllustration of a progressive processing task for an information

retrieval search engine

Thisinformation retrieval application provides a good example of
several fundamental issues:

1. Handling the duration uncertainty and quality uncertainty associ-
ated with each technique.

2. Handling the dependency of quality and duration on the quality of
intermediate results.

3. Handling arich task structurein which somelevelsinclude several
alternatives or optional computational steps; optional steps can be
skipped under time pressure, leading to direct evaluation of the

input query.

4. Selecting the optimal set of retrieval techniques in a dynamic en-
vironment taking into account the entire set of queries waiting for
execution.

The rest of this paper offers an efficient solution to the meta-level
control problem. Section 2 gives aformal definition of the problem.
We then solve the problem in two steps. In Section 3, we develop an
optimal solution for a single PRU, ignoring the fact that additional
tasks are waiting for processing. Section 4 shows how to handle mul-
tiple PRUs using the approach developed in Section 3 and summa-
rizing the effect of the waiting requests using the notion of an oppor-
tunity cost. In section 5 we address the issue of reactive control in a
highly dynamic environment by estimating the opportunity cost and
pre-compiling the control policies. We conclude with a summary of
the results and a brief description of related work.

2 THEMETA-LEVEL CONTROL PROBLEM

This section describes formally the problem of meta-level control of
the progressive processing model. Each information retrieval request
is mapped to atask structure described below.

Definition 1 A progressive processing unit (PRU) iscomposed of a
sequence of processing levels, (11,12, . .. ,I1). Thefirst level receives
the input query and the last one produces the resullt.

Definition 2 Each processing level, ;, is composed of a set of p;
alternative modules, {m},m7,...,m¥Y}.

Each module can perform the logical function of level [;, but it has
different computational characteristics defined below.

Definition 3 The module descriptor, P/ ((q',4)|q), of module m?
is the probability distribution of output quality and duration for a
given input quality.

Note that ¢ is a discrete variable representing quality and ¢ isadis-
crete variable representing duration. The module descriptor specifies
the probability that module m{ takes ¢ time units and returns a re-
sult of quality ¢" when the quality of the previously executed module
is ¢. Module descriptors are similar to conditional performance pro-
files of anytime algorithms[13]. They are constructed empirically by
collecting performance data for a sample set of inputs.

When the search engine responds to a particular request, it receives
an immediate reward defined as follows.

Definition 4 Atime-dependent utility function, U(q, t), measures
the utility of a solution of quality ¢ if it is returned ¢ time units after
the arrival time of the request.

We assume that there is a given constant 7' such that Vq,t >
T : U(g,t) = 0. That is, responding to a request more than T'
time units after its arrival has no value.

Suppose that a system maintains a set of information retrieval re-
quests, W, with arrival times {a1, a2, ...,an}. The set of requests
is updated dynamically as new requests arrive. The system processes
therequestsin afirst-in-first-out order using a progressive processing
unit to handle each request.

Given a set of requests, the module descriptors of al the compo-
nents of the progressive processing unit, and atime-dependent utility
function, we define the following control problem.

Definition 5 Thereactive control problem isthe problem of select-
ing a set of alternative modules so as to maximize the expected utility
over the set of information retrieval requests.

The meta-level control is “reactive” in the sense that we assume that
the module selection mechanism is very fast, largely based on off-
line analysis of the problem. Therest of the paper provides a solution
to this problem.

3 OPTIMAL CONTROL OF A SINGLE PRU

We begin with the problem of meta-level control of a single pro-
gressive processing unit corresponding to asingle task. This problem
can be formulated as a simple Markov decision process (MDP) with
states representing the current state of the computation. The statein-
cludes the current level of the PRU, the quality produced so far, and
the elapsed time since the arrival of the request. The rewards are de-
fined by the utility of the solution which depends on both quality and
time. The possible actions are to execute a module of the next pro-
cessing level or to skip that processing level. The transition model is
defined by the descriptor of the module selected for execution. The
rest of this section gives aformal definition of the MDP and the re-
active controller produced by solving it.

3.1 Staterepresentation

The execution of a single progressive processing unit, «, can be
seen as an MDP with a finite set of states S = {[l;,q,t]|li €
u} (J{[failure, t]} where 0 < ¢ < L indicates the last executed (or
skipped) level, 0 < ¢ < 1isthequality produced by thelast executed
module, and 0 < ¢ < T isthe elapsed time since the arrival time, a.,,
of the request. Note that quality is discretized and normalized to be
intherange [0..1]. All the intermediate modules use a uniform repre-
sentation of input and output (a“ query” in our application). Note also
that T' is the maximum delay after which we consider the response
to be useless. When the system is in state [l;, ¢, t], one module of
the i-th level has been executed. (Thefirst level isi = 1;4i = 0 is
used to indicate the fact that no level has been executed.) The states
[failure, ¢] represent termination at time ¢ without any useful result.
We distinguish between different failure states because failure can
occur before the deadline leaving some remaining time for the exe-
cution of other requests in the queue.

3.2 Transition model

The initia state of the MDP is [lo, ginit, t], Where ¢ is the elapsed
time since the arrival of the request (¢ = current time— a,,) and gin.+
isthe initial quality of the request (0 in our application). The initial
state indicates that the system is ready to start executing a module
of the first level of the PRU. The terminal states are all the states of
theform [iz, g, t] or [failure, t]. Theformer set represents finishing
execution of the last level and the latter set represents failure. Other
statessuch as[li, gma=, t] (reaching maximal intermediate quality) or
[li, q, T'] (reaching the deadline before the execution of the last level)
are not considered terminal states. A terminal state can be reached
from state [l;, g, T'] by executing aseries of skip actions until afailure
state is reached. Similarly skip actions take the automaton from state
[li, gma=, t] to the last level because no execute action can improve
the intermediate quality.

In every nonterminal state the possible actions are: E! 41 (execute
the j-th module of the next level) and S (skip the next level). To

complete the transition model, we need to specify the probabilistic
outcome of these actions. Equations 1-4 define the transition proba-
bilitiesfor a given nontermina state [I;, g, t].

The S action is deterministic. It skips the next level without
affecting the quality or elapsed time. (It can be implemented as an
additional “dummy” module whose execution takes no time and has
no effect on quality.)

Pr(lliv1,q,t] | [li,q,t],8) =1
when0 <i<L-1 @
Skipping the last level resultsin failure.
Pr([failure,t] | [lL-1,9,t],S) =1 2

The EZ,, action is probabilistic. Duration and quality uncer-
tainties define the new state. Equation 3 determines the transitions
following successful execution and Equation 4 determines the
transition to the failure state when the deadline, T', is reached.

Pr([li+17q’at+6] | [liqut]vEngl) =

Pl ((¢',0)lq) whent+6<T ?)

(2

Pr([failure,T] | [li,q,t],EfH) =

> PLL0)la) @

q',6>T—t

3.3 Rewardsand thevalue function

Rewards are determined by the given time-dependent utility function
applied to thefinal result (produced by thelast level of the PRU). The
utility depends on the quality of the result and the elapsed time. Keep
in mind that in our application the intermediate results are useless
and therefore have no direct rewards associated with them. We now
define a value function (expected reward-to-go) over all states. The
value of terminal statesis defined as follows.

V([lL,Qa t]) = R(qat) = U(qat) (5)

V([failure,t]) = R(0,t) = U(0,t) (6)
The value of nonterminal states of the MDP is defined as follows.
V([li,q,t]) =
V([li+1,4q,t]) Ifa=S,0<i<L-1

V([failure,t]) Ifa=8,i=L-1 @)
EV([liyq,t] |El) fa=E]_,0<j<p;

max
a

Suchthat BV ([l;, ¢, 1] | EL,,) =

> P, 0)g) V([failure, T]) +

q',6>T—t

S P 0)lg) V(i d ot +)
q',0<T—t
The value function is defined as maximum over al actions with the
top expression representing the value of a skip action for any level
lisuchthat 0 < 7 < L — 1, the middle expression representing

the value of a skip action for level i1, 1, and the bottom expression
representing the value of an execute action.

This concludes the definition of an MDP. This MDP is a finite-
horizon MDP with no cycles. It can be solved easily using standard
dynamic programming a gorithms or using search algorithms such as
AO*.

Theorem 1 Given one progressive processing unit « and a time-
dependent utility function U(q, t), the optimal policy for the corre-
sponding MDP is an optimal reactive control for u.

Proof: Because there is a one-to-one correspondence between the
reactive control problem and the MDP (including the fact that the
PRU transition model satisfies the Markov assumption), and because
of the optimality of the resulting policy, we conclude that it provides
optimal reactive control for the progressive processing problem. O

3.4 Choice of unit resolution

The number of states of the MDP we must solve to control asingle
PRU is bounded by the product of the number of levels L, the max-
imum number of alternative modules per level max; p;, the number
of discrete quality levels, and the maximum execution time. While
the maximum execution time can be quite large, the time unit used
for the purpose of meta-level control is an arbitrary system parame-
ter. A small time unit leads to a more effective control at the expense
of alarger state-space. The choice of a unit of quality has a similar
effect. These unitsintroduce atradeoff between the size of the policy
and its effectiveness. We evaluate this tradeoff below be measuring
the policy size and construction time for different unit sizes. For the
sake of simplicity, the same unit reduction factor, «, is used for both
time and quality.

In this experiment, quality (¢) and time (t) have the following
ranges:

0<¢g<100

0<t<T

where T, the failure state deadline, is between 300 and 1000. The
unit resolution, u, defines the number of base level units grouped
together into alarger unit size. The following table shows the number
of discrete states per each level of the MDP for T = 300 and v =
1,5,10, 20, 40, 80.

Tablel. States per level asafunction of unit resolution

[[u [#oftvalues | #of g values | states per level

1 301 101 30401
5 61 21 1281
10 31 11 341
20 16 6 96
40 8 3 24
80 5 2 10

The experiments were conducted with five randomly generated
PRUs for each of the four types described in the table below. Type
A isrepresentative of the characteristics of an actual information re-
trieval application, while the others are used to test scalability.

For each PRU, the corresponding M DP was solved using the above
six different unit values. For each resolution «, an optimal policy

Table2. States per level asafunction of unit resolution

[PRUtype] L | Modulesperlevel [T |
A 3 6 300
B 3 15 300
C 3 6 | 1000
D 3 15 | 1000

P, was constructed. The value of the initia state, [lo, qo, to], for
u = 1 represents the precise initial state expected value. The policy
Py, was used to select actionsin asimulation starting from the initial
state of the MDP. The simulation traced the precise state (with units
size u = 1) while selecting actions based on the approximate pol-
icy. This simulation was repeated 1000 times for each u, recording
the returned value (reward) of the initia state. Finally, we computed
the relative error between the value achieved using P, and the exact
value for each type of PRUS, using five random cases of each type.
The results are summarized in the following table.

Table3. Theeffect of unit resolution on policy value and construction time

PRU Exp Avg Const Avg Avg
Type Vaue | u | TimeH:M:S) Value | % Error
1 1:28:07.624 | 36.488 -0.297
5 0:.00:10.474 | 36.591 -0.017
10 0:00:00.897 | 35.905 -1.891
A 36.597 20 0:00:00.093 | 35.499 -3.001
40 0:00:00.011 | 34.789 -4.942
80 0:00:00.004 | 28.397 -22.406
1 3:27:20.762 | 14.301 0.329
5 0:00:25.289 | 14.188 -0.469
10 0:00:02.109 | 13.303 -6.676
B 14.254 20 0:00:00.223 | 10.219 -28.310
40 0:00:00.027 4.449 -68.786
80 0:00:00.008 | -10.279 | -172.112
1 4:16:10.096 | 30.074 -1.167
5 0:00:30.377 | 30.067 -1.189
10 0:00:02.492 | 29.981 -1.472
c 30.429 20 0:00:00.026 | 29.137 -4.245
40 0:00:00.031 | 22.781 -25.135
80 0:00:00.008 | 19.436 -36.127
1 13:18:36.698 | 21.464 0.401
5 0:01:35.471 | 21.039 -1.585
10 0:00:07.781 | 21.191 -0.876
D 21318 20 0:00:00.805 | 14.678 -31.338
40 0:00:00.094 | 15.604 -27.007
80 0:00:00.023 | 14.084 -34.118

Several important observations can be made based on the above ta-
ble. First, it confirms the intuition that the value of a policy degrades
gracefully as the unit size increases. But more importantly, the table
shows that a unit size of 10 leads to a dramatic reduction in policy
construction time with only a small relative error. For example, for
type A PRUSs, the time reduction is from more than 88 minutes to
less than 1 second. The loss of value is less than 2%. These results
confirms the applicability of the approach to redlistic problems by
adopting a good unit resolution.

4 OPTIMAL CONTROL OF MULTIPLEUNITS
USING OPPORTUNITY COST

Suppose now that we need to schedule the execution of multiple
PRUs. We assume that there are n + 1 requests whose arrival times
aeap < a1 < ... < an. One approach to construct an optimal
schedule is to generalize the solution presented in the previous sec-
tion. We can construct a larger MDP for the combined sequential
decision problem including the entire set of n + 1 PRUSs. To do that,
each state must also include 7, the request number, leading to a gen-
eral state represented as [i, [, q, t]. Note that ¢ is the elapsed time
since the arrival of the first request.

This rather complex MDP is still a finite-horizon MDP with
no loops. Moreover, the only possible transitions between different
PRUs are from a terminal state of one PRU to an initial state of a
succeeding PRU. Therefore, we can solve this MDP by computing
an optimal policy for the last PRU for any starting time between 0
and T + an+1 — ao, then use the value of itsinitial statesto compute
an optimal policy for the previous PRU and so on.

Theorem 2 Given a set, W, of progressive processing units and a
time-dependent utility function U(q, t), the optimal policy for the
corresponding MDP is an optimal reactive control for W.

Thisisan obvious generalization of Theorem 1. The complete proof,
by induction on the number of PRUS, is omitted.

We now show how to reformulate the effect of the remaining n re-
quests on the execution of the first task. Thisreformulation preserves
the optimality of the solution, but it suggests a more efficient control
structure developed in Section 5.

Definition 6 Let V;*(t) = V ([z, lo, g0, t]) denote the expected value
of the optimal policy for thelastn — 7 + 1 PRUs.

To compute the optimal policy for the i-th PRU, we can simply use
the following reward function.

Ri(qat) = U(qat+a0 - ai) + V([Z +]-alanOat]) (8)

In other words, the reward for responding to the :-th request is com-
posed of theimmediate reward (defined by the time-dependent utility
function) and the reward-to-go (defined by the remaining PRUS). Al-
ternatively, the reward can be represented as follows.

Ri(g,t) = U(q,t + a0 — ai) + Vi4a(t) ©)

Therefore, the best policy for the first PRU can be calculated if we
use the following reward function for final states:

RO(qv t) = U(q7 t) + Vl* (t) (10)

Definition 7 Let OC(t) =
at timet.

Vi (0) — Vi* (¢t) be the opportunity cost

The opportunity cost measurestheloss of expected value dueto delay
in the starting point of executing the last n tasks (all the tasks except
the first one).

Definition 8 Let the OC-policy for the first PRU be the policy com-
puted with the following reward function:

R(g,t) = U(g,t) — OC(t)

The OC-policy isthe policy computed by deducting from the actual
reward for the first task the opportunity cost of its execution time.

Theorem 3 Controlling the first PRU using the OC-palicy is opti-
mal.

Proof: From the definition of OC(t) we get:
Vi'(t) = Vi (0) — OC(t) (1)

To compute the optimal schedule we need to use the reward function
defined in Equation 9 that can be rewritten as follows.

Ro(g,t) = Ulg,t) + Vi'(0) — OC(¢) (12)

But this reward function is the same as the one used to construct the
OC-policy, except for the added constant V;*(0). Because adding a
constant to a reward function does not affect the policy, the condi-
tions of Theorem 2 are met and the resulting policy is optimal. O
Theorem 3 suggests an optimal approach to scheduling the entire
n + 1 requests by first using an OC-policy for the first request that
takes into account the opportunity cost of the remaining n requests.
Then the OC-policy for the second request isused taking into account
the opportunity cost of the remaining n — 1 tasks and so on. To be
able to implement this approach we need to have the control policies
readily available. Thisissue is addressed in the following section.

5 REACTIVE CONTROL BASED ON
ESTIMATED OPPORTUNITY COST

In the previous section, we presented an optimal solution to the con-
trol problem of multiple progressive processing units without ac-
counting for its computational complexity. In particular, the oppor-
tunity cost must be computed and revised quickly each time a new
request arrives. Once the opportunity cost isrevised, anew policy for
the current PRU must be constructed. Finding the exact opportunity
cost requires the construction of an optimal policy for the entire set
of tasks. In practice, this may slow down the operation of the infor-
mation retrieval search engine.

In order to provide an effective reactive controller for dynamic
progressive processing, it is necessary to:

1. use afast approximation scheme to estimate the opportunity cost;
and
2. use pre-compiled policies for different opportunity cost functions.

The rest of this section explains this method in more detail.

5.1 Estimating the Opportunity Cost

The opportunity cost is defined in terms of the function V4* which
represents the value of an optimal policy for the remaining tasks in
the queue. Thus, it can be estimated by approximating this function.

5.1.1 Naive approximation

A naive approach to approximating the cumulative value of the re-
maining tasks is to add the value of each task without taking into ac-
count the opportunity cost. In this calculation, the start time of each
task is the expected end time of the previous one. The following set
of equations summarizes this approximation scheme.

Vi (£) = V(llo, go, t + a0 — ar]) + V5 (t + 1)
V() = V([lo, o, t + a0 — ai]) + Vi (t+ 307) (19)

Vi (t) = V(llo, oyt + a0 — an])

where V[l, q, t] isthe value function defined in Section 3 for asingle
PRU. Therefore, V71" can be approximated as follows.

i=n

Vi) =Y Vo,go,t +ao+ (Y m)—a] (14)

i=1 j<i

The expected duration of task ¢, 7;, depends on the duration of the
previous tasks. Let 7(d) be the expected duration of the optimal
single-PRU policy when starting at time d (relative to the arrival time
of the request). Then 7; is computed using 7 with the expected start-
ing time of task i relative to itsarrival time.

T0=0

i =7(t+ a0+ (ZKZ. Tj) — @s) (15)

The function 7 (expected duration) can be computed for any finite-
horizon MDP once the optimal policy is available by simply using
durations as rewards. The function can be computed once off-line,
making it easy to revise the opportunity cost when a new request is
added.

5.1.2 Learning an approximate opportunity cost function

Another approach isto estimate the opportunity cost using some fea-
turesthat characterize the remaining PRUsin the queue. Using adata
set of pre-computed opportunity costs for many different queues, we
can use these features to quickly approximate the opportunity cost
for the current queue. The features used is our experiment are:

1. Thetota number of PRUsin the queue.
2. The average waiting time of a PRU in the queue.

We performed some experiments to determine the effectiveness of
this approach. The dataset of queues was generated using a simple
model of query arrival time (a random number between 0 and 3 re-
quests arrive over a period of ten time units). The exact opportunity
cost was computed at each of the time units for 100 randomly gener-
ated queues.

Two different estimation methods have been tested. The first was
the k-Nearest-Neighbor algorithm, where we use a Euclidean dis-
tance metric on the features to determine the & closest data queues to
the test queue. The estimated opportunity cost for each time unit is
then the average of the opportunity costs over the k data queues for
that time unit.

The second method was kernel regression, where we give al of
the data queues a weight based on their feature-based Euclidean dis-
tance to the test queue. The weighing function for data queue i is as
follows.

—D(i,test)?

w; =e W (16)
Where D(z;, test) isthe distance between ¢ and the test queue, and

W isthe kernel width. The estimated opportunity cost for time unit
t isthen the weighted average over all of the data queues.

> wiocy;
> wi

To determine the effectiveness of each of these methods we used
leave-one-out cross validation. In L-O-O CV, for each data queue ¢,
we omit 7 from the data set and then use our approximation method
to estimate the opportunity costs for . We then compute the error e;

est_ocy =

(17)

between the estimated values and the actual values for i. Two differ-
ent methods for computing e; were tested.

Method 1:
10 | |
OCtyctual — OCtest
ei = —gctual o7 10 18
(Z OCt,ctual) / ()
t=0
Method 2:
tlgo |Octactual - OCtest'
e; = — 10 (19)
t=0 OCtactual

Method 1 averages together the fraction error from each time step,
while Method 2 finds the error of the sum of all the opportunity costs.
Then, the total cross validation error is the average of al of thee;.

Figures 2 and 3 show that an acceptable error of less than 0.1 is
achieved using 1 Nearest Neighbor or Kernel Regression with avery
small width. An estimate with such asmall error suits our needs.

PRUA-Ermor1 ——
PRUA - Error 2 —--x---
0.18 | g PRUB - Error 1 ------
PRU B - Error 2 &
PRUC-Error 1 —-m—
L - PRUC - Error 2 ---o--
0.16 ke X Tk PRUD-Ermor 1 e
. 'X"""“'g’i" - PRUD -Error2 ----4 -
0.14 [- il
x - o o °
_ 012 o q
< -er
5 [o
c 1
S
k5]
g
e Y
.. §
. - pes
[S ,
s
R R 2 5 B
1 1 1 1 1

Figure2. Leaveone out cross validation error for k£ nearest neighbor

-Errorl ——
-Error 2 ---x---
-Errorl ---x---
-Error 2 &

-Error 1 —-m—
-Error2 ---o---
-Erorl ---e-—
-Error2 &

fraction error
N

01 f/ 4
/

0.02 0.04 0.06 0.08 0.1

Figure 3. Leave oneout cross validation error for kernel regression with
width W

5.1.3 Comparison of opportunity cost approximation
methods

We now compare the performance of the naive method for opportu-
nity cost approximation against the best feature-based function ap-

proximation technique, 1-Nearest-Neighbor, described above. Per-
formance using no opportunity cost is given for comparison. This
is based on an optimal policy for a single task, ignoring the entire
gueue of requests. Unlike the naive method, in this case the the re-
ward function does not take into account the reward-to-go.

To perform this comparison, 50 different PRU arrival queues were
randomly generated for each of the four PRU types described in Ta-
ble 2. They were generated by having a random number between O
and 3 requests arrive at each time unit over a period of ten time units
(using a unit size of 10 seconds). Note that all the PRUs in a given
gueue correspond to the same task structure. For each arrival queue,
we estimated OC'(t) at each of the possible arrival times using both
estimation methods. We then computed the actual opportunity cost.
Table 4 gives the average relative error for each of the methods. As
expected, INN generally outperforms the naive method.

We aso observed how often actions chosen by the estimated OC
policy differed from those specified by the optimal policy. These val-
ues are also given in Table 4. We see that both of the estimation
methods perform very well, with the INN method actually generat-
ing a policy identical to the optimal for PRUs of type A. Ignoring
the opportunity cost leads to a large action error (up to 35%). It is
interesting to note that in PRUs of type D, the action error is small
for all three approaches. The large number of alternatives and high
level of uncertainty about duration make the value of the second-best
action closer to the value of the best action. Note also that in this
case the naive method provides the more accurate estimate of OC,
but it also leads to larger action selection. A possible explanation is
that while the estimate is more accurate in general, it is less accurate
for some critical cases in which a small error makes a difference in
action selection.

Table4. Comparison of OC approximation methods

PRU | OCEst Est OC | Action
type | Method Error Error
None N/A | 20.345
A Naive 34.102 2.014
INN 7.178 0.0
None N/A | 18.422
B Naive 10.550 5.586
INN 2.813 4678
None N/A | 35.185
C Naive 6.042 0.971
INN 2.668 0.233
None N/A 1.453
D Naive 1142 1.302
INN 2.255 0.376

5.2 Pre-compiled control policies

To make the meta-level control truly reactive for largetask structures,
one may want to avoid computing a new policy (for a single PRU)
each time the opportunity cost is revised. To avoid this, the space of
opportunity cost can be divided into a small set of regions represent-
ing typical situations. For example, there could be just three regions
that capture low, medium, and high loads. For each region, an op-
timal policy would be computed off-line and stored in alibrary. At
run-time, the system will first estimate the opportunity cost and then
use the appropriate pre-compiled policy from thelibrary. These poli-
ciesremain valid as long as the overall task structure and the utility
function are fixed. Because the dependency of the control decisions

on the opportunity cost ismonotonic (higher costsimply lesstimefor
execution), we anticipate that a small set of classes that correspond
to qualitatively different action selection will be sufficient.

Another advantage of the use of pre-compiled policies is the abil-
ity to react quickly to dynamic changes. Control policies can be
switched during the execution of a single request if the opportunity
cost changes. This is possible because the policies share the same
state space.

6 CONCLUSION

We present an innovative approach to meta-level control of progres-
sive processing based on reformulating it asaMarkov decision prob-
lem. It is shown that an optimal policy for a set of tasks can be con-
structed by controlling a single PRU, taking into account the oppor-
tunity cost of the remaining tasks. To apply this model to control the
operation of an information retrieval search engine, a fast approxi-
mation of the opportunity cost is developed. Finaly, a highly reac-
tive controller isdescribed that uses alibrary of pre-compiled control
policies to operate in a dynamic environment.

A less complex model of progressive processing that relies on
heuristic scheduling has been developed [9]. Thetask structure, how-
ever, islimited to alinear set of levelswith one module per level and
no quality uncertainty or quality dependency. The heuristic sched-
uler isfast, but it cannot solve the more complex task structure pre-
sented in this paper and it does not provide optimal control. Heuris-
tic scheduling of computational tasks has also been studied by Gar-
vey and Lesser [1993] for the design-to-time problem-solving frame-
work. The latter framework represents explicitly non-local interac-
tions between sub-tasks.

The progressive processing framework relates to a large body of
work within the systems community on imprecise computation [7].
Each task in that model is decomposed into amandatory subtask and
an optional subtask. A variety of scheduling algorithms have been
developed for imprecise computation under different assumptions
about the optional part. Our model allows for aricher representation
of quality and duration uncertainty and quality dependency. Unlike
impreci se computation, the schedule constructed by the MDP sched-
uler isaconditional schedule; the selection of modulesisconditioned
on the actual execution time and outcome of previous modules.

The application of dynamic programming to solve meta-level con-
trol problems have been previously used by Hansen and Zilberstein
[1996] to contral interruptible anytime a gorithms. Optimal monitor-
ing of progressive processing tasks using a corresponding MDP has
been studied by Mouaddib and Zilberstein [1998] with respect to a
simpler task structure and without the notion of quality uncertainty
and quality dependency.

The notion of opportunity cost is borrowed from economics. It has
been used previously in meta-level reasoning by Russell and Wefald
[1991]. Horvitz [1997] uses a similar notion to develop a model of
continual computation in which idletimeis used to solve anticipated
future problems.

The use of pre-compiled control policies to construct a highly re-
active rea-time system has been studied by severa researchers. For
example, Greenwald and Dean [1998] show how areal-time avionics
control system can use alibrary of schedules that cover all possible
situations. Each schedule is conditioned on the state of the flight op-
eration.

In collaboration with the Information Retrieval Center at UMass
we are currently developing the stochastic module descriptors for
the components of the search engine. By definition, IR tasks involve

large collections and a substantial amount of test data allowing us to
test the applicability and scalability of this resource-bounded reason-
ing technique.

ACKNOWLEDGMENTS

We thank James Allan and Victor Lavrenko for their contribution to
the problem formulation and to the construction of the information
retrieval testbed.

This work was supported in part by the National Science Founda
tion under grants No. IRI-9624992, 11S-9907331, and INT-9612092,
by the Ganymedel Project of Plan Etat/Nord-Pas-De-Calais, and by
IUT de Lens.

REFERENCES

[1] T.Dean and M. Boddy, An anaysis of time-dependent planning, Seventh
National Conference on Artificial Intelligence, 49-54, 1988.

[2] A. Garvey and V. Lesser, Design-to-time real-time scheduling, |EEE
Transactions on Systems, Man, and Cyber netics, 23(6):1491-1502, 1993.

[3] L.Greenwald and T. Dean, A conditional scheduling approach to design-
ing real-time systems, Al Planning systems, 1229-1234, 1998.

[4] E.A. Hansen and S. Zilberstein, Monitoring the progress of anytime
problem-solving, Thirteenth National Conference on Artificial Intelli-
gence, 1229-1234, 1996.

[5] E. Horvitz, Reasoning under varying and uncertain resource constraints,
Seventh National Conference on Artificial Intelligence, 111-116, 1988.

[6] E.Horvitz, Models of continual computation, Fourteenth National Con-
ference on Artificial Intelligence, 286-293, 1997.

[7] J. Liu, K. Lin, W. Shih, A. Yu, J. Chung, and W. Zao, Algorithms for
scheduling imprecise computations, |EEE Transactions on Computers,
24(5):58-68, 1991.

[8] A.-l. Mouaddib, Contribution au raisonnement progressif et temps réel
dans un univers multi-agents, PhD thesis, University of Nancy I, (in
French), 1993.

[9] A.-l.Mouaddib and S. Zilberstein, Handling duration uncertainty in meta-
level control of progressive reasoning, Fifteenth International Joint Con-
ference on Artificial Intelligence, 1201-1206, 1997.

[10] A.-I. Mouaddib and S. Zilberstein, Optimal scheduling of dynamic pro-
gressive processing, Thirteenth Biennial European Conference on Artifi-
cial Intelligence, 449-503, 1998.

[11] S Russell and E. Wefald, Do the Right Thing: Studies in Limited Ratio-
nality, MIT Press, 1991.

[12] K.S.Jonesand P. Willett (eds.), Readingsin Information Retrieval, Mor-
gan Kaufmann Publishers, 1997.

[13] S.Zilberstein and S. Russell, Optimal composition of real-time systems,
Artificial Intelligence 82(1-2):181-213, 1996.

