
Accelerating External Search with Bitstate
Hashing

- Extended Abstract -

Stefan Edelkamp and Shahid Jabbar

Computer Science Department
University of Dortmund, Germany

{stefan.edelkamp,shahid.jabbar}@cs.uni-dortmund.de

Abstract. In this paper we refine external exploration for explicit state
model checking by a fusion with internal bitstate hashing. External A*
provides a method to cope up with large state spaces by efficiently uti-
lizing secondary storage devices like harddisk to maintain the open and
closed lists. Duplicates are removed by a two-level refinement scheme
that involves sorting a subset of the open list externally and subtracting
a small subset of closed list from the open list.
The bottleneck in External A* [7] is the duplicates removal phase that
dominates the I/O complexity of External A*. Bitstate hashing provides
a solution to faster duplicates removal by utilizing only few bits for each
state. But bitstate hashing is faced with the problem of having no support
for large open list and for solution reconstruction.
We present a strategy to accelerate external search by using bitstate
hashing for duplicates removal. Case studies with our experimental exter-
nal explicit state model checker IO-HSF-SPIN illustrate the effectiveness
of the proposed algorithms.

1 Introduction

In explicit-state model checking software [1], state descriptors are often so large,
so that main memory is often not sufficient for a lossless storage of the set of
reachable states during the exploration even if all available reduction techniques,
like symmetry [9] or partial-order reduction [12] have been applied.

Besides advanced implicit storage structures for the set of states [8] three
different options have been proposed to overcome the internal space limitations
for this so-called state explosion problem, i.e. directed, partial and secondary
search.

Directed or heuristic search [11] guides the search process into the direction
of the goal states, which in model checking safety properties is the set of software
errors. The main observation is that using this guidance, the number of explored
states needed to establish an error is smaller than with blind search. Moreover,
directed model checking often reduce the length of the counter-example, which
in turn eases the interpretation of the bug.

External A* corresponds to a variant of A* algorithm that utilizes hard-
disk to store the closed and open lists during exploration. The I/O complexity
of External A* algorithm for undirected and unweighted graphs, and employ-
ing consistent heuristic estimates accumulates to O(scan(|V |) + sort(|E|)) I/Os,
where V and E are the set of nodes and edges in the graph respectively. Recently
in [7] External A* has been extended for weighted and directed graphs as they
appear in model checking.

Bitstate hashing [5] refers to storage of huge state sets in hash tables with
only one or a few bits reserved for each state. Invoking such partial search implies
that a retrieved node might be an unexpected synonym, since there is no way to
distinguish a real duplicate from an erroneous one. Reconsidering stored states,
however, is not possible as the information of generating path length and pre-
decessor path length might be false. The lack of state space coverage in partial
search is compensated by repeating the search with restarts on different hash
functions.

Motivation: We address two problems in this paper.

1. The bottleneck in external directed model checking is the delayed duplicate
detection phase that dominates the O(scan(|V |)+sort(|E|)) I/O complexity
of the External A* algorithm.

2. Even though bitstate hashing provides a very space efficient duplicate detec-
tion scheme, searching with bitstate hashing is still restricted by the internal
memory available needed to maintain the open list. As is generally the case
that size of the open list can easily go beyond the main memory limit espe-
cially in heuristic guided explorations.

Solution: We propose the idea of extending the methodology presented in
[7] for I/O efficient model checking, to utilize bitstate hashing for duplicates
removal. We suggest to use an internal bitstate hash table to detect duplicates
during the external search. Surprisingly, this fusion of ideas helps us to tackle
both of the problems. We see faster duplicate detection because of bitstate hash-
ing and plenty of secondary storage to maintain larger open list. Moreover, an
undeleted closed list residing on the disk is what was we need for solution re-
construction.

Structure: First, we briefly recall directed and partial search. Next we study
External A* and its extension with internal bitstate hashing. We then present
initial experimental results obtained with over external model checker IO-HSF-
SPIN. Last but not least, we draw conclusions and discuss future works.

2 Directed Model Checking

Directed model checking [3] incorporates heuristic search algorithms like A* [11]
to enhance the bug-finding capability of model checkers, by accelerating the
search for errors and finding (near to) minimal counterexamples. In that man-
ner we can mitigate the state explosion problem and the long counterexamples

provided by some algorithms like DFS, which is often applied in explicit model
checking.

One can distinguish different classes of evaluation functions based on the
information they try to exploit. Property specific heuristics [3] analyze the error
description as the negation of the correctness specification. In some cases the
underlying methods are only applicable to special kinds of errors. A heuristic
that prioritizes transitions that block a higher number of processes focuses on
deadlock detection. In other cases the approaches are applicable to a wider range
of errors. For instance, there are heuristics for invariant checking that extract
information from the invariant specification and heuristics that base on already
given errors states. The second class has been denoted as being structural [4], in
the sense that source code metrics govern the search. This class includes coverage
metrics (such as branch count) as well as concurrency measures (such as thread
preference and thread interleaving). Next there is the class of user heuristics
that inherit guidance from the system designer in form of source annotations,
yielding preference and pruning rules for the model checker.

3 Partial Search

For large problem spaces, it is very space efficient to apply a depth-first search
strategy in combination with duplicate detection via a membership data struc-
ture based on bit-vector. This is also the approach of the software model SPIN [6].
Let n be the number of reachable states and m be the maximal number of bits
available. As a coarse approximation for single bit-state hashing with n < m, the
average probability P1 of a false-positive error during the course of the search is
bounded by P1 ≤ 1

n

∑n−1
i=0

i
m ≤ n/2m, since the i-th element collides with one

of the i − 1 already inserted elements with a probability of at most (i − 1)/m,
1 ≤ i ≤ n. For multi-bit hashing using h (independent) hash-functions with
the assumption hn < m, the average probability of collision Ph is reduced
to Ph ≤ 1

n

∑n−1
i=0 (h · i

m)h, since i elements occupy at most hi/m addresses,
0 ≤ i ≤ n− 1.

An attempt to remedy the incompleteness of partial search is to re-invoke the
algorithm several times with different hash functions to improve the coverage of
the search tree. This technique, called sequential hashing, successively examines
various beams in the search tree (up to a certain threshold depth).

4 External Partial Directed Search

External A* [2] maintains the search horizon on disk. The priority queue data
structure is represented as a list of buckets. In the course of the algorithm, each
bucket Open[i, j] will contain all states u with path length g(u) = i and heurstic
estimate h(u) = j. As same states have same heuristic estimates, it is easy
to restrict duplicate detection to buckets of the same h-value. By an assumed
undirected state space problem graph structure, we can restrict aspirants for
duplicate detection furthermore. If all duplicates of a state with g-value as i are

Procedure External A*
Open(0, h(I))← {I}
H[0 . . . m]: Bitstate Hashtable
fmin ← h(I)
while (fmin 6=∞)

gmin ← min{i | Open(i, j) 6= ∅, i + j = fmin}
hmax ← fmin − gmin

while (gmin ≤ fmin)
if (hmax = 0 and Open(gmin, hmax) contains terminal state u)

return path(u)
forall v ∈ succ(Open(gmin, hmax))

if(H[v])
H[v]← true
A′(fmin), A′(fmin + 1), A′(fmin + 2)← v

Open(gmin + 1, hmax + 1)← A′(fmin + 2) ∪Open(gmin + 1, hmax + 1)
Open(gmin + 1, hmax)← A′(fmin + 1) ∪Open(gmin + 1, hmax)
Open(gmin + 1, hmax − 1)← (A′(fmin) ∪Open(gmin + 1, hmax − 1))
gmin ← gmin + 1

fmin ← min{i + j > fmin | Open(i, j) 6= ∅} ∪ {∞}

Fig. 1. External A* with internal bitstate hashing.

removed with respect to the levels i, i−1 and i−2, then there will not remain any
duplicate state for the entire search process. For breadth-first-search in explicit
graphs, this is in fact the algorithm of [10]. We consider each bucket for the
Open list as a different file that has an individual internal buffer. A bucket is
active if some of its states are currently being expanded or generated. If a buffer
becomes full, then it is flushed to the corresponding bucket file on the disk. The
algorithm maintains two values gmin and fmin to address the correct buckets. The
buckets of fmin are traversed for increasing gmin-value unless the gmin exceeds
fmin. Due to the increase of the gmin-value in the fmin bucket, an active bucket
is closed when all its successors have been generated. Given fmin and gmin, the
corresponding h-value is determined by hmax = fmin − gmin. According to their
different h-values, successors are arranged into different horizon lists. Duplicate
elimination is delayed.

Since External A* simulates A* and changes only the order of elements to be
expanded that have the same f -value, completeness and optimality are inherited
from the properties of A*. The I/O complexity for External A* in an implicit,
unweighted and undirected graph with a consistent estimates is bounded by
O(sort(|E|) + scan(|V |)), where |V | and |E| are the number of nodes and edges
in the explored subgraph of the state space problem graph, and scan(n) (sort(n))
are the number of I/O needed to scan (sort) n elements.

It has been shown [2] that the lower bound for the I/O complexity for delayed
duplicate bucket elimination in an implicit unweighted and undirected graph A*
search with consistent estimates is at least Ω(sort(|V |)).

In model checking we deal with directed and weighted graphs. External A*
has been extended in [7] to deal with such graphs. The introduction of directed
edges effects the locality of the search, which dictates the number of previous lay-
ers that have to be subtracted for duplicate detection. In directed and weighted
graphs, the locality is bounded by the weight of the largest cycle in the graph.

In Figure 1, we see the proposed algorithm in pseudo-code form. The major
change from the original algorithm [2] is the replacement of delayed duplicate
detection by bitstate hashing. A hashtable H is used that checks for the exis-
tence of duplicates for each successor obtained by the expansion of the bucket
Open(gmin, hmax).

5 Experiments

For experimental validation of the proposed idea, we have extended our experi-
mental external directed model checker IO-HSF-SPIN to utilize internal bitstate
hashing. All experiments are performed on a Linux Pentium IV machine with 2
GB of internal memory and 2 harddisks of 120 Gigabytes each, combined with
disk-stripping technique (RAID level 0).

The experiments are performed on three protocols namely optical telegraph,
CORBA-GIOP protocol, and dinning philosophers. The existence of a deadlock
is searched in all the instances, with using the number of active active processes
in each state as the heuristic estimate. Moreover, partial order reduction is not
employed and SPIN’s default double-bitstate hashing is used.

We compare the runnning times of both approaches along with the number
of stored states. In the following tables, d denotes the depth of the error state, s
and sb denote the number of stored states by the delayed duplication detection
and by internal bitstate hashing, respectively. Running times are reported in
the columns t and tb, respectively corresponding to the run-time with delayed
duplicate detection and with internal bitstate hashing. Furthermore, in Table 1
the parameter N denotes the number of stations. Similarly, in Table 2, N cor-
responds to the number of clients and M to the number of servers. Column N
in Table 3 refers to the number of philosophers.

A gain in the running time is easily observable. For some of the instances,
we notice that the number of stored states by both the approaches do not differ
much, which points to the small approximation factor due to bitstate hashing.

The hardest instance of CORBA-GIOP (cf. Table 2) is the one with 4 clients
and 2 servers. An earlier solution reported in [7] took about 20 gigabytes of
harddisk storage to solve this problem. The (*) in the last column of the table
refers to our run from [7] where partial order reduction was employed and a Sun
Ultra Sparc system was used. Unfortunately, for the current run, the size of one
of the unrefined (duplicates not removed) bucket file reached the Linux kernel

N d s sb t (mm:ss) tb (mm:ss)

7 45 333,877 243,318 00:14.47 00:07.39
8 50 420,531 332,963 00:22.25 00:11.20
9 57 9,186,611 6,350,087 17:26.88 04:10.33

Table 1. Deadlock Detection in Optical Telegraph

N M d s sb t (mm:ss) tb (mm:ss)

2 1 58 52,410 48,000 00:11.36 00:03.49
3 1 70 893,392 809,098 03:03.79 00:43.26
4 1 75 7,929,710 6,998,693 22:49.23 08:43.01

3 2 76 3,431,619 3,127,718 05:43.16 02:42.54
4 2 81 26,340,417∗ 27,133,946 >59:00.00 33:06.28
Table 2. Deadlock Detection in CORBA - GIOP

limit of 2 gigabytes and the process had to be killed. We expect to rerun all the
experiments after recompiling the kernel to handle larger files.

N d s sb t (mm:ss) tb (mm:ss)

100 402 999,810 975,459 01:05 01:39
150 603 3,330,456 3,319,312 05:44 06:18

Table 3. Deadlock Detection in Dining Philosophers

For the sake of completeness in our exposition, in Table 3 we present a special
case. Here we observe an increase in time with bitstate hashing. A profiling of the
execution revealed that due to large state sizes in this particular model (ca. 2000
bytes for N = 150), computation of hash values became the dominating factor of
the running time. Ideally, this difference should go down towards negative with
increase in disk activity for larger instances.

6 Conclusion

The paper contributes the first study of combining external and partial search. As
bitstate hash tables are state-of-the-art in saving memory with internal model
checking, we studied its extension to algorithms involving secondary memory.
The gains are three folds, namely, faster duplicate detection due to internal
bitstate hashing, support for very large open lists due to external storage, and
possibility of solution reconstruction due to persistent closed lists.

The presented approach has been implemented on top of our experimental
model checker IO-HSF-SPIN. We observed a gain in the run-time of External A*

algorithm, going up to 4 times for some of the cases. For smaller problems the
gain is not very substantial. The reason is the extra overhead of hash computa-
tion that dominates the running time and sometimes surpasses the time needed
to do the delayed duplicate detection.

We hope that the applicability of the current approach will help to push the
limits of practical model checking. In future we plan to extend our methodology
to large bitstate hash tables that cannot fit into the main memory.

References

1. B. Bérard, A. F. M. Bidoit, F. Laroussine, A. Petit, L. Petrucci, P. Schoenebelen,
and P. McKenzie. Systems and Software Verification. Springer, 2001.

2. S. Edelkamp, S. Jabbar, and S. Schrödl. External A*. In S. Biundo, T. Frühwirth,
and G. Palm, editors, KI 2004: Advances in Artificial Intelligence: 27th Annual
German Conference on AI, volume 3238 of Lecture Notes in Artificial Intelligence
(LNAI), pages 226–240. Springer-Verlag, 2004.

3. S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-state model check-
ing in the validation of communication protocols. International Journal on Soft-
ware Tools for Technology, 2004.

4. A. Groce and W. Visser. Heuristic model checking for java programs. International
Journal on Software Tools for Technology Transfer, 2004.

5. G. J. Holzmann. An analysis of bitstate hashing. Formal Methods in System
Design, 13(3):287–305, 1998.

6. G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, 2004.

7. S. Jabbar and S. Edelkamp. I/O efficient directed model checking. In R. Cousot,
editor, Verification, Model Checking and Abstract Interpretation (VMCAI), volume
3385 of Lecture Notes in Computer Science (LNCS), pages 313–329. Springer-
Verlag, 2005.

8. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Press, 1993.
9. K. L. McMillan. Symmetry and model checking. In M. K. Inan and R. P. Kurshan,

editors, Verification of Digital and Hybrid Systems, pages 117–137. Springer, 1998.
10. K. Munagala and A. Ranade. I/O-complexity of graph algorithms. In Symposium

on Discrete Algorithms (SODA), pages 87–88, 2001.
11. J. Pearl. Heuristics. Addison-Wesley, 1985.
12. D. A. Peled. Ten years of partial order reduction. In Computer-Aided Verification

(CAV), number 1427 in Lecture Notes in Computer Science, pages 17–28. Springer,
1998.

