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Abstract

We discuss the application of economic coordination
mechanisms to scheduling problems in manufacturing
and logistics. We use job shop scheduling as a sample
problem domain. We study economically augmented
job shop problems (EJSP) which comprise valuation
information. We demonstrate how instances of EJSP can
be mapped to combinatorial job shop auction problems
(CJSAP). A discussion of the tractability of approaches
that determine optimal solutions identifies the need
for heuristics. We suggest a heuristic that combines
the merits of economic coordination with the benefits
of closely domain-related solution procedures. We
conclude that the application of newly suggested and/or
well-known economic coordination mechanisms to job
shop and related scheduling problems in manufacturing
and logistics seem promising.

Keywords: Scheduling, Economic Coordination, Com-
binatorial Auctions

1 Introduction

The work presented in the following is based on some of
the key assumptions of research in economics and game
theory. A general description of the scenario under study
could be given as follows:

Scenario 1. A set of actors decides to collaborate. The
actors own a set of resources. The primary objective
of the collaboration is to utilize this set of resources as
economically efficient as possible. Economic efficiency
is measured in terms of money. Each actor has individ-
ual preferences for resource allocations. This preference
information is (to a large extend) private to the actor—it
cannot be assumed that the actors reveal their prefer-
ences truthfully without an incentive to do so. Paying
tribute to the objective and the restrictions, a coordi-
nation mechanism1 is designed to repeatedly determine
allocations of the available resources to maximize effi-
ciency. Each actor is free to opt out of the collaboration
if he is (repeatedly) dissatisfied with the determined out-
comes. Each actor acts rationally (within certain limi-
tations) as an utility maximizer.

To transfer this scenario to a multi agent setting is
straightforward: Each actor or each group of actors can
be represented by a (potentially computerized) agent.

1To explain the use of the termcoordination: The mecha-
nism is executed to coordinate the interests of the actors and
to determine an outcome that implements a coordination of the
behaviors of the agents—both with respect to the resources.

Furthermore, agents may represent parts of the nec-
essary organizational infrastructure (namely the mani-
fested parts of the coordination mechanism). We pri-
marily use agents as a convenient metaphor for the study
of coordination issues. In addition, issues relevant for
an implementation of the abstract infrastructure, namely
computational tractability and communication complex-
ity, are considered. Due to the conceptual proximity of
modeled and implemented multi-agent systems, carry-
ing over some of the theoretical results to the implemen-
tation is straightforward.2

The scenario emphasizes the relevance of the agents’
self-interest. We do not assume that the decision to col-
laborate with other agents implies that an agent is willing
to reveal all his private information or that he is willing
to deviate dramatically from his utility-maximizing be-
havior and turns into an altruist. The reasons for the
formation of collaborations can be manifold—most rel-
evant to our analysis is the assumption that the actors
decide to become part of the collaboration because they
consider this to be the economically most beneficial be-
havioral alternative, given their expectations and their at-
titude towards risk. The assumption of rational behavior
implies that the agents re-assess this evaluation continu-
ally and, consequently, may decide to leave the collab-
oration. This also explains, why an objective of the de-
sign of the coordination mechanism is to give incentives
to participate in the mechanism continually.

Also note that this scenario is an abstraction of many
real-world scenarios in logistics and manufacturing: a
number of units compete for the utilization of resources
that are owned by the group of units (or by some larger
unit that encloses/owns the considered units). Each unit
is, to a certain extent, economically independent in its
decisions and has information that is often not only lo-
cal but also private in the strict sense: it is only com-
municated truthfully to other agents if an incentive to
do so is present. This situation can be found in virtual or
extended enterprises (consider, for example, a collabora-
tion of small and medium-size transportation companies
with overlapping transportation capacities) or even in
comparatively small production environments such as a
single workshop (groups of workers, sales people, shop-
floor managers, planners influence as actors with self-
interest and (conflicting) individual objectives the orga-

2For example, if the implementation of a MAS that was
modeled as a distributed system is also distributed, the (theo-
retical) communication complexity results can easily be turned
into approximations for communication latency if the details of
the underlying networking infrastructure are worked into the
formulas.



nization and enactment of work in the workshop). We
chose job shop scheduling as an example for this type of
coordination problems.

There might be more natural application areas for
value-augmented scheduling/planning problems than
job shop scheduling problems (JSP). However, both
the inherent computational complexity and the struc-
tural simplicity make job shop problems a good target
for the demonstration of the applicability of economic
coordination mechanisms to value-augmented schedul-
ing/planning or, more general, economic resource allo-
cation problems. Additionally, the work that has been
done in areas like holonic manufacturing call for an ap-
plication of the techniques that are outlined below be-
cause it allows us

1. to model jobs, machines, production managers, sales
officers, planners etc. uniformly as autonomous, self-
interested entities with individual tasks to fulfill and
individual goals to accomplish.

2. to study directly the economic impact of decisions
across all inter-related units of operations and plan-
ning (as long as the interdependencies are also
mapped into the problem, which they will be if the
actors driving the operations get a handle to influence
decisions transparently—giving them useful budgets
and allowing for active payments is one possible way,
see (Adelsberger, Conen, & Krukis 1995)).

3. to apply a large number of relevant results from
game theory and microeconomics to the analysis of
operational and structural phenomena in manufac-
turing/logistics systems and beyond. This includes
strategic considerations (with the possible goal to de-
sign mechanisms to give incentives to the parties in-
terested in the result to communicate their preferences
truthfully), economic efficiency (a goal can be to de-
sign coordination mechanisms that compute economi-
cally efficient solutions), participation constraints (de-
sign the mechanism to make sure that the participants
feel as being treated in a fair manner to ensure their
continued participation) etc.

4. to design mechanisms that scale, both vertically and
horizontally, because they speak a language that is un-
derstood at every level of a company, between com-
panies, and between companies and customers: the
language of value, expressed in terms of money.

To be specific: The goal of our paper is to demonstrate
the applicability of economic coordination mechanisms
to economically augmented scheduling problems, and
to offer solutions for computing economically efficient
and/or straightforwardly computable heuristic solutions
that are tailored to the problem domain. We also discuss
some of the intricacies of economic coordination such as
strategic agent behavior, equilibrium considerations and
complexity issues.

1.1 Related Work

Related work is numerous, basically all of microe-
conomic literature is motivated by and related to re-
source allocation problems. The study of scheduling
problems in an economic context has also a significant

tradition in AI literature. For an excellent overview
with an emphasis on economics, as well as for inter-
esting and significant recent results related to both ar-
eas, see (Parkes 2001) or (Wurman 1999). For an
instructive overview of methods and problems in the
wider context of self-interested agents, consider (Sand-
holm 1996), whose further work, for example (Sand-
holm 2002), also contributes significantly to advances
in the area. A relevant example for work related to the
economics of scheduling is also the work of Wellman
et. al (Walsh & Wellman 1998; Wellmanet al. 2001;
Walsh, Wellman, & Ygge 2000). More closely related
to the application of economic principles in manufac-
turing environments are, for example, the work of Van
Dyke Parunak (Parunak 1996) or A.D. Baker (Baker
1996).3 More recently, this has also been discussed in
the context of new modes of manufacturing, for exam-
ple Holonic Manufacturing, as a promising paradigm for
controlling scheduling and planning processes in a dis-
tributed environment with local goals, private informa-
tion and general efficiency objectives (see, for example,
(Adelsberger & Conen 2000)).

From an economic perspective, a key issue in the
study of resource allocation problems is the design of
coordination mechanisms that

• enable the computation of economically efficient so-
lutions. In domains where monetary valuations are
available (as we assume below), this amounts to de-
termine allocations maximizing the aggregated wel-
fare of the participating agents. Note that in a setting
with private information, this requires that the mecha-
nism gives some incentive to the agents to reveal their
preferences truthfully.

• satisfy participation constraints for rational agents. A
mechanism is considered to be individually rational if
the agents can expect participation to be beneficial. It
is also relevant that the agents are satisfied with the
outcome of the mechanism to ensure further partici-
pation. The question of satisfaction boils down to an-
swer the question to what extend it is possible for the
agent to realize his most-preferred solution in a given
situation.

In view of related work, the work presented here seems
justified as most of the results that have been obtained
for general resource allocation problems with an em-
phasis on economics have not been specifically tailored
towards shop floor and related scheduling problems in
manufacturing or logistics. Furthermore, recent results
in studying combinatorial auctions and exchanges show
that not all questions have been answered yet (relevant
work is mentioned throughout the paper). Also, eco-
nomically motivated approaches in scheduling/planning
literature are sometimes difficult to analyze with respect
to the key issues outlined above or tackle simplified set-
tings.

3Though the concept of (Pareto) efficiency has been intro-
duced much earlier into the scheduling literature, see (Wassen-
hove & Gelders 1980).



1.2 Overview

First, the basic notation and terminology for discussing
job shop scheduling problems (JSPs) is introduced. We
define the class of economically augmented job shop
problems (EJSPs), where job agents have utility for
schedules, and related them to typical minsum criteria.
We map these problem to combinatorial job shop auction
problems (CJSAPs). We introduce prices as a means to
design individually rational, economically efficient co-
ordination mechanism and discuss the issues of truthful
revelation and the Vickrey principle. We show that both
EJSP and CJSAP are (strongly) NP”=hard. In view of
this result, we suggest a heuristic, economically-driven
coordination mechanism that is build on top of a well-
known, domain-specific solution procedure, the Giffler
and Thompson algorithm. This decision point bidding
approach can be applied to a number of search-based
solution procedures. It is an example of an economic co-
ordination mechanisms that is tailored to fit the problem
domain. This, in turn, may allow participating agents to
fully comprehend and purposefully influence the execu-
tion of the mechanism by means of bidding. The paper
is concluded with a brief discussion of possibilities to
extend and apply the obtained results.

2 From Job Shop Scheduling
to Economic Coordination

Scheduling allocates resources over time to enable the
execution of tasks. An important subclass of scheduling
problems are job shop problems. The tasks are given by
a set of jobs. Each job consists of a sequence of opera-
tions that have to be performed on specific machines in
a given order. We base the following on the constraint
optimization version of discrete, deterministic Job Shop
Scheduling (JSS) as defined in (Ausielloet al. 1999).4

Definition 1 (Job Shop Scheduling – Basic Setting).
An instance of the class of job shop scheduling problems
(JSP) consists of a setM = {1, . . . , m} ofmmachines,
and a setJ = {1, . . . , n} of n jobs, each consisting of a
setOj = {o1

j , . . . , o
nj
j } of nj operations. For each such

operation,oij , a machinemi
j ∈ M and a processing

time pij ∈ N is given. A ready time,rj ∈ N0, denotes
the earliest possible start time for the first operation of
each jobj ∈ J .

In a straightforward notation, a jobj is given as
(rj , [(m1

j ), p
1
j ), . . . , (m

nj
j , p

nj
j ]). The following exam-

ple is used throughout the paper:

Example 1. Job 1: (0, [(2, 2), (1, 3), (3, 2)])
Job 2: (0, [(3, 1), (2, 2), (1, 2)])

In the following, we refer to an arbitrary, but fixed JSS
problemP . A potential schedulefor a set of operations
is a mapping from the operations to start times. A poten-
tial schedule which assigns start times to all operations

4Which, in turn, is the optimization version of the decision
problem SS18 as defined by Garey and Johnson in their sem-
inal work (Garey & Johnson 1979) – with one difference: the
additional constraint of Garey and Johnson which required that
each pair of consecutive operations has to be performed on dif-
ferent machines has been dropped.

in P is calledcomplete. A potential schedule is called
feasibleif (1) no first operation starts too early, (2) no
sequence constraint is violated, and (3) no overlap in the
processing times of assigned operations occurs on any
machine. A schedule that is complete and feasible with
respect toP is called avalid schedule or asolutionof P
(s. Fig. 1 for an example). Formally:

Definition 2 (Valid Schedule). Given an instanceP of
JSP. A mappings : ∪j∈JOj → N0 is a valid schedule
for P iff (1) o1

j ≥ rj for all j ∈ J , (2) s(oij) + pij ≤
s(oi+1

j ) for all j ∈ J and all i ∈ {1, . . . , nj − 1}, and
(3), for every pair of distinct5 operationsohj , o

i
k, either

mh
j 6= mi

k or s(ohj )+phj ≤ s(oik) or s(oik)+pik ≤ s(ohj ).

Machine 1

Machine 2

Machine 3

Job 1 = Job 2 =

Figure 1: The valid schedule(0, 2, 5)1, (0, 2, 5)2 (sched-
ules are given asnj-ary sequences of start times for each
job j) for the example 1.

We may study a problemP relative to a time horizon
[TS, TE], TS, TE ∈ N0 and writeP [TS,TE]. The set
of all valid schedules restricted to a specific time horizon
is denoted withS[TS,TE]. If the time horizon is irrele-
vant, no index is shown. For a given setS, the subsetSj
contains all schedules that are restricted to the operation
of a given jobj. For a given schedules, the subschedule
sj denotes the elements ofs that schedule operations of
job j.

We now turn our attention to comparisons of thequal-
ity of schedules. Often measures that depend on the
completion times of the jobs are used, for example, min-
imizeCmax = maxj∈J Cj , whereCj = s(onjj ) + p

nj
j

is the time of completion of the last operationonjj of job
j in a given (valid) schedules. Regularly it is also as-
sumed that each job has a due datedj which allows to
use derivations from this due date as a measure.

In a value-oriented business environment, this way of
measuring the quality of schedules is only convincing
if the measure has a close correspondence to the cash-
flow pattern that is induced by the imposed solutions
(usually, it is tried to find a solution that optimizes the
chosen measure or that approximates an optimal solu-
tion). With respect to the core measure of the success
of management and operations, ie. value, such time (or
capacity etc.) related measures can only be considered
as being surrogates that may render decisions intrans-
parent because they introduce incomparabilities between
manufacturing shops competing for resources and give
no handle to tie local decisions to the decisions of up-
stream and downstream manufacturing/logistics units.

5That is,j, k ∈ J , h ∈ {1, . . . , nj}, i ∈ {1, . . . , nk} and,
if j = k, h 6= i.



This, however, would be an important prerequisite for
an unified analysis of the plans, schedules, decisions and
operations of all interrelated business units.

But even within one shop, it is usually not trivial to
map the goals that are related to jobs toone measure
only. Some jobs may be produced directly to customer
orders (due date is important), some jobs are produced
to fill up the stock (minimizing production cost is impor-
tant) etc. The resulting multi-criteria problem does not
seem to be convincingly solvable without introducing a
unifying measure. As thevaluerelated to strategic, tac-
tic, and operational decisions determines the success of
business operations, mapping goals to value and measur-
ing quality with money is a natural choice.

We will now augment job shop problems with value
information and view them as economic coordination
problems.

2.1 JSPs as Economic Coordination Problems

Job shop scheduling problems can be extended to eco-
nomic coordination problems—the jobs are identified
with agents competing for resources. The goods to be
traded are slots of machine time. To augment a JSS prob-
lemP economically, we assume that each agent has util-
ity for schedules, that is, a value functionv

′

j : S → N0

is available for every job agentj which assigns a non-
negative value to each possible valid6 schedule.

Definition 3 (EJSP). An instanceP (possibly restricted
to a time horizon) of the class JSS of job shop scheduling
problems and a setV of j value functionsv

′

j : S → N0,
one for each jobj, defines an instanceEP of the class of
economically augmented job shop scheduling problems
(EJSP).7

The general objective of solving EJSPs is to select a
schedule from the set of possible valid schedules that
achieveseconomic efficiency:

arg max
s∈S

∑
j∈J

v
′

j(s) (1)

As we show below, this class of scheduling problems en-
compasses a number of traditional job shop scheduling
problems. To do so, we first consider a restricted vari-
ant of the EJSP, where, for each agentj, the value of a
schedule does only depend on the operations inOj . In
the general variant, an agentj may value two schedules
differently though both assign the same start times to the
operations inOj . For example, this allows an agentk to
express that she prefers if a machine, say2, is assigned
to agentl instead of agentm in the interval[3, 5]. This
expressiveness is not always required.8

6It can also be useful to consider incomplete feasible sched-
ules.

7Remember thatS is the set of all valid schedules that solve
P . If a time horizon is given, this set may be empty. If no time
horizon is given, the set is countably infinite. We will therefore
usually assume that a time horizon is given (without displaying
it).

8Though, to map a very common objective, namely max
completion time, it is required, see the footnote below.

Definition 4 (EJSP without allocative externalities).
Let EP be given as above.EP is an EJSPwithout
allocative externalitiesiff, for any agentj and any pair
of schedulesa, b ∈ S, such that the restrictionaj of a
to operations ofj coincides with the restrictionbj of b,
v
′

j(a) = v
′

j(b).

Now consider a JSS problemP
′
and a typical minsum

criterion (Hoogeveen, Schuurman, & Woeginger 1998),
total job completion time. We map thisJ ||

∑
Cj prob-

lem to a restricted EJSPEP
′

as follows:
First, determine a valid schedule by timetabling the

operations of job1 as early as possible and without
slack and proceed with the operations of job2, start-
ing with o1

2 at timeC1. Continue this until all opera-
tions are scheduled. This produces (with effort linear in
the number of operations) a valid schedules

′
of length

l =
∑
j∈J

∑
1≤i≤nj p

i
j . This determines the time hori-

zon [0, l] to be considered. Now, a value functionv
′

j(·)
for each agentj can be given that determines, with ef-
fort linear in the number of operations, the value of any
given input schedule:
Function v

′

j(In: Valid Schedules, Out: Value v)
Cj ← s(onjj ) + p

nj
j ;

v← l − Cj ; return v;9

Proposition 5. A schedule maximizes the economic ef-
ficiency inEP

′
over all schedules inS if and only if it

minimizes the minsum criteriontotal completion time10

in P
′

over all schedules inS.

Proof. Let s be a schedule that maximizes efficiency in
EP

′
. Assume thats does not minimize the total com-

pletion time inP
′
, that is, there is a scheduler ∈ S

such that
∑
j∈J s(o

nj
j ) + p

nj
j >

∑
j∈J r(o

nj
j ) + p

nj
j , or,

shorter,
∑
j∈J s(o

nj
j ) >

∑
j∈J r(o

nj
j ). Becauses max-

imizes efficiency inEP
′
,
∑
j∈J(l − s(onjj ) + p

nj
j ) ≥

9Note that this transformation is polynomial because it
makes use of the fact that there is significant structure in the
problem. Would we have to enumerate all (or almost all)
schedule/value pairs explicitly, the transformation would not
be polynomial. However, criteria that would require such an
effort are virtually never used in scheduling literature (they
would be random in the sense of algorithmic complexity the-
ory, (Li & Vitanyi 1997)).

10Similar results can be obtained for restrictions to other
minsum criteria (e.g., total tardiness, weighted total comple-
tion/tardiness, holding costs, early/tardy penalties). Note also,
that EJSPwithout allocative externalitiescannot model criteria
like Cmax, because a global optimum for the desired criterion
is not obtainable from local considerations. The jobscannotbe
modeled as being independent in this case. If the value func-
tion should reflect the benefit of achieving a minimalCmax,
they mustreflect this dependency in their valuation of sched-
ules, or otherwise, self-interest prevents the optimization of the
desired criterion. ForCmax, the jobs should value schedules
with an earlier completion time for all jobs higher than, for
example, schedules that give them an earlier individual com-
pletion time (the time the lastoperationof j finishes) but a
later overall completion time (the time the lastjob finishes)—
in other words, the value of a schedule does not only depend
on the operations inOj but on all (final) operations (that is,
allocative externalities are present).



∑
j∈J(l− r(onjj ) + p

nj
j ), or, written differently,

∑
j∈J l

−
∑
j∈J s(o

nj
j ) −

∑
j∈J p

nj
j ≥

∑
j∈J l -

∑
j∈J r(o

nj
j )

−
∑
j∈J p

nj
j respectively

∑
j∈J r(o

nj
j )≥

∑
j∈J s(o

nj
j ),

contradicting the assumption. The other direction fol-
lows immediately as well.

Proposition 6. EJSPs are NP-hard in the strong sense.

Proof. As above proposition shows, EJSP can be re-
stricted toJ ||

∑
Cj . Furthermore, the transformation

is polynomial (see above). From the strong NP-hardness
of J ||

∑
Cj (s. (Lawleret al. 1992) or (Hoogeveen,

Schuurman, & Woeginger 1998)) the proposition fol-
lows.

To adapt the problem to our economic setting with
self-interested, (bounded) rational agents, the following
assumption are necessary.

In line with our basic motivation, we assume that the
value function isinformation private to the agent, that
is, no (central) institution has access to this information
without prior consent of the agent. In addition,utility
is transferable11 between agents (ie, a meaningful cur-
rency has to be available to express valuations and to
transfer payments).

We also assume that no agent can be forced to act
against his will. With these assumptions, we can trans-
late economically augmented job shop scheduling prob-
lems to a specific subclass of combinatorial auction
problems (CAPs), which are currently studied exten-
sively in AI and microeconomic literature (s. (de Vries
& Vohra 2001) for a survey).

2.2 Transforming EJSP to CJSAP

LetEP be in EJSP and let[TS, TE] be a time horizon.
An economic coordination problem can now be formu-
lated as follows:

Agents:A set ofn job agents,N = J = {1, . . . , n},
and an arbitrator,0. The arbitrator is modeled as asup-
plier. The job agents are modeled asconsumers.

Goods:The set of goods,Ω, is the set of all machine-
specific unit intervals within the time horizon (remember
thatM is the set of machines), that is:

Ω = {[z, z + 1]i | i ∈M ∧ z = TS, . . . , TE − 1}

Any subsetB ⊆ Ω (alternatively writable asB ∈ 2Ω,
the power set ofΩ) is calledbundle.

Before we can define value functions, a functionA :
S → 2Ω that partitions a schedules into the covered
machine-specific unit intervals is required (note thats is
a function, and thus a relation, so that it is appropriate to
write (o, t) ∈ s instead oft = s(o)).

A(s) = {[z, z + 1]m | (oij , t) ∈ s ∧m = mi
j

∧ z ∈ {t, . . . , t+ pij − 1}

Value functions: The value function of consumerj,
vj : 2Ω → N0 is defined as follows: if at least ones ∈ S

11Technically, the value functions have to be quasilinear
in money, compare, for example, (Mas-Colell, Whinston, &
Green 1995). Quasilinearity allows to interpret the utility for a
good (time slots in our case) as the willingness to pay for it.

exists such that the schedules is covered by the unit in-
tervals inB (ie., A(s) ⊆ B), the value ofB is set to
the value (in the underlying EJSP) of the best schedule
among the covered schedules, that is,vj(B) = v∗j (B)
with v∗j (B) = max{s:s∈S∧A(s)⊆B} v

′

j(s). If no sched-
ule is covered byB, vj(B) is set to0.

Machine 1

Machine 2

Machine 3

Unit intervals =

Figure 2: The unit intervals (ortime slots) of example 1.

Example 2. Reconsult example 1. The time horizon
to be considered is[0, 9]. The following considera-
tion leads to the preference relations, which underly the
value functions: letj be a job agent ands1 and s2 be
schedules which are complete with respect toj. If the
last operation of agentj in s1 is completed earlier than
s2, agentj prefers schedules1 (written ass1 � s2). If
the completion times are equal, the agent is indifferent
betweens1 ands2 (written ass1 ∼ s2).

For agent 1 the preference relation given below fol-
lows. for convenience, a rank is assigned to the equiva-
lence classes of equally preferred schedules.

1: (0, 2, 5) �
2: (0, 2, 6), (0, 3, 6), (1, 3, 6) �
3: (0, 2, 7), (0, 3, 7), (0, 4, 7), (1, 3, 7), (2, 4, 7) �
4: All invalid schedules.

For agent 2, the preference relation is only partially dis-
played:

1: (0, 1, 3) �
2: (0, 1, 4), (0, 2, 4), (1, 2, 4) � . . .
3: (0, 1, 5), (0, 2, 5), (0, 3, 5), (1, 2, 5), (1, 3, 5), (2, 3, 5) �
4: (0, 1, 6), . . . � 5: (0, 1, 7), . . . � 6: All invalid schedules.

Agent 1 values the earliest possible completion (at 7)
with 20 currency units (CU) and agent 2 (at 5) with 16
CU. a delay per time unit reduces the value of the sched-
ule for agent 1 by 3 CU and for agent 2 by 2 CU, result-
ing in the following functionsvRj (·), which assign values
to ranks:

Agent 1:vR1 (1) = 20, vR1 (2) = 17, vR1 (3) = 14, vR1 (4) = 0.

Agent 2:vR2 (1) = 16, vR2 (2) = 14, vR2 (3) = 12,
vR2 (4) = 10, vR2 (5) = 8, vR2 (6) = 0.

For a given bundleB, its valuation can be determined
by mappingB with a functionr to the preference rank
which corresponds to the best schedule which iscov-
ered by B. For example for the largest bundle,Ω,
which covers all schedules that lie within the time hori-
zon, rank 1 is the result of the mapping for both agents,
that is v1(Ω) = vr1(r(Ω)) = vr1(1) = 20 respectively
v2(Ω) = 16.



Proposition 7 (Monotony, Free Disposal).vi(A) ≤
vi(B) for all A ⊆ B ⊆ Ω, i ∈ N .

Proof. This follows immediately from the construction
of the value functions: a bundleB that contains at least
as many unit intervals as a bundleA covers at least the
schedules thatA covers, thus its value cannot be smaller
than the value ofA because the maximum value over
all covered schedules in the EJSP instance is at least as
large forB as forA.

This is sometimes also calledFree Disposalbecause
adding further unit intervals will not reduce value, or,
in other words, superfluous goods can be disposed off at
no cost.
We also assume thatno budget restrictionsexist: every
consumerj is in possession of enough money to be able
to pay up to the amount of the valuation for his most
preferred bundle. The consumers have no endowment
beyond money. All goods belong to the arbitrator. If the
consumer does not receive any good, his utility shall be
0 (w.l.o.g).

The objective of the allocation of the goods (from the
perspective of the arbitrator) is to maximize the aggre-
gated utility of the consumers. Here, this directly cor-
responds to maximizing the sum of individual utilities.
An allocation12 X∗ = (X∗0 , . . . , X

∗
n) conforms to this

objective if and only if the allocation isefficient, that is,
X∗ has to be a maximizer for the following problem

max
X

n∑
j=1

vj(Xj) (X iterates over all allocations) (2)

Example 3. For the above example, the following allo-
cations are efficient:
X1 ⊇ {[0, 1]2, [1, 2]2, [2, 3]1, [3, 4]1, [4, 5]1, [5, 6]3, [6, 7]3}
X2 ⊇ {[0, 1]3, [2, 3]2, [3, 4]2, [5, 6]1, [6, 7]1}
X0 = Ω\(X1 ∪X2).

Consecutive unit intervals can be consolidated to bun-
dles in an abbreviating notation:
X1 ⊇ {[0, 2]2, [2, 5]1, [5, 7]3}
X2 ⊇ {[0, 1]3, [2, 4]2, [5, 7]1}
X0 = Ω\(X1 ∪X2).

Definition 8 (CJSAP). LetEP be an instance of EJSP.
The setsΩ andN , the value functionsvj(·) of the con-
sumers that are obtained by the above transformation of
EP , and the objective(2) of the arbitrator define an in-
stanceC of the class ofCombinatorial Job Shop Auction
Problem, CJSAP.

We call an allocation that conforms to the objective of
the arbitrator asolution.

Proposition 9. A solution exists for every possible in-
stance of a CJSAP.

Proof. This follows with a straightforward combinato-
rial argument immediately from the finiteness of the
problem (which we assume throughout the paper).

12That is an(n + 1)-ary partition of the set of goods,Ω,
which assigns to agentj the goods in the bundleXj (someXj
may be empty, so it is not a partition with non-empty subsets,
as it is usually assumed).

Proposition 10. For anyEP ∈ EJSP, if a valid sched-
ule exists, a solution of the corresponding problemC ∈
CJSAP can be transformed into an optimal schedule for
the original, economically augmented job shop schedul-
ing problemEP (and vice versa).

Proof. LetX = (X0, X1, . . . , Xn) be a tight solution13

of C. Construct a schedulesX from X as follows: for
each agentj ∈ J , find the best schedulesXj that is cov-
ered byXj by simply timetabling the operations as unit
intervals are available (due to the tightness ofX, this is
possible in cost linear to the number of time slots inX).
Combine the schedulessXj to the schedulesX . Note that
the construction ofC ensures that this construction is al-
ways possible if a valid schedule exists. Furthermore,
as the allocationX is a partition ofΩ, no overlap on a
machine can occur. The other direction is even simpler:
each reservation for an operation in the optimal sched-
ule can be split into the machine-specific unit intervals.
The information in the schedule can be used to assign
the unit intervals immediately to the correct part of the
allocation (cost linear to the processing time).

We will now turn our attention to theproblems related
to finding an efficient allocation. They can be outlined
as follows: (1) a certain amount of value information is
necessary to determine an efficient allocation; (2) once
the required information is available, the actual compu-
tation has to be performed; (3) an incentive has to be
given to the agents to report their part of the required in-
formation truthfully, or otherwise, efficiency of the solu-
tion cannot be guaranteed; and (4) the agents have to be
satisfied with the determined outcome. We neglect issue
(1), briefly discuss issue (2) and concentrate on (3) and
(4). We will, however, return to the issue of complexity
later.

2.3 Determination of Efficient Allocations

If we assume for now that the (complete and true) value
functions of all agents are known, an efficient allocation
of the unit intervals to the job agents can be computed
with one of the well-studied methods of winner deter-
mination (compare (Sandholm 2002; Sandholmet al.
2001; Fujishima, Leyton-Brown, & Shoham 1999)). To
save communication, approaches have been suggested
that only partially reveal the value functions of the con-
sumers (compare (Parkes 2001) for indirect, iterative
auctions and (Conen & Sandholm 2002b) for a progres-
sive direct mechanism based on (Conen & Sandholm
2001b; 2001a)). Note that the winner determination
problem is essentially a set-packing problem (Rothkopf,
Pekěc, & Harstad 1998; de Vries & Vohra 2001) and
that it is NP-hard. We show below that this also holds
for CJSAP.

13A tight solution is a solution that does not contain time
slots that are not used. Note that a tight solution always exists
because the value of a bundle is the value of the best covered
schedule, and, in consequence, the bundle that covers just the
best schedule, is tight and optimal (that is: unused slots cannot
add to the value of a bundle due to the construction of the value
functions). Further note that is it always possible to tighten a
solution with costs less than exponential.



2.4 Prices

In the above example, two core problems remain: first,
because only agent 1 can realize his best alternative,
agent 2 will envy him. Second, we have tacitly assumed
that the agents report their utility truthfully—but why
should they do so under our assumption of preferences
being private information? Certainly, agent 2 could ex-
pect to benefit from over-exaggerating his valuations.
If agent 1 would expect agent 2 to over-exaggerate, he
would do the same, and so forth. Without an additional
way to ensure satisfaction and to make lying unattrac-
tive, we cannot expect to compute allocations that are
efficient with respect to the true preferences. The way
to go is to introduce prices. Each consumer has a net
utility function which reflects the impact of prices (neg-
ative transfers in the following definition) on the realiz-
able utility.14

Definition 11 (Net utility). The net utility function
uj(·) : 2Ω × Z → Z for each consumerj is defined
asuj(x, t) = vj(x) + t.

To keep every consumer satisfied with the outcome
(consisting of allocation and payment),uj(Xj , p) ≥
ui(A, p) must hold for every consumerj and every bun-
dle A ⊆ Ω,that is, the net utility of the bundle he re-
ceives must be at least as good as it would be for any
other bundle at the given prices (or, otherwise, the con-
sumer would prefer to receive the bundle that gives him
the best net utility).

This leads immediately to the notion of equilibria. An
outcome, that is, an allocation and a payment vector (de-
termined by the prices), is an equilibrium if both sides
of the market are satisfied with it (the market iscleared).
In our case this is true if the above condition holds for
all consumers and if the allocation is efficient (to sat-
isfy the supplier). There are different restrictions that
one can impose on prices—prices for bundles have to
be the sum of prices for individual goods (see (Gul &
Stacchetti 1999; Kelso & Crawford 1982), prices are in-
dependent for every bundle (see (Wurman & Wellman
2000)), prices are determined for the bundles in the effi-
cient allocation and prices for bundles of these bundles
are additive (see (Conen & Sandholm 2002a)). Only the
independent pricing of all bundles can guarantee the ex-
istence of equilibrium price vectors. However, imple-
menting the determined outcome may require enforce-
ment.15 For the more natural pricing modes, equilibrium
price vectors need not exist.16 We will therefore not
discuss (anonymous) equilibrium pricing in detail and
turn our attention to a solution concept for which solu-
tions always exists: Vickrey payments. We will demon-
strate in the example below that implementing Vickrey
payment-based coordination mechanisms give the par-
ticipating agents no incentive to lie (a very relevant de-
sign objective in a private information setting). Please,
consider the continued example below.

14Note, that we make the usual assumption of quasi-linearity
of valuations.

15Each agent is only allowed to buy one bundle—thus, if
he is interested in AB and we havep(AB) = 6, p(A) = 2,
p(B) = 2, he would want to enter the auction with two identi-
ties to buyA andB separately.

16This negative result holds also for instances of CJSAP.

Example 4. Bundles on offer in the efficient allocation:

A = {[0, 2]2, [2, 5]1, [5, 7]3}
B = {[0, 1]3, [2, 4]2, [5, 7]1}

Demand for these bundles:

∅ A B AB
Agent 1 0 20 0 20
Agent 2 0 0 12 16

Vickrey Payments (the vector of payments also fulfill the
equilibrium condition if interpreted as prices for the
bundles instead of personalized payments):

A B AB
Agent 1’s payment 4
Agent 2’s payment 0
Equilibrium prices 4 0 4

The payments ensure that there is no (individual) incen-
tive for the agents to lie, as can be seen as follows. First
note that the price each agent has to pay does only de-
pend on the reported utilities of the competing agents—
it represents the loss of utility that the other agents ex-
periences due to the participation of the former agent.
Now, assume that agent 1 would underbid his valuation
with, say, 17. Then he risks that agent 2 (or any other
agent) would bid just above 17 but below 20, say 18,
and would thus receive the good. As the price he has
to pay is independent of his own bid and will equal the
bid of the other agent, he could have done better by bid-
ding truthfully (exactly 2 = 20 - 18 instead of 0). If he
would have known beforehand what the other agent will
bid, sayx, he would not have a reason to underbid ei-
ther, because there would be no difference in net value
for agent 1 in bidding 20 orx + ε (as the price will be
the bid of the other agent anyway). He would also not
overbid, because he risks that he receives the overbid-
ded bundle for a price between his true valuation and
his bid and would, thus, realize a loss. If he would over-
bid in the fully-informed situation, he cannot gain any
net value from it either. An analogous reasoning applies
to agent 2, thus both agents will not have an incentive
to misrepresent their valuation if they act rational (this
corresponds to an equilibrium in dominant17 strategies).

The general principle invoked here has been mentioned
in the example: the payments that an agent has to trans-
fer do not depend on her own bid but captures instead
the effect of her participation on the other participating
agents.18 It is intuitively clear that, as soon as there is a
dependency for a bundleXj between the reported util-
ity of agentj and the pricej has to pay,j will have an
incentive to minimize this price by misrepresenting his
utility if possible. To do so, he might start to collect in-
formation about the other participating agents (which is
not necessary above) to become able to behavestrategi-
cally. This, in turn, may make it impossible for the ar-
bitrator to pick the efficient allocation—all that he could
do would be to pick the allocation that is efficient with
respect to thereportedutilities. This brief digression
into the issue ofincentive compatibilitymay suffice to

17Weakly dominant in the case of informed agents.
18The principle has been discovered and applied indepen-

dently by Vickrey (in 1961), Clarke (in 1971) and Groves (in
1973) (see, for example, (Vickrey 1961)).



demonstrate one of the most prevalent problems in envi-
ronments where the agents have private information: the
problem of eliciting their preference truthfully to allow
for truly optimal decisions.19

Proposition 12 (Existence of Vickrey Outcome).
An outcome consisting of an efficient allocation and
a vector of related Vickrey payments exists for every
instance of CJSAP.

Proof. (Sketch) The proof follows from a straightfor-
ward combinatorial argument: with finite sets of bundles
and agents. A computable solution of the maximization
problem (2) (to determine the efficient allocation) and
the n (or less) maximization problems following from
the initial problem by leaving out, for each non-empty
bundle in the allocation, the agent that receives it (to de-
termine the effect of his participation, that is the Vickrey
payments), is immediately available from enumerating
all possible complete and reduced allocations and pick-
ing the optima.

3 Complexity Issues

Two immediate problems of auction mechanisms that try
to solve a CJSAP are (1) that the mechanisms may re-
quire communication that is exponential in the number
of unit intervals (compare the general result of (Nisan
& Segal 2002), which extends to CJSAP) and (2) that
solving the actual allocation problem once all required
value information is received is NP-hard, as the follow-
ing corollary demonstrates:

Corollary 13. CJSAPs are NP-hard in the strong sense.

Proof. This follows immediately from Proposition 6 and
the polynomiality of the transformation given in Propo-
sition 10.

Note also that CJSAP is a subclass of the combinato-
rial auction problem CAP which is equivalent to maxi-
mum weighted set-packing (compare (de Vries & Vohra
2001)), known to be NP-hard.20

Consequently, we cannot expect to obtain optimal so-
lutions for problems of reasonable size with reasonable
computational efficiency. Furthermore, the approxima-
bility results obtained for maximum weighted set pack-
ing (Ausielloet al. 1999) are not very encouraging. We
also do not expect that CJSAP is an especially well-
behaved subclass in this respect due to its proximity to
EJSP and, thus, typical job shop scheduling problems.
We can now try to modify auction mechanism that deter-
mine efficient allocations (like iBundle (Parkes & Ungar
2000) or AkBA (Wurman & Wellman 2000)) to relax the
efficiency goal and to restrict the search space heuristi-
cally. However, we cannot expect this to be easily justi-
fiable with respect to the properties of the initial problem
domain.

19For pointers to recent work, see (Bikhchandaniet al.
2001) or Parkes (Parkes 2001).

20If we allow partially ordered sequences of operations and
alternative routings, the corresponding variant of EJSP and the
resulting CJSAP could be mapped to the general combinatorial
auction problem bijectively.

It is the nature of any heuristic modification that no
guarantee to obtain economically efficient solutions can
be given. Furthermore, other desirable properties like
incentive-compatibility may get lost. With respect to a
specific problem domain, it seems reasonable to postu-
late that the heuristic reflects the properties of the do-
main naturally, allowing users to make justifiable deci-
sions when dealing with the heuristic mechanisms. We
suggest a mechanisms that is closely related to a straight-
forward solution procedure for job shop scheduling,
namely the algorithm of Giffler and Thompson (GT). It
allows the agents (resp. the represented actors) to base
their bidding behavior on an understanding of the con-
sequences of decisions that are made along an execution
of GT.

4 Decision Point Bidding

Most solution procedures for JSPs (or for other resource
allocation problems) can be viewed as a sequence of
decisions—for the GT, this is the selection of the next
operation to schedule. Now, instead of competing for
reservations directly, the agents bid for the right to stip-
ulate decisions.

As GT constructs an active schedule, we will restrict
our analysis to problem instances of EJSP that have the
property that the individual agents always (weakly) pre-
fer earlier allocation of the final operation (to mimic the
behavior of regular measures).
We give a brief re-collection of the GT prior to outlining
a coordination mechanism that allows to solve restricted
EJSP by following the sequence of decisions that are
characteristic for an execution of GT. Assume that an
instanceEP of EJSP is given.

(1) Initialize the setSO of schedulable operations to
o1
j , 1 ≤ j ≤ n.

(2) As long asSO is not empty do
(3a) Determine the decision setDS by first picking

from SO one of the operations with the earliest
completion time, sayoyx (ie. arg minoij∈SO rj +
pij) and

(3b) insert intoDS all operations fromSO that re-
quiremy

x and start before the potential comple-
tion timerx + pyx of oyx

(4) (Decision Point) Choose one of the operations
from DS, say oba and make reservations cor-
responding to its related ready and processing
times.

(5) Update the ready time information of all jobs
that have operations inDS by settingrj of any
such job torba + pba. Removeoba from SO and
add its successor (if it exists, ie. ifb < nj), ob+1

a
to SO. EmptyDS.

Now, the basic mechanism is as follows: the arbitrator
announces to run a GT and starts to ask the agents for
information about ready times and about the process-
ing times of the operations to be scheduled. It iterates
the Giffler and Thompson procedure as usual, request-
ing bids from the agents to be able to determine a decider
for each decision point (see above). Each agent who has
currently an operation in the decision set is entitled to



bid. The winner will pay the price of the second highest
bid and receives, as a result, the earliest possible reser-
vation of his operation in the decision set (ties in the bids
are broken arbitrarily).21

Corollary 14. For any finite EJSP, the mechanism ter-
minates and the resulting allocation corresponds to an
active schedule.

This follows immediately from the construction of the
mechanism, which follows the execution pattern of the
GT and, thus, inherits its property of computing an ac-
tive schedule.

Proposition 15. For the restricted EJSP, the set of pos-
sible outcomes of the mechanism contains an efficient
allocation.

Proof. (Sketch) There arez =
∑
j nj decision points

to bid on in each run of the mechanism. The sequence
of decisions can be described by az-ary vector of job
agent indices. The set of all sequences that lead to active
schedules can be obtained through iterated0-bidding
(no agent bids a non-zero amount of currency units in
any iteration). This is due to the non-deterministic tie-
breaking and the fact that the mechanism follows the ex-
ecution path of GT and thus inherits the property of GT
to generate all active schedules if all decisions are taken
in every possible way. The proposition follows from an
adaptation of Theorem 2.1 of (French 1982) (suggested
by French in Chap. 10), which states that the class of ac-
tive schedules contains the optimal schedule for regular
measures, and the fact that the restricted EJSP mimics a
regular measure.

Note that each bidding decision is necessarily based on
calculations of the expected value of a positive decision
(the agent wins the decision point). Each agent knows
beforehand that he has to win exactlynj decision points.
He can also calculate the influence of each taken de-
cision on the maximally achievable utility (simply by
assuming that he will win all following decision points
up to and including an allocation for his last operation,
which fixes the reservation times for all remaining oper-
ations and, thus, allows us to set a precise upper bound
on the realizable utility). His attitude towards risk will
influence his bidding decisions, as will his knowledge
about the bidding behavior of competing agents in this
or in prior runs of the mechanism (if agents participate
in multiple allocation problems).22 A solution concept
to study such situations is known as Bayes-Nash Equi-
librium, though this is not discussed here. Let us only
point out that augmenting solution procedures that show
a natural fit to the problem domain may be an interest-
ing opportunity to design economic coordination mech-
anism that are easily understandable for the participat-
ing agents and that give the agents a direct handle to
use their understanding to influence the outcome of the
mechanism. The decision point approach can be applied

21Instead of the sealed-bid second-price auction suggested
here, an open-cry English auction could be chosen, which
would convey more information about the competitors to the
agents.

22The mechanism can be extended to resale to take limited
foresight into account.

to numerous, decision-based solution procedures. Note
that obtaining analytical results will not be an easy task,
however, advancing this concept looks promising to us
due to the similitude of mechanism and domain-specific
problem structure.

5 Discussion

This paper has discussed economically augmented job
shop problems and their transformation into a specific
subclass of combinatorial auction problems. We have
briefly discussed the problem of finding efficient solu-
tions and of doing this in a way to ensure that the agents
participate and report their valuations truthfully. Moti-
vated by problems of computational efficiency, we have
suggested to combine domain-related decision making
procedures with bidding. This hybrid approach results
in a heuristic that, while remaining problem driven, is
applicable in the context of self-interested agents with
private information. We consider the study of such ap-
plication scenarios in the context of scheduling for man-
ufacturing and logistics as important due to the increas-
ing tendencies to (1) restructure companies towards col-
laborations of (semi-)autonomous units on all levels of
granularity and to (2) form (potentially) volatile col-
laborations between autonomous enterprises. In both
cases, monetarian value may turn out to be a key issue
for the integration of diverging interests—economically
efficient mechanisms that keep the participating agents
individually satisfied can contribute to this integration
without violating autonomity and information privacy
more than necessary.

5.1 Extensions and future work

The mapping of economic job shop problems to com-
binatorial auction problems can easily be extended to
accommodate other classes of job shop problems, for
example problems with alternative routings, reservation
costs for resources, or sequence-dependent set-up costs.

Further effort is necessary to explore the options and
consequences of decision point bidding, with respect to
both a theoretical analysis of its effect on efficiency,
strategic behavior etc. and a practical or experimental
analysis of its applicability. It will also be interesting
to apply the basic concept of decision point bidding to
other solution procedures for resource allocation prob-
lems.
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