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Evolution of Configuration Models –
a Focus on Consistency

Thorsten Krebs

HITeC e.V. c/o University of Hamburg
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

krebs@informaik.uni-hamburg.de

Abstract. This paper describes a novel approach that guarantees con-
sistency of structure-based configuration models in an evolution process
using a knowledge representation based on description logics. We define
the term consistency and discuss different notions of consistency that
are domain-dependent or configuration-tool specific. Change operations
are introduced as a formal means to capture changes to a configuration
model. A set of invariants formally defines what consistency denotes for
structure-based configuration and enables an adaptive approach to han-
dle configuration models that rely on different notions of consistency.
A model editor implementing this evolution process allows to execute
change operations, identifies inconsistency in a configuration model after
change execution and suggests repair operations for repairing inconsis-
tent configuration models.

1 Introduction

Modern product manufacturers face the problem of managing a variety of prod-
ucts that change over time. A product catalog contains different kinds of products,
each of them offering alternative and optional choices to the customer. Such a
variety of products is typically needed to satisfy customers with different de-
mands. In order to stay competitive, product manufacturers need to diversify
the product variety and also need to improve existing product types over time
according to customer demands.

To avoid time-consuming redesign and manual adaptation, complex products
are assembled from a set of smaller components. These components are subject
to parameterization, i.e. the individual adjustment of their properties according
to the context in which they are used. Varying the choice of parts or the structure
of assembly leads to high flexibility and adaptability. This helps decreasing the
effort of production and increasing the performance and functionality of products
[1]. The application of configuration tools is a trend to reach this goal.

1.1 Configuration

Configuration defines the task of building one or more configuration solutions
that satisfy a given set of requirements for a desired product from a fixed, pre-
defined set of components [2, 1]. A component is described by a set of properties
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and ports for connecting it to other components. Constraints describe which
kinds of combinations are admissible. A configuration solution contains a de-
scription of the components and the connections between them [2]. One of the
major benefits the configuration approach offers is that a solution to the given
configuration problem is guaranteed to be consistent and complete.

Configuration tools have been used successfully for about three decades. Tra-
ditional application areas of configuration are technical or electronic domains,
but the approach is not limited to these domains [3]. Recently, configuration was
also applied in software domains [4, 5].

Hierarchical configuration approaches employ hierarchical specialization struc-
tures and composition structures together in AND/OR graphs [6]. Concepts and
relations between concepts are the nodes and edges of such a graph, respectively.
Specialization relations are represented through disjunctive relations (the spe-
cializations are mutually exclusive) while composition relations are represented
through conjunctive relations (all parts of a composite can coexist). A configura-
tion solution is an AND/OR graph containing exactly one of the OR descendants
(specializations) and some of the AND descendants (parts), according to cardi-
nality definitions.

Structure-based configuration employs hierarchical modeling facilities to spec-
ify the underlying domain knowledge. This kind of knowledge representation is
especially appropriate to model a product catalog, because the structure of a set
of different but similar products in one configuration model is a typical example
for using hierarchical AND/OR graphs. Within such a structure-based configu-
ration model, all potentially configurable products are implicitly represented by
describing the components a product can be composed of, component attributes
and relations between the components.

1.2 Evolution Framework

The effectiveness of configuration applications depends on the quality of the
underlying knowledge, i.e. the configuration model. It is a fundamental tenet that
the model unambiguously represents knowledge about components from which
products can be assembled. This means that when components of a product
domain change, a configuration model representing this domain needs to be
changed, too. Changing components have direct influence on the product catalog:
certain products may no longer be assembled or new products become possible,
existing products may be offered with richer or poorer variability.

Example. A car manufacturer offers a variety of models from each of which
a customer can choose between certain alternatives and options. Alternative
selections are, among others, the color of the Car and its Seats, the type of
Motor (Gasoline or DieselEngine) and its power, whether to have a ManualGearShift
or AutomaticTransmission, and so on. Optional selections are, for example, the
possibility to have a Sunroof, a Turbocharger, a Hitch, etc. The development of
new Motors that consume less fuel, a new design or electronic applications like
a ParkingAssistanceSystem, drive the interest of customers in buying a new Car,
just to name a few examples. Such developments are not specific to a type of
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car. Instead, making new developments integratable into all car types is the key
to improve return on investment.

It is apparent that sophisticated tool support is needed for managing knowl-
edge about products, components from which products are assembled, dependen-
cies between these components, as well as changes to components and impacts
that changes to components have on products. As a first step to reach this goal,
in this paper we describe an evolution process that preserves consistency of a
configuration model despite its changes. A model editor that implements this
evolution process can guarantee to produce only consistent configuration mod-
els.

A complete framework describing knowledge management for evolution of
configurable products is described in [7]. In this framework, the set of config-
urable components is represented in a configuration model and the product types
are represented by product models that refer to concept definitions of the corre-
sponding configuration model. Both the configuration model and product models
are defined using modeling facilities from structure-based configuration. A prod-
uct model in this sense is a subset of the configuration model and a product
catalog is a set of product models that refer to the same configuration model.
Product models are persistent copies of the corresponding subset of the config-
uration model. Persistent copies are needed because implicit knowledge about
products were lost when evolving the configuration model. Mismatches between
product models and the configuration model are identified and give valuable
input for managing the product catalog.

In this paper we focus on the notion of consistency and how consistency of
configuration models can be preserved despite executed changes.

1.3 Reader’s Guide

The remainder of this paper is organized as follows. Section 2 gives a formal
definition of the modeling facilities that are used to build configuration models.
Section 3 defines the notion of consistency that is used throughout this paper
and what constitutes a consistent configuration model. Section 4 gives a formal
definition of change operations as a means to capture changes to a configuration
model and describes the process of change execution. Section 5 discusses related
work and after that Section 6 summarizes and concludes this paper.

2 Knowledge Representation

The main component of a configuration tool is the configuration model. The
configuration model consists of both domain knowledge and configuration logic.
Domain knowledge is a representation of configurable components and configu-
ration logic describes restrictions on how the components can be combined [8].
Modeling facilities used for structure-based configuration models have been de-
veloped from frames [9], semantic networks [10] and concept languages like the
KL-ONE system [11].
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A configuration model uniquely identifies the components of a domain, their
properties and structure. The structure can be represented by a graph whose
nodes and edges correspond to concepts and relationships, respectively [12]. A
one-to-one correspondence between instances of concept definitions and corre-
sponding real-world objects defines the declarative semantics of the configuration
model [13]. The structure of the model can be seen as a homomorphic map of
the domain structure [14].

2.1 Modeling Facilities

In the following we use a knowledge representation that is based on description
logics to formally define all modeling facilities that can be used to represent do-
main knowledge.1 The modeling facilities together with the possibilities to form
combinations of modeling facilities constitute the specification of the underlying
modeling language for defining configuration models.

A concept is a description which gathers common features of a set of compo-
nents. Concepts are interpreted as sets, which means that concept conjunction
can be interpreted as set intersection, concept disjunction as set union and nega-
tion of concepts as set complement [16]. Concepts are modelled containing two
different hierarchical relationships: is-a and has-parts. The taxonomic is-a rela-
tion and the partonomic has-parts relation are processed differently. The former
is concerned with commonalities and differences of the concept definitions while
the latter involves spatio-temporal and functional correlation. Every concept
carries a unique name which identifies it within the domain, specifies exactly
one parent concept of which it is a specialization, and an arbitrary number of
attributes and composition relations collectively called properties. Concepts are
denoted with upper case names, e.g. C, D or Car.

Concepts describe classes of objects from which multiple concept instances
may be generated during the configuration process. Instances are instance of
exactly one concept (e.g. i ∈ C) and inherit all properties from this concept
definition. Property values may be partly specified and are only allowed to spec-
ify subsets of the original values defined in the concepts of which they are an
instance.

The taxonomic hierarchy is defined by D ⊆ C. Concept C is called parent
and concept D is called child. The taxonomic relation is transitive: concept D is a
direct subconcept of concept C and an indirect subconcept of the parent of C, and
so on. A concept D is a subconcept of concept C if and only if every potential
instance of D is also an instance of C (i ∈ D ⇒ i ∈ C). Within the taxonomy
properties of concepts are monotonically inherited. Additional properties may be
defined for more specific concepts and inherited properties may be overwritten
with more specific values.

Attributes define characteristics of concepts and are denoted as roles with
lower case names and a concrete domain as role filler, e.g. a.Integer, b.String
or color.String. The name is uniquely identifiable within the taxonomy. Three

1 For an overview of description logics we refer the interested read to [15]
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value domains are pre-defined for specifying attribute values: integer numbers,
real numbers and strings. In implementations, however, the potential values of
concrete domains are dictated by the programming language.

Composition relations define the partition of complex concepts into simpler
concepts and are denoted as roles with lower case names and concepts as role
fillers, e.g. r.C, p.D or hasParts.Motor. A composition relation between a com-
posite Car and a part Motor is denoted by Car ⇒ ∃hasParts.Motor. Composition
relations may be assigned a cardinality definition denoting how many instances
of the part concept can be instantiated, i.e. a minimum ∃≥mhasParts.Motor
and a maximum ∃≤nhasParts.Motor value (m ≤ n); for n = m one can write
∃=nhasParts.Motor. The default cardinality, if nothing else is specified, is ≥ 0.

Interdependencies and restrictions between concepts and their properties are
expressed with constraints. Constraints represent non-hierarchical dependencies
between concepts and concept properties, as well as between the existence of
instances of certain concept definitions. A constraint definition consists of an
antecedent and a consequent. The antecedent, or conceptual constraint, specifies
a pattern consisting of a conceptual structure, an expression that evaluates to
true whenever the pattern matches a corresponding instance structure. The con-
sequent, i.e. a set of constraint relations, is executed when the pattern evaluates
to true.

For reasons of simplicity we confine ourselves to binary relations that restrict
attribute values in the following. A constraint that enforces equal integer values
for two attributes a and b of a concept C, for example, is denoted with C ∩
∀a.Integer ∩ ∀b.Integer ⇒ a = b.

2.2 Building a Configuration Model

Complex concepts are created by using conjunction, i.e. set intersection. For
example, specifying that a concept D is a child of a concept C with a string
attribute a is achieved by forming their intersection: C ⇒ D ∩ ∀a.String. Dis-
junction, in contrast, creates set union. For example, the union of all sibling
concepts creates a set equivalent to their parent concept. Conjunction and dis-
junction are both commutative: a permutation of the subexpressions does not
change the meaning of the compound expression. Concept expressions can be
assigned a name by using the := operator, e.g. Tire := CarPart ∩ ∀size.Integer.

Another operator for creating compound expressions is negation. The under-
lying idea is that a representation is either an adequate description of a situation,
or it is not (in the latter case its negation is true). There are no intermediate
cases where a representation would be partially correct. However, absence of ob-
jects is not explicitly modeled, because configuration models rely on the closed
world assumption (CWA) [17].

Example. In the following we specify an excerpt of concepts from the Car
domain. A Car defines the attributes model and color and composition relations
with the parts Motor and Tire. A Motor is a CarPart that defines the attributes
type, power and fuelConsumption. A Tire also is a CarPart and defines the at-
tributes size and width.
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Car := ∀model.String ∩ ∀color.String ∩ ∃=1hasParts.Motor∩
∃=4hasParts.Tire

Motor := CarPart ∩ ∀type.String ∩ ∀power.Integer∩
∀fuelConsumption.Integer

Tire := CarPart ∩ ∀size.Integer ∩ ∀width.Integer

2.3 Reasoning

The contents of a configuration model describe premises that are true and are
referred to as predicates. A proposition, in addition, affirms or denies a predicate
and is either true or false. Hence, propositions can be seen as interpretations
of predicates. There is a subtle difference: let m be the model of concern, then
the predicate C states that m ² C. There is no interpretable freedom in this
predicate. A proposition ∃C, however, can be affirmed or denied: if, and only if,
m ² C, the proposition is valid.

Removing concept C from m has the immediate effect that m 2 C. The
proposition ∃C is denied and the proposition @C is affirmed. Knowledge about
absent objects is implicit but can be deduced from explicit knowledge. To affirm
@C, all concept definitions are traversed and it is made sure that C is not among
them. We will see later (in Section 4) that propositions are used to describe
preconditions and postconditions of change operations.

Example. Although we use an explicit knowledge representation, a config-
uration model may deduce implicit knowledge. When m contains the concept
definitions Motor, Car ⇒ ∃=1hasParts.Motor and Mercedes ⇒ Car we know that
not only every Car has a Motor, but also every Mercedes does: m ² Mercedes ⇒
∃=1hasParts.Motor.

3 Consistency

In mathematical logic, a formal system is consistent when none of the facts
deducible contradict one another. For knowledge representation systems a con-
cept is consistent when it admits at least one instance. In this sense consistency
has nothing to with reality but is rather concerned with the representation of
the domain. In the following we concisely define what consistency denotes for
configuration models.

3.1 Definition

Coherence is often postulated for consistency. A pervasive tenet of coherence
is that truth is primarily a property of whole systems, not of single predicates.
This means that consistency is only a significant characteristic of a configuration
model when its predicates are coherent, i.e. somehow interrelated. Configuration
models are based on ontological conceptualization representing a product domain
and we can assume that components of the domain are coherent.
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Well-formedness of a configuration model is asserted when it is well-fromed
with respect to the underlying language specification. This means that the def-
inition of modelling facilities and their potential interrelations specify what a
well-fromed configuration model is.

Consistency, in addition, goes beyond the language specification by seman-
tically interpreting the specified knowledge. A well-formed configuration model
may still be inconsistent, which happens, for example, when a constraint rela-
tion restricts two attributes in a way that cannot be fulfilled with the specified
attributes values.

Example. When the size of Rims is constrained to equal the size of Tires,
but the Rim and Tire concepts do not specify overlapping values for their size
attributes, the constraint can not be satisfied for any combination of instances
of the two concepts.

But the notion of consistency may vary based on the represented domain or
the configuration tool. An example for differently understood notions of consis-
tency is the semantics of composition relations, which varies according to three
main criteria: whether the relation from the part to the whole is functional or
not, whether the parts are homeomerous or not, and whether the part and whole
are separable or not. [18] distinguish six major types: (1) component - integral
object, (2) member - collection, (3) portion - mass, (4) stuff - object, (5) fea-
ture - activity, and (6) place - area. Although product configuration is mainly
concerned with type 1, different domains or configuration tools treat composi-
tion relations sometimes reflexive or irreflexive, symmetric or antisymmetric and
sometimes allow that parts are shared by different composites or not.

Hence, for being able to evolve configuration models independent of the rep-
resented domain or the configuration tool that interprets the model, an approach
that can adapt to the current semantics of the underlying language specification
is needed to preserve consistency of the configuration model when executing
changes. Such an approach is described in the following.

3.2 Invariants

Invariants are formulae that have a particular status: they must be guaran-
teed to hold at every quiescent state of the model, that is before and after a
change is executed [19]. Thus, invariants ensure that changes do not introduce
inconsistency. If changes follow these invariants, it can be guaranteed that the
configuration model remains consistent.

All represented objects need to be unambiguously defined. For the named
modeling facilities concept, attribute and conceptual constraint this means that
the same name denotes the same definition and no other definition may use that
name. For composition relations the name is not the distinctive criteria but its
part concept and cardinality.

Concept Unambiguity Invariant All concepts names are unambiguous.

∀C, D ⇒ C 6= D
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Attribute Unambiguity Invariant All attributes names of a concept are un-
ambiguous.

∀C ∩ a ∩ b ⇒ a 6= b

Composition Unambiguity Invariant All composition relations of a com-
posite have an unambiguous definition of part concept and cardinality.

∀C ∩ ∃≥mr.D ∩ ∃≤nr.D ∩ ∃≥kp.E ∩ ∃≤lp.E

⇒ D 6= E ∧ E ⊆ D ⇒ m ≥ k ∧ n ≤ l

Constraint Unambiguity Invariant All constraints names are unambiguous.

∀γ1, γ2 ⇒ γ1 6= γ2

The taxonomy is a tree. This means that every concept has exactly one parent
concept. No concept has more than one parent and no child may be orphaned.

Taxonomy Tree Invariant A concept has exactly one superconcept (if it is
not the root concept).

∀D ⇒ ∃C such that D ⊆ C ∧ |parent(D)| = 1

All represented objects that are referenced by another object are identified by
their names. The corresponding definitions with these names need to be defined.

Composition Reference Invariant The part concept referenced in a compo-
sition relation has to be defined.

∀C ∩ ∃r.P ⇒ ∃P

Constraint Reference Invariant All concepts defined for the pattern of a
constraint need to be defined.

∀γ,∀C ⊆ pattern(γ) ⇒ ∃C

The cardinality definition of a composition relation needs to specify a correct
integer interval.

Composition Cardinality Invariant The minimum cardinality needs to be
less than or equal to the maximum cardinality.

∃≥mr.P ∩ ∃≤nr.P ⇒ m ≤ n

Properties are inherited along the taxonomic hierarchy and may be overwrit-
ten by more special concepts. When a property is overwritten, the new value has
to specify a subset (or an equal value) of the original value. Vice versa, a more
special concept may not overwrite a property with a value that does not specify
a subset of the original value.
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Attribute Inheritance Invariant An attribute overwriting an inherited at-
tribute may only specify a subset (or equal) value of the original value.

∀D ∩ ∃b ⊆ C ∩ ∃a such that a = b ⇒ value(b) ⊆ value(a)
∧ ∀C ∩ ∃a, D ∩ ∃b such that a = b ∧ value(b) * value(a) ⇒ D * C

Composition Inheritance Invariant A composition relation overwriting an
inherited composition relation may only specify a child of the original part
and a subset of the original cardinality.

∀D ∩ ∃≥kp.F ∩ ∃≤lp.F ⊆ C ∩ ∃≥mr.E ∩ ∃≤nr.E

such that F ⊆ E ⇒ k ≥ m ∨ l ≤ n

∧ ∀C ∩ ∃≥mr.E ∩ ∃≤nr.E, D ∩ ∃≥kp.F ∩ ∃≤lp.F

such that F ⊆ E ∧ (k � m ∨ l � n) ⇒ D * C

For being able to adaptively handle different semantics of partonomy, addi-
tional invariants are needed for a clear definition. Hence the following invariants
are addressed for consistency checking only when appropriate. The basic idea of
the adaptive consistency-preserving approach is that these invariants can safely
be ignored when not appropriate.

Partonomy Irreflexivity Invariant The partonomy is irreflexive. This means
that no concept may be both composite and part for the same composition
relation.

∀C ∩ ∃r.D ⇒ C ∩D = ∅
Partonomy Antisymmetry Invariant The partonomy is antisymmetric. This

means that no concept is reachable via the transitive closure over its com-
position relations.

∀C ∩ ∃r.D ⇒ D ∩ ∃r.C = ∅

Finally, the defined constraints need to be satisfiable. Note that constraints
are propagated on instances, not on concepts. This means that all potential
instances of the concepts that are resticted by a constraint need to be created
and evaluated separately.

Constraint Satisfaction Invariant All constraints need to be satisfiable.

∀γ,∀C ⊆ pattern(γ), i ∈ C ⇒ γ ∩ i 6= ∅

4 Evolution Process

The process of evolving a configuration model consists of three steps that are run
through for every change. A user initiates the evolution process by choosing one
of the change operations that are currently applicable. Only change operations
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for which all preconditions are satisfied are applicable (see below). Selecting
a change also includes undo operations. Compound changes are composed of
simpler changes, e.g. removing a subtree is composed of removing all the concepts
individually. Based on the current state of the configuration model, dependent
changes may be needed. For example, when removing a concept that is defined
as a part for some other concept, the composition relation cannot persist and
needs to be removed, too, or another filler needs to be specified. In case the
intended change introduces inconsistency (as a side effect), repair operations are
automatically identified and the user can select the most appropriate repair that
is added to a compound change. Finally, the compiled change operations are
sequentially executed.

Defining the compilation of compound operations is beyond the scope of this
paper.2 Instead, the following two Sections focus on the formal specification of
change operations (Section 4.1) and the consistency-preserving approach that
identifies which invariants need to be checked for which change operation and
how repair operations are identified in case of inconsistency (Section 4.2).

4.1 Specifying Change Operations

For resolving changes to a configuration model, they have to be represented
in a suitable format. This representation should capture semantics of a change
rather than syntactical changes in some form of textual representation. Within
configuration models the same knowledge can be specified with different syntac-
tical means or simply in different order: two knowledge structures can be the
same conceptually, but have very different text representations [20]. The textual
representation can be implemented by automatic translators.

One of the most important advantages of using change operations that ad-
dress the semantics of a change to the configuration model instead of a simple
text editor is based on the possibility to preserve consistency of the configuration
model within a tool-based evolution process. Developing configuration models
with a text editor, consistency checking is only possible after one or more lines
have been changed [21].

Change operations, like any kind of actions, are specified through precondi-
tions and postconditions. The preconditions for a change operation encode what
the model must be like in order for the change to be applicable. The postcondi-
tions describe immediate consequences resulting from the change.

Base operations represent elementary changes that cannot be further decom-
posed into smaller units. This means that a base operation describes an explicit
action: the way this action reaches its intended goal does not vary depending
on the knowledge specified in the configuration model. There are three types of
meta changes: addition, removal and modification. While the first two are con-
cerned with modeling facilities as such, the latter is concerned with properties of
modeling facilities. The set of all base operations is the cross-product of modeling

2 The interested reader is referred to [7] for a definition of the evolution framework
that includes compiling compound operations.
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facilities and the meta changes. Base operations concerning concepts, for exam-
ple are addConcept(C), removeConcept(C) and renameConcept(c, “newName”).
Addition and removal are defined analogously for all types of modeling facili-
ties. Modifications include, next to renaming, also changing attribute values,
composition parts and cardinalities, etc.

Example. The change operation addSubconcept(Motor, DieselEngine) adds a
concept DieselEngine that is a child of Motor. Preconditions of this operation are
∃Motor and @DieselEngine. Postcondition of this operation is ∃DieselEngine.

Compound operations are compiled from a set of base operations. The way
their intended goal is reached may vary based on the current state of the con-
figuration model. Removing a concept C (removeConcept(C)), for example, is
a simple operation when C is a leaf node in the taxonomy. When there is a
descendant D ⊆ C, however, C cannot be simply removed (due to the Taxon-
omy Tree Invariant). There are two alternative solutions: D (including potential
further siblings and children) is also removed (removeSubtree(C)), or D (includ-
ing potential further siblings) is moved upwards, as a child of the parent of C
(removeConceptAndMoveSubconceptsUp(C)).

The preconditions and postconditions of change operations are automatically
accumulated for a compound operation, i.e. a compound operation contains all
the preconditions and postconsitions its inherent base operations contain. The
ability to construct compound operations from a pre-defined set of base opera-
tions offers a flexible and extendable way to define new change operations with
minimal effort. This helps defining new types of (maybe domain-dependant or
tool-specific) changes. Compound operations are treated as transactions [22]:
either all or none of the operations are executed.

4.2 Preserving Consistency

Invariants are used to check consistency of the configuration model after execut-
ing change operations. Different aspects of the language specification are checked
by different invariants and different change operations result in changes to dif-
ferent aspects of the language specification. Assuming that the configuration
model was consistent before executing a change, not every invariant needs to
be checked after change execution but only those invariants that are concerned
with aspects of the language specification on which the corresponding change
operation performs changes.

Postconditions of a change operation define the result of its execution and
thus predict the resulting state of the configuration model. This means that
the postconditions of a change operation indicate which invariants need to be
checked after change execution.

Variables are used for reasoning about modeling facilities in preconditions
and postconditions as well as in invariants. For example, ∃C is a postcondi-
tion of adding a concept C to the configuration model (addConcept(C)). It
is apparent that there may only be a dependency between two variables used
in postcondition and invariant when the type of modeling facility, denoted by
the variables match. The postcondition ∃C indicates that all invariants with
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variables denoting concepts need to be concerned, for example the Concept Un-
ambiguity Invariant or the Taxonomy Tree Invariant. Invariants that only use
variables denoting different types of modeling facilities need not be checked. For
example, when changing the value of an attribute, the Concept Unambiguity
Invariant can safely be discarded.

However, not every match of two variables that denote the same type of mod-
eling facility in both postcondition and invariant necessarily indicates potential
inconsistency. For example, when removing a concept the Concept Unambiguity
Invariant need not be checked because the the variable denoting concepts in this
invariant is universally quantified and cannot be violated by removing a concept.
The Taxonomy Tree Invariant, however, needs to be checked because this invari-
ant also contains an existentially quantified variable denoting concepts and thus
may be violated by removing a concept.

When specifying results of change operations as postconditions, variables
may be existentially quantified (e.g. ∃C or @C). Additionally, a characteristic
of some modeling facility may be assigned a specific value (e.g. name(C) =
Car). Variables that appear in invariants may be bound in two ways: universally
quantified (e.g. ∀C) or existentially quantified (e.g. ∃C or @C). Additionally, a
characteristic of some modeling facility may be assigned a specific value (e.g.
name(C) = Car). Note that assigning a specific value to a characteristic of a
variable, an existing instance of the corresponding modeling facility needs to be
ensured, by universal of existential quantification (e.g. ∃C ∩ name(C) = Car).

Postcondition Potentially Violated Invariant

∃C ∀C, @C
@C ∃C

∃C and ∀C, ∃C or @C and
property(C) = value property(C) = value

Table 1. Postconditions of change operations indicate which invariants need to be
checked after change execution.

Table 1 shows which invariants need to be checked after executing changes
with specific postconditions. The left column of the table lists the different ways
in which a variable may appear in a postcondition to specify the result of a
change operation. The right column of the table lists the ways in which a variable
denoting a modeling facility of the same type may appear in an invariant. A row
specifies a combination of variables such that the corresponding invariant needs
to be checked.

Example. Configuration model m defines TurboDiesel ⊆ DieselEngine and
Car ⇒ ∃=1hasParts.DieselEngine. Now let us assume the car vendor no longer pro-
duces diesel engines. We need to remove the DieselEngine concept and all its de-
scendants (removeSubtree(DieselEngine)). This change operation consists of the
base operations removeConcept(DieselEngine) and removeConcept(TurboDiesel),
and has the preconditions ∃DieselEngine and ∃TurboDiesel, and the postcon-
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ditions @DieselEngine and @TurboDiesel. The following invariants need to be
checked because they contain an existentially quantified concept variable.

– Composition Reference Invariant: the DieselEngine concept is missing for
the definition of the Car concept. A Part Concept is Missing Violation is
identified.

– Constraint Reference Invariant: no violation is identified because no con-
straint definition restricts the DieselEngine concept.

– Taxonomy Tree Invariant: no violation is identified because the complete
subtree of DieselEngine was removed and no orphaned concepts remain.

Basically, an inconsistency is identified when two affirmed propositions ex-
press facts that are logically inconsistent. There are exactly two alternatives to
repair an inconsistency: replace either of the two inconsistent propositions with
a proposition expressing the exact opposite.

Example. A Part Concept is Missing Violation is identified between ∃Car ⇒
∃=1hasParts.DieselEngine and @DieselEngine. The first repair alternative is remov-
ing the composition relation with the missing part concept. The second repair al-
ternative is adding a concept definition with the name DieselEngine. For the given
example it is obvious that adding a concept with the name DieselEngine is not rea-
sonable due to removing a concept with this name caused the inconsistency. How-
ever, simply removing the composition relation ∃=1hasParts.DieselEngine from
the definition of the Car concept also may not be reasonable. The user has to
decide whether the Car concept is worth existing without the DieselEngine: when
it is, removing the composition relation repairs the inconsistency, when it is
not, additional repair alternatives are removing the definition of Car or finding
a substitute for the DieselEngine (maybe its parent, the general Motor).

It it apparent that an inconsistency where an object is missing can be re-
paired by adding this object, e.g. @C can be repaired by addConcept(C). Vice
versa, an inconsistency where an existing object should not exist can be repaired
by removing this object, e.g. ∃C can be repaired by removeConcept(C). Incon-
sistencies where characteristics of an object are assigned invalid values can be
repaired by changing that value, this includes renaming concepts or properties
of concepts, changing attribute values, and so on. While some changes to object
characteristics like renaming a concept cannot be automated with tool support,
for example consistent attribute values can be computed and suggested.

Example. A Mercedes concept is defined as a child of Car that specifies, among
others, an attribute color.{black;white}. The Mercedes should be offered in silver,
so the concept is defined as Mercedes ⇒ ∀color.silver. The Attribute Inheritance
Invariant does not allow this attribute value since the color attribute of the child
concept (i.e. Mercedes) does not specify a subset of that value of the parent
concept (i.e. Car). But a subset of the value domain can easily be computed:
either the Mercedes species color.black or color.white or both color.{black; white}.
Vice versa, the Car may accommodate silver as a potential candidate and specify
color.{black; white; silver}. For this example, obviously the latter choice is more
appropriate.
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5 Related Work

Configuration tools have been developed in the last decades. Two structure-based
configuration tools employ a very similar representation of configuration models:
KONWERK [23] and EngCon [24]. No model editor is publically available so
that configuration models have to be created and maintained using text editors,
which is error-prone, of course.

The consistency-preserving evolution process described in this paper is part
of a framework for knowledge management for evolution of configurable products
[7]. In this framework a configuration model represents the set of configurable
components and different product types are represented by so-called product
models that refer to concepts in this configuration model. Mismatches between
product models and the configuration model are identified, explained to the user
and serve as input for managing the product catalog.

Invariants are known from knowledge base and database communities, typ-
ically called integrity constraints [25]. To distinguish this domain-independent
language restricting notion from the domain-dependent problem solving notion
of constraints introduced in Section 2, we stick to the terms invariant and con-
straint, respectively in this paper. To the knowledge of the author, invariants
were first introduced in [26] to ensure consistent evolution of database schemata.
[27] and [28] also define invariants to preserve consistency in the course of ontol-
ogy evolution. Ontology editors are readily available but only handle a portion
of the knowledge needed for configuration.

6 Summary and Outlook

This paper describes an evolution process that preserves consistency of structure-
based configuration models. In this process a user executes changes to a config-
uration model and tool support ensures the configuration model remains con-
sistent despite its changes. A set of invariants defines what denotes a consistent
configuration model. The necessary invariants are checked after change execu-
tion and preserve consistency of the configuration model. In case inconsistency
is identified, the tool support suggests repair operations from which the user can
select the most appropriate repair. With this help the repair process is partially
automated.

An adaptive approach to selecting invariants based on the semantics of a con-
figuration model allows to manage configuration models that represent different
domains or will be used in different configuration tools. A prototypical Language-
independent Model Editor (LiMEd) is currently developed that is able to handle
configuration models from different product domains and different configuration
tools. The model editor offers a pre-defined set of change operations from which
a user can choose in a drop-down menu. Only applicable operations are offered.
Invariants defined for executed changes are evaluated. Those invariants that are
not part of the current language specification need not be checked and can safely
be discarded. First results show that it is feasible to handle configuration models
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of reasonable size and from different sources. A test model containing knowledge
about a fictious car domain and an EngCon [24] model containing knowledge
about a car periphery supervision system [5], created in the ConIPF project
(Configuration in Industrial Product Families)3, were used for extensive testing.
The car domain contains 52 concepts, 24 attributes, 33 composition relations
and 9 constraints. The car periphery supervision domain contains 72 concepts,
107 attributes, 34 composition relations and 62 constraints. All consistency tests
computed in less than a second. Scalability tests with hundreds or thousands of
concepts still have to be done, but the first results look very promising.

Future work includes investigating whether the defined set of invariants suffi-
ciently covers the intended notion(s) of consistency and identifying “intelligent”
repair operations, i.e. not just adding or removing predicates but, for exam-
ple, computing potential values for constrained attributes. This will be done
by testing larger configuration models with thousands or tens of thousands of
concepts and more complex constraints. Another topic of future work is to test
configuration models from different product domains and configuration tools or
importing standard formats like Web Ontology Language (OWL)4 ontologies, for
which the currently implemented modeling facilities and invariants may need to
be extended.
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4. Männistö, T., Soininen, T., Sulonen, R.: Product configuration view to software
product families. In: Software Configuration Management (SCM-10) – Papers from
the ICSE Workshop. (2001)

5. Hotz, L., Krebs, T., Wolter, K., Nijhuis, J., Deelstra, S., Sinnema, M., MacGregor,
J.: Configuration in Industrial Product Families - The ConIPF Methodology. AKA
Verlag (2006)

6. Nilsson, N.J.: Principles of Artificial Intelligence. Morgan Kaufmann (1980)
7. Krebs, T.: Kowledge management for evolution of configurable products. In:

Twenty-seventh SGAI International Conference on Artificial Intelligence (AI-
2007), Cambridge, England, Springer Verlag (December 2007)

8. Blecker, T., Abdelkafi, N., Kreuter, G., Friedrich, G.: Product configuration sys-
tems: State of the art, conceptualization and extensions. In: Eight Maghrebian
Conference on Software Engineering and Artificial Intelligence (MCSEAI 2004),
Sousse, Tunisia (2004) 25–36

9. Minsky, M.: A framework for representing knowledge. Technical Report 306,
Massachusetts Institute of Technology, Cambridge, MA, USA (June 1974)

3 http://www.conipf.org
4 http://www.w3.org/TR/webont-req/

21. Workshop Planen und Konfigurieren (PuK 2007) Seite 19



10. Quillian, M.R.: Semantic Memory. In: Semantic Information Processing. MIT
Press (1968) 227–270

11. Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge repre-
sentation system. Cognitive Science 9 (1985) 171–216

12. Conradi, R., Westfechtel, B.: Version models for software configuration manage-
ment. ACM Computing Surveys (CSUR) archive 30(2) (1998) 232–282

13. Mylopoulos, J.: Object-orientation and knowledge representation. In Meersman,
R., Kent, W., Khosla, S., eds.: Object-Oriented Databases: Analysis, Design &
Construction (DS-4), Proceedings of the IFIP TC2/WG 2.6 Working Conference on
Object-Oriented Databases: Analysis, Design & Construction, Windermere, UK,
North-Holland (1990) 23–37

14. Heylighen, F.: Bootstrapping knowledge representations: From entailment meshes
via semantic nets to learning webs. Kybernetes 30(5/6) (2001) 691–722

15. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press (2003)

16. Baader, F., Hollunder, B.: Kris: Knowledge representation and inference system.
SIGART Bulletin 2(3) (1991) 8–14

17. Reiter, R. In: On Closed World Data Bases. Plenum (1978) 119–140
18. Winston, M.E., Chaffin, R., Herrmann, D.: A taxonomy of part-whole relations.

Cognitive Science 11(4) (1987) 417–444
19. Herzig, A., Rifi, O.: Propositional belief base update and minimal change. Artificial

Intelligence 115(1) (1999) 107–138
20. Visser, P.R.S., Jones, D.M., Bench-Capon, T.J.M., Shave, M.J.R.: An analysis

of ontological mismatches: Heterogeneity versus interoperability. In: AAAI 1997
Spring Symposium on Ontological Engineering, Stanford, USA (1997)

21. Sindt, T.: Formal operations for ontology evolution. In: Proceedings of the Interna-
tional Conference on Emerging Technologies (ICET’03), Minneapolis, Minnesota
(USA) (2003)

22. Gray, J.: The transaction concept: Virtues and limitations (invited paper). In: Very
Large Data Bases, 7th International Conference, Cannes, France (1981) 144–154

23. Günter, A., Hotz, L.: KONWERK - a domain independent configuration tool. In:
Proceedings of Configuration (AAAI Workshop), Orlando, FL, USA, AAAI Press
(1999) 10–19

24. Hollmann, O., Wagner, T., Gnter, A.: EngCon: A flexible domain-independent con-
figuration engine. In: Proceedings Configuration (ECAI 2000-Workshop). (2000)
94–96

25. Gray, P.M., Embury, S.M., Hui, K.Y., Kemp, G.J.: The evolving role of constraints
in the functional data model. Journal of Intelligent Information Systems 12(2-3)
(1999) 113–137

26. Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and implementation of
schema evolution in object-oriented databases. In: Proceedings of the 1987 ACM
SIGMOD International Conference on Management of Data (SIGMOD 1987), New
York, NY, USA, ACM Press (1987) 311–322

27. Maedche, A., Motik, B., Stojanovic, L., Studer, R., Volz, R.: An infrastructure for
searching, reusing and evolving distributed ontologies. In: Proceedings of the 12th
international conference on World Wide Web (WWW ’03), New York, NY, USA,
ACM Press (2003) 439–448

28. Stojanovic, L.: Methods and Tools for Ontology Evolution. PhD thesis, Universität
Karlsruhe (2004)

Seite 20



Augmenting JSHOP2 Planning with OWL-DL

Ronny Hartanto∗
Bonn-Rhein-Sieg Univ. of Applied Sciences

53757 Sankt Augustin, Germany
ronny.hartanto@fh-bonn-rhein-sieg.de

Joachim Hertzberg∗∗
University of Osnabrück

49069 Osnabrück, Germany
hertzberg@informatik.uni-osnabrueck.de

Abstract

The paper describes an approach for combining a reasoner
based on description logic (concretely, OWL-DL) and a plan-
ner, in this case an off-the-shelf HTN planner (concretely,
JSHOP2). The domain representation is formulated in the
DL regime, which can also used for logical reasoning about
state. Domain and problem descriptions are then generated
automatically from the DL representation as needed, plans
are generated on the planner’s side, and transformed back into
the DL representation. A working example is given for a sim-
ulated robot navigation domain. In particular, we show that
the automatic planning problem generation leads to skipping
over parts of the domain description deduced to be irrelevant
for solving the concrete planning problem at hand, thereby
reducing substantially the size of the problem description for
the planner and speeding up the planning process.

Introduction
Knowledge representation and reasoning play very impor-
tant roles in field of artificial intelligence (AI). They enable
an intelligent agent to store information and reason about it.
This knowledge needs to be stored in a specific manner, such
that the reasoning engines can apply their algorithms to it.

There are several methods and/or languages for repre-
senting knowledge on a computer, for example Logic-Based
Representation Languages, Rule-Based Representation Lan-
guages, Visual Languages, etc. These methods depend on
the purpose of the system and the kind of information that
needs to be stored. Logic-based languages are important for
intelligent agents due to their natural semantics that make
them suitable for application to a machine implementation.

Some examples of logic-based languages are proposi-
tional logic, first-order logic, Knowledge Interchange For-
mat (KIF) and description logic. The description logic is
state of the art for knowledge representation and reasoning.
The description logic provides some model checking meth-
ods, for example consistency, satisfiability and subsumption.
It also offers the possibility to query for objects of interest.

∗Thanks to Mrs. Iman Awaad for her support on this work.
∗∗This research was partly funded by the European Commis-

sion’s 6th Framework Programme IST Project MACS under con-
tract/grant number FP6-004381. The Commission’s support is
gratefully acknowledged.

A planner is a reasoning system that produces a sequence
of actions to achieve a goal. Hence, a planner also needs
knowledge about possible actions, effects, etc. Each domain
contains its own set of possible actions. In planning field,
the knowledge describing a domain’s possible actions and
their effects is often referred to as the domain description.
However this might cause a problem in planning. Planning
is an NP-hard problem. The more information the agent has,
the more detailed the plan and the more costly is the plan
generation process. Most planning domains are optimized
only to solve a specific planning problem in order to limit
the amount of information that needs to be processed.

There are several ways to represent planning domains,
for example situation calculus, STRIPS, graph-planning, to
name a few. However, these representations are not as pow-
erful as the one used in description logic. In the planning
field, the domain is described in such so as to enable the
planner to generate the plan with minimal cost.

To summarize, the dilemma facing an intelligent agent is
how to produce a domain description efficiently such that
the planning process is not inundated with unnecessary in-
formation. In the example presented here, the agent is an
autonomous intelligent robot. Its knowledge base may con-
tain a priori knowledge to which it may add knowledge it
collects as it performs its tasks. Our robot also has a plan-
ner that plans its action. In order to circumvent the problem
mention above, the robot might use two or more knowledge
bases or a filter which removes information which is unre-
lated to the current domain. At present, these are the two
most commonly used solutions to address the problem.

This paper presents an approach which allows the descrip-
tion logic-based knowledge representation and the planner
to work synergistically. All information is kept in one single
knowledge base. The description of the planning domain is
generated from the information within the knowledge base.
The description contains all the information that is required
for generating a plan that will achieve the goal.

In our approach, a hierarchical planning method is used.
The approach is versatile enough to allow the use of planner
which use different methods for representing the knowledge
than that used in description logic.

With the approach presenting here, the agent can continue
to collect as much information as possible while still main-
taining a reasonable size of planning domain description.
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This approach has been tested on a robotic agent, however
it should also be possible to implemented within other plan-
ning domains.

This paper is organized in the following manner: the fol-
lowing section describes the knowledge base and planner in
brief. After that, the design of the proposed approach is ex-
plained, showing how the knowledge base (KB) is modeled,
the connection between the KB and planner, how the plan-
ning domain is generated and the process of writing back
the plans to the KB. This is followed by the implementation
within the navigation domain of a mobile robot is shown.
The results are then presented. The conclusion briefly sum-
marizes this paper. Finally the future work section shows
possible extensions of this work.

The Knowledge Base and Planner
As previously mentioned, description logic is state of the
art in knowledge representation and reasoning. The Ontol-
ogy Web Language (OWL) is a state of the art language for
representing ontologies. It was developed for use in the se-
mantic web. However, due to its success, many other fields
have applied it within their domains.

The Knowledge Base
There are several frameworks of semantic web, namely the
Resource Description Framework (RDF), Ontology Infer-
ence Layer (OIL) and DARPA Agent Markup Language
(DAML). OWL adopts the semantics of DAML+OIL. There
are three different versions of OWL, namely OWL-Lite,
OWL-DL and OWL-Full (Dean et al. 2004). OWL-DL
is a higly expressive description logic that is related to
SHOIN (D) (Horrocks, Patel-Schneider, & van Harmelen
2003). OWL-Lite is SHIF(D) and as such constitute a sub-
set of OWL-DL. The OWL-Full is a superset of OWL-DL
(Horrocks, Patel-Schneider, & van Harmelen 2003).

In this work the OWL-DL is used for representing knowl-
edge. The choice of OWL-DL as opposed to OWL-Lite
or OWL-Full has several motivating factors. OWL-Lite’s
inference process in worst case takes exponential time
(EXPTIME), however the expressive power is still below that
of the OWL-DL (Horrocks, Patel-Schneider, & van Harme-
len 2003). In contrast, OWL-Full’s expressiveness goes far
beyond that of description-logic, thus the reasoning time is
undecideable. OWL-DL can express quite complex things
and has the complexity of NEXPTIME (Horrocks, Patel-
Schneider, & van Harmelen 2003).

There are several inference engines that can be used
with OWL-DL. These are Pellet (an open source OWL-
DL reasoner in java) (Sirin et al. 2007), FaCT++ (new
generation of FaCT - Fast Classification of Terminologies)
(Tsarkov & Horrocks 2006) and RacerPro (RACER - Re-
named ABox and Concept Expression Reasoner) (Haarslev
& Möller 2003).

The Planner
There are several planning paradigms available within the
research community. These paradigms includes classical

planning, neoclassical planning, heuristic planning, hierar-
chical task planning, an so on (Ghallab, Nau, & Traverso
2004). Currently, there are many planners available. A Hi-
erarchical Task Network (HTN) has been used in practical
applications more than any other planner as it provides a
convenient way to write problem-solving “recipes” that cor-
respond to how a human domain expert might approach the
problem (Ghallab, Nau, & Traverso 2004). HTN planning
provides the possibility to have tasks as goal instead of robot
specific actions. Thus it is really helpful for the users to de-
fine their goal among these tasks. Hence, a HTN planner is
used in our approach.

Before presenting our design, the concept of HTN plan-
ning will be covered here as background information. The
HTN planning domain is defined by two tuplesD = (O,M)
where O is a set of operators and M is a set of meth-
ods. The HTN planning problem is defined by four tuples
P = (s0, w,O, M), where the s0 is the initial state, w is
the initial task network, O and M represents the domain D
(Ghallab, Nau, & Traverso 2004). The goal in HTN plan-
ning is represented as some a set of tasks (methods).

There are several implementations of a HTN planner,
such as Nonlin, SIPE-2 (System for Interactive Planning and
Execution), O-Plan (Open Planning Architecture), UMCP
(Universal Method Composition Planner) and SHOP (Sim-
ple Hierarchical Ordered Planner). There are four vari-
ants of SHOP available, namely SHOP, JSHOP, SHOP2 and
JSHOP2.

The SHOP2 planner is used in our approach mainly for
two reasons. Firstly, it won one of the top four prizes at
the 2002 International Planning Competition. Secondly, it
has a Java implementation, namely JSHOP2. As our ap-
proach is implemented in Java, having a planner in the same
programming language provides some advantages. Never-
theless, programming language should not be a problem for
combining the planner with the knowledge base. In previous
work, a web-service technology has been used to encapsu-
late the planner, such that the planner can be executed from
any machine with any operating systems and programming
languages that support web-services (Hartanto & Hertzberg
2005). Moreover, the JSHOP2 planner compiles each do-
main description into separate domain-specific planner, thus
a significant performance increase in the speed of planning
is gained (Ilghami & Nau 2003).

Design
The architecture of our approach is shown in figure 1. It
shows how a user interacts with the system and how the
planner and the KB are connected. Currently the contents
of the KB are specified manually, however in the future, an
automatic specification will be addressed.

The KB contains states of the world, methods, operators
and plans. The user can query a specific method or goal to be
achieved. In this case the system will generate the planning-
domain based on the requested method or goal, such that
it becomes a complete domain description for the JSHOP2
planner. This process will be explained in more detail in
the following section. In figure 1 the inference engine is
embedded within the KB box.
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Figure 1: OWL-DL and JSHOP2 architecture

Modelling the KB
The modeling of the KB is of great importance. There are
guidelines that show how an ontology should be designed
(Noy & McGuinness 2002). One of these guideline deals
with an iterative process, in which the ontology evolves dur-
ing the modeling process. In this work, a starting model,
that is based on the planning domain, is proposed. Fig-
ure 2 shows the proposed planning ontology. This ontol-
ogy is a straight forward one. It has a Planning-Domain,
a Planning-Problem, a Method and a Operator as its
components.

Figure 2: Planning Ontology

Figure 2 shows five classes (without owl:Thing) that
depict the planning components. The Planning class
is the superclass of the Planning-Domain, Planning-
Problem, Method and Operator. This planning ontology
is based on the HTN planning-domain. It maps the HTN
planning-domain to the OWL-DL classes. The instances of
these classes will be used later for generating the JSHOP2
planning-domain.

Here is more detailed specification of the upper picture of
the planning ontology given in description logic syntax:
Planning-Domain v Planning
∃hasMethod.Method
∃hasOperator.Operator

P lanning-Problem v Planning
∃hasDomain.P lanning-Domain

Method v Planning
∃hasMethod.Method
∃hasOperator.Operator
6 1 shop2code
> 1 useState

Operator v Planning
∃hasOperator.Operator
6 1 shop2code
> 1 useState

P lanning-Domain u Planning-Problem u Method u
Operator v ⊥

The shop2code is a datatype property with type string.
Each method and operator will have shop2code with the
JSHOP2 specific syntax. The useState property contains
the required states for the corresponding method or opera-
tor, written in query string format.

The Connection between the KB and the planner
Figure 1 also shows how the KB is connected with the
JSHOP2 planner. Three connections can be seen: domain,
problem and plans. The domain and problem are required
by the JSHOP2 planner to generate a plan. The generated
plan is then inserted into the KB.

The planning ontology uses the HTN planning descrip-
tion, nevertheless the domain is not described using the
JSHOP2 domain description syntax, which is described in
the JSHOP2 manual (Ilghami 2006). Thus a mechanism
which passes the information to the planner is required.
The shop2code property provides this feature. It acts as a
bridge between the KB and planner. The next subsection
describes how the planning-domain and planning-problem
descriptions for JSHOP2 are generated.

Generating the Domain and Problem Descriptions
for the JSHOP2
The planning-domain description can be generated in two
ways. Either the planning-domain description can be gen-
erated from the Planning-Domain instance or it can be
generated from the an instance of Method.

The Planning-Domain instance consists of sets of do-
mains and operators, that are used in a specific domain. Al-
gorithm 1 shows the steps needed to generate a list of meth-
ods and operators from the Planning-Domain instance.
This process is a straight forward one, as it simply adds the
contents of the Planning-Domain into the list.

Algorithm 1 Generate Domain from Planning-Domain

Require: pd = instance-ofP lanning-Domain
Ensure: out = hashMap < Method,Operator >

for all method from pd do
out ⇐ +method

end for
for all operator from pd do

out ⇐ +operator
end for

The second approach, which generates the planning-
domain description from an instance of Method, does so
by performing the steps described in algorithm 2. The al-
gorithm shows a recursive method for generating a list of
methods and operators from a Method instance. Methods in
HTN planning are implicitly the goals, that the planner need
to achieve(Ghallab, Nau, & Traverso 2004). The Method
instance has the required information, such as which opera-
tors or methods are needed in order to achieve the given goal.
Operators in HTN planning are implicitly actions that can be
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executed. In the same way as a Method, an Operator con-
sists of the operators which needed to perform the given ac-
tion. When generating the planning-domain description, this
algorithm is called with a Method instance as parameter.

Algorithm 2 genDomain(input)
Require: input = instance-of Method or Operator
Ensure: out = hashMap < Method,Operator >

if input isInstanceOf Method then
for all method from input do

out ⇐ +genDomain(method)
end for

end if
for all operator from input do

out ⇐ +genDomain(operator)
end for

The JSHOP2-specific domain description is generated by
iterating through each entry in the generated list. Each entry
has a shop2code property which describes the methods or
operators in JSHOP2-specific syntax. At the beginning and
the end of the domain descriptor, a header and a footer will
be added such that it complies the JSHOP2 syntax.

The planning-problem consists of operators, methods, ini-
tial states and goals. Once the planning-domain is gener-
ated, it’s already halfway to having a complete planning-
problem for the JSHOP2 planner. The missing parts are the
initial states and the goals. A goal is defined by choosing a
method from the planning-domain. The initial states are in-
ferred from the KB based on the current world model. Each
Operator or Method has useState property(ies). These
properties contain query strings of the states that are needed
to perform these operations or methods. These states are
defined explicitly in the precondition of methods and opera-
tors. The user can perform an additional query in addition to
these queries, so as to minimize the planning-problem. This
can be seen in detail in the section example domain which
follows.

Once the planning-problem is completely generated, it is
fed into the JSHOP2 planner. The JSHOP2 planner will gen-
erate the one or several plan(s) from the given problem de-
scription and return all possible plans.

Inserting the Plans into the KB
Not only can the JSHOP2 planner retrieve domain and prob-
lem descriptions from the KB, the computed plans are in-
serted into the KB as well. Thus, the KB serves as a single
source which the agent consults. The KB stores all the gen-
erated plans, thus minimizing the demand for re-planning in
case of failure during a plan’s execution. The sequencing
layer executes the plan. If a problem is encountered dur-
ing a plan’s execution, the sequencer will try to execute the
next plan until the goal is achieved or all the plans have been
tried. In case that all the plans execute without successfully
achieving the goal, re-planning take into consideration the
current world model proceeds or an error message is gener-
ated.

A Plan is a sequence of actions, which the agent needs
to perform in sequence. OWL doesn’t support ordering nat-
urally as the constructors of these (rdf:List and rdf:nil) are
unavailable due to serialization (Drummond et al. 2006). In
this work the OWL-List approach from Drummond et. al.
is used for representing the plans in the KB. Figure 3 shows
the model of the Plan class and its relationship with the
OWLList class.

Figure 3: Plan & OWLList Ontology

Implementation
In this section an example that uses our approach is pre-
sented as well as the tools that are used. This approach was
tested with the navigation problem in the mobile-robotics
domain.

Used Tools
Our approach is implemented in Java. The JSHOP2 planner
is closely coupled with the KB in our approach, to enable
our application to get the Java-objects that are generated by
JSHOP2. The application is developed within Eclipse.

The ontology is built and designed with the help of Pro-
tege, a free open source ontology editor and knowledge base
framework. Two inference engines have been tested with
our application, namely FaCT++ and Pellet. A commercial
inference engine, namely RacerPro, should also work with
our approach.

Example Domain
As mentioned previously, our approach was tested within
the mobile-robotics navigation domain. In our example
the mobile-robotics domain contain three operators and two
methods. These operators are !drive-robot, !visit and
!unvisit. The exclamation sign in the front of operators’
name means that these operators are ground operators (Il-
ghami 2006). Two of these operators are dummy operators,
which do not correspond to real actions of the robot, namely
!visit and !unvisit. These operators are required by the
JSHOP2 planner in order to mark a visited place, such that
the search algorithm is tractable.

Two methods with the same name, navigate, serve the
same purpose with different variables. These methods are
(navigate ?robot ?to) and (navigate ?robot ?from ?to).
With the first method, one can give a command such as nav-
igate all robots to room5. The KB will generate the initial
states for every available robots consistent with their current
positions. Without using explicitly the current positions of
the robots. In the second method the positions of the robots
are used.

The following code shows the !drive-robot operator and
one of the navigate methods.

Seite 24



( : operator ( ! d r i v e−r o b o t ?robot ?loc-from
?loc-to )

( ( a t ?robot ?loc-from ) )
( ( a t ?robot ?loc-from ) )
( ( a t ?robot ?loc-to ) ) )

( : method ( n a v i g a t e ?robot ?from ?to )
Case1 ( ( a t ?robot ?to ) )

( )
Case2 ( ( a d j a c e n t t o ?from ?to ) )

( ( ! d r i v e−r o b o t ?robot ?from ?to ) )
Case3 ( ( room ?room ) ( a d j a c e n t t o ?from ?room )

( not ( v i s i t e d ?room ) ) )
( ( ! d r i v e−r o b o t ?robot ?from ?room )

( ! v i s i t ?room ) ( n a v i g a t e ?robot ?room ?to )
( ! u n v i s i t ?room ) )

)

From these code snippets, we can extract the required
states, such as (at ?robot ?location), (room ?location), (ad-
jacentto ?location ?location) and (visited ?location). All
these states are written on the useState property in the cor-
responding method or operator. The (visited ?location) is a
state, that is generated on-line during computation. Thus, it
is not included in the useState property.

Results
The example presented above was implemented and tested
within an office environment consisting of two buildings that
are connected to each other by a corridor. Each building
has six rooms and a corridor as shown in figure 4. These
rooms are connected to each other through doors. However,
to simplify the domain the doors are not described in the on-
tology, as our actor can not currently manipulate a door han-
dle. Each room has an object property, namely adjacentto,
for example room-2 has two object properties adjacentto
corridor-1 and adjacentto room-4.

room-1 room-2

room-3 room-4

room-5

co
rri
do
r-1

room-11

room-10
room-9

room-8

room-7

corridor-3

building-1 building-2

room-6

corridor-2

room-12

Figure 4: Simple Map of the Building

Figure 5 shows an ontology containing an actor and a
fixed-object. In this example the actor is a mobile robot. It
has the property ∃at.Room, that represents its current spa-
tial position in the domain. The Fixed-Object is the su-
perclass of Building. The Building is the superclass of
Room. The Fixed-Object is the container of all objects
that cannot be manipulated by the actor.

Figure 5: Actor & Fixed-Object Ontology

Having Building as a super-class of Room enables the
users to query the instances later. As shown in figure 4, the
office-structure consists of two buildings and twelve rooms.
Putting an additional query on top of the initial states query,
we can minimize the size of the planning-problem. Let us
assume that the robot is in room-1 and the goal is to nav-
igate to room-6. Normally the KB provides all the rooms
and their connectivity. This domain grows and increases lin-
early with the KB, the more information within the KB the
bigger the size of a generated planning-problem. In addi-
tion more time is required to compute the plan. By adding
an additional query, we can limit the size of the planning-
problem. In this case, we can limit our query to include
only building-1 (∀Room v building-1). In our example,
the generated initial-states are reduced from 15 objects into
eight objects.

The following code shows an example query in SPARQL
(Prud’hommeaux & Seaborne 2007) to retrieve all rooms
in building-1 from the KB (the prefixes are omitted).

SELECT DISTINCT ?Room
WHERE
{ ?Room : i n B u i l d i n g ? B u i l d i n g ;

r d f : t y p e : Room .
FILTER ( ? B u i l d i n g = : b u i l d i n g −1)

}

Generated Plan
The concepts, which are presented here, are sufficient to
build a complete planning-problem for the JSHOP2 plan-
ner. Table 1 shows the results from the given example whose
goal was to navigate robot1 from an initial-position to a
destination. It shows the number of all possible plans and
the required time to compute them. The last column shows
whether the query is applied (only building 1) or not (build-
ings 1 and 2).

Table 1: Generated Plans from Navigate robot1

Init.-Pos Dest #Plans* Time (ms) buildings
room-1 room-4 1 4 1 and 2
room-1 room-4 1 3 1
room-1 room-9 1 15 1 and 2
room-4 room-1 7 14 1 and 2
room-4 room-1 7 10 1
room-4 room-9 7 36 1 and 2

*Note that JSHOP2 will deliver one or several solutions for a
given problem, but not the complete set of plans.
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The following sequence is one example of a generated
plan to navigate robot1 from room-1 to room-9 with cost =
10:

( ! d r i v e−r o b o t robot1 room-1 corridor-1 )
( ! v i s i t corridor-1 )
( ! d r i v e−r o b o t robot1 corridor-1 corridor-2 )
( ! v i s i t corridor-2 )
( ! d r i v e−r o b o t robot1 corridor-2 corridor-3 )
( ! v i s i t corridor-3 )
( ! d r i v e−r o b o t robot1 corridor-3 room-9 )
( ! u n v i s i t corridor-3 )
( ! u n v i s i t corridor-2 )
( ! u n v i s i t corridor-1 )

This plan has ten actions, however the actual robot ac-
tions are only four due to the dummy operators (!visit and
!unvisit).

Conclusion

In this paper, an approach which couples a knowledge base
system with a planning system is presented. It solves the
problem that an intelligent agent faces in dealing with large
amounts of information which may or may not be useful
in generating a plan to achieve a goal. Our approach al-
lows the agent to collect information from its surroundings
and insert them into the KB as it maintains a small size for
the planning-domain description. The planning system will
only get the information from the knowledge base which is
required to solve the current problem with minimum com-
putation cost. This is done while still using a single KB.

In addition, this approach allows the automatic generation
of the planning domain description from the KB. It includes
the full capability of an inference engine in the description
logic framework and the advantages of available planning
techniques.

The knowledge base system is implemented in OWL-DL,
due to its support of description logic. It has the expressive
power of description logic and its compatibility with several
inference engines. These inference engines are RacerPro,
FaCT++ and Pellet. In addition, the HTN planning tech-
nique, as implemented in JSHOP2, is used as the planning
component.

An example which uses the approach in navigating a mo-
bile robot is also presented. It shows how the planning sys-
tem benefits from being coupled with the KB. The user can
query the possible tasks which can be achieved by the robot.
After that the KB generates the necessary methods and op-
erators for the domain description. Besides that the current
world information will also be inferred from the KB. This
information is part of the problem description. Finally, the
planning system computes the plan from these domain and
problem descriptions.

The results section shows the performance benefit of the
proposed planning system. The KB generates complete do-
main and problem descriptions. In addition, the user can re-
strict the problem description is sufficient to generate com-
plete plans.

Future Work
Automatic insertion of the perception data of a robot into
the KB will be addressed. This ensures that the knowledge
within the KB remains current and up to date.

The sequencing layer which controls plan execution will
be implemented. The sequencing layer must not only co-
ordinate the execution of actions within a plan but it must
handle exceptions and failures encountered during the plan
execution. In the event that a failure occurs, a heuristic such
as try executing the next best plan or re-planning may be
used.

Applying the concept of affordance to the KB and the
robot specification will also be our future work. This will
enable the system to query objects that can be manipulated.
It will offer the user an object specific goal, such as grab the
plate, wash the plate or bring a cup of coffee.

Additional support for other planners should also be ex-
plored. One way of approaching this will be to support
PDDL which can then be fed to planners which support it.
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Abstract. The transportation of plants is expensive, since plants have
a comparable high volume in relation to their value. Therefore effec-
tive plant packing is an important issue, as the transportation costs are
directly dependent on the number of needed trolleys. The potted plant
packing problem was introduced in [1] and a first solution was presented.
It turned out that the generated plans were not sufficient in comparison
to trolleys packed by humans. By observing human packers, we identified
plant stacking as a usual habit to increase compactness of the packing.
Thus we extended our algorithms, adding the option of stacking plants.
In this paper we present the techniques implementing stacking strate-
gies. It is shown that stacking of plants increases the performance of the
packing algorithm significantly.

1 Introduction

The transportation of plants is expensive, since plants often have a comparable
high volume in relation to their value. For standardized transport, potted plants
are loaded on transport trolleys (shown in Figure 1). The cost of transportation
depends on the number of these trolleys. In order to minimize transportation
costs, effective packing of trolleys is necessary. Thus the potted plant packing
problem was presented in [2] and steps towards a solution were shown in [1].
Based on the evaluation of test data, it turned out that the computed solutions
could not compete with the number of needed trolleys packed by humans. Com-
puted plans need up to 75% more trolleys (see section 4 for details). Different
reasons could be identified for this lack of performance.

– Humans commonly use to stack plants on trolley layers.
– The algorithm works on pessimistic data. The size of plants is given in an

interval. The algorithm uses always the maximal size, which is a pessimistic
assumption.

– Humans pack several layers in parallel.

Based on these results it is obviously necessary to scale the performance of the
packing program. In fact stacking of plants is a very efficient way to increase the
packing density. For instance the capacity for 10 l pots can be increased by more
then 40% using stacking (cf. Figure 5). For other pot sizes the results are similar.
So in fact stacking of plants seems to be a promising technique to improve results.
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However, the pessimistic assumption about the actual size of the plants can
not be relaxed completely. But as plants are a flexible good, this allows to place
plants more densely. In consequence the assumptions about the plants dimen-
sions can be relaxed partially. It is assumed that the size of each plant is the
mean value of the given interval. When this general rule is not applicable - e.g.
during the anthesis of the plants - we assume further that this can be specified
for each type of plant. Of course the planning quality as well as the data quality
has to be approved and each plant has to be checked to that effect.

The usage of average values for the plants size leads to a more realistic model
for packing plants. Moreover the model of plants has to be detailed, to remove
some oversimplifications. In our first approach plants and especially their pots
were modeled as cylindric objects. It turned out that this model hinders the
computation of realistic plans. Real pots are conic, their base has a lower di-
ameter then their top. This allows that pots can be placed more densely at the
border area of the trolley layers. This effect is significant for realistic packing. In
consequence our model has to be expanded to respect the correct placement of
conic pots - hence the base diameter is used for the calculation of the placement
at the border area of the trolley layer.
The packing of parallel layers is actually not tackled and remains as future work.
But an improvement that avoids to create only marginal used layers does already
exist. If such a layer is detected, an algorithm tries to distribute the plants to
other layers. This strategy helps to avoid nearly empty layers in general.
Actually two improvements were implemented. First basic data is updated, and
the over pessimistic assumptions about the plant size is reduced. Second, stack-
ing of plants is supported.

As the packing problem was described in [2] and a basic solution was pre-
sented in [1], this article focuses on the extended feature of stacking and it’s
integration into the existing tool. Thus the article is structured as follows. In
the next section the potted plant packing problem and a solution approach is
briefly described. In section 3 the stacking of plants is presented in detail. It
is discussed what different techniques exist for stacking and when they can be
applied. Then in section 4 case studies are presented, where the computed so-
lutions are compared with human generated packings. Finally we conclude and
discuss future work.

2 The potted plant packing problem

2.1 Problem statement

The major task is to compute a valid packing instruction for a given trans-
portation order. Such a packing instruction must contain directives for the exact
placement of each and every plant that is part of the order. Any such directive
holds information about the plant’s designated place - and each layer’s exact
placement (mounting height) within the trolley. To clarify the problem, a trolley
is shown in Figure 1. A number of further constraints and additional rules have
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Fig. 1. packed trolleys

to be observed as part of the problem. For example: it is allowed to stack plants
on a trolley layer, the placement of layers into trolleys has to respect the stability
of trolleys, and the total trolley height usually has to be less than the available
internal truck height. Modeling aspects focusing these issues were discussed in
[2] and [1].

2.2 Existing solution approach

For the sake of simplicity it is assumed that for each and every plant a cylinder
can be computed, that contains the plant. To solve the potted plant packing
problem it is decomposed into two sub-problems:

– Distribution of plants on trolley layers
– Distribution of layers on trolleys

Packing of layers The packing of trolley layers corresponds to the packing
of circles into a rectangle, since the height of the plants can be omitted. The
packing of trolley layers can itself be subdivided into two different tasks.

– packing of equal circles into a rectangle
– packing of unequal circles into a rectangle

The packing of equal circles into a rectangle is a standard geometrical problem.
Even though optimal packings are known for a growing number of circles (e.g.
in [3]) this is an NP-hard task. However, for the packing of equal circles simple
heuristics can be applied, that offers already a good solution quality. The circles
are placed along the horizontal or vertical of the layer, or are placed in as a
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grid. Unfortunately it depends on the size of the circles and the rectangle which
heuristic performs best. The results of the different placement strategies are
shown in Figure 2.

(a) grid placement, 24 circles (b) placement along the depth 25
circles

(c) placement along the width, 23
circles

Fig. 2. regular circle placements

The placement of unequal circles into a rectangle is a quite more difficult
task. Only few publications have yet dealt with this problem, for example [4],
[5] and [6]. We adopted the maximum hole degree algorithm (B1.0) presented
in [6]. The main idea of this algorithm is the subsequent placement of circles
into corners. A corner is defined by two sides of the rectangle, a rectangular
side and a circle, or two circles. The first two circles are placed by a simple
placement strategy. Then for each circle not placed already within the rectangle,
all possible corner placements are computed. The circle being associated with the
placement having the minimal distance to another circle or side is chosen next.
This is repeated until no more valid corners are found or all elements have been
placed. A detailed description of the algorithm as well as a complexity analysis
can be found in [6]. An illustration showing the packing of unequal circles into
a rectangle is sketched in Figure 3.

Even if the trolley layers are computed step by step the design decisions
within the algorithm are taken into a direction that the overall summed height of
all layers is minimized. This is an heuristic approach aiming at the minimization
of the number of needed trolleys. Consequently the objective function regards
the global context even though this computation is separated into partial blocks.

Packing of trolleys The problem of distributing the layers to trolleys is a
classical bin packing problem. But additionally the position of each layer within
a trolley has to be computed. Trolley layers are hooked into mounting points,
which are generally found at 5 cm intervals from a base of 20 cm up to a height

21. Workshop Planen und Konfigurieren (PuK 2007) Seite 31



Fig. 3. placement computed by the maximum hole degree algorithm

of 190 cm. The placement of layers within a trolley follows a simple strategy:
The tallest trolley layer is hooked into the topmost mounting point that still
ensures the adherence of all other constraints, especially the maximum allowed
height. All remaining trolley layers are then sorted in ascending order by their
weight and inserted top to bottom into the trolley. This strategy aims at two
goals. It tries to

– maximize the usage of available space on the truck and
– lower the center of gravity to the nethermost point for stability reasons.

3 Stacking plants

As already mentioned solutions for the potted plant packing problem generated
by humans are outperforming computed solutions. Contrary to programs, hu-
man packers have an intuitive understanding of spatial optimization, so stacking
plants was observed as a typical human packing habit. To imitate such stack-
ing is consequently the first approach to improve the packing algorithm. This
section categorizes the plants stacking problem as the stacking on homogeneous
patterns and as the stacking on heterogeneous patterns.

3.1 Stacking on homogeneous patterns

The terms homogeneous and heterogeneous pattern are related to a layer of a
trolley which is already initially packed. Whenever a layer of a trolley is homo-
geneously packed - which means only plants of the same category with exactly
the same pot and plant size were used to fill the basic layer - we say this layer
follows a homogeneous pattern. Figure 2 has already shown such homogeneous
patterns. In order to support stacking, we need to upgrade the planning algo-
rithms and we have to regard stacking in more detail.

Definition 1:
We call a position a stackable place whenever a pot could be placed on the top
of a minimum set of three neighbored pots having the same height.
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We chose this minimal set of three plants as bed for a stacked plant since
plants are fragile goods and falling over leads to a total loss of plant value. So
the configuration pictured in Figure 4 (a) would be an illegal configuration ac-
cording to our definition. For the same reason stacking needs to take care of the
underlying plants. Keeping this in mind, we defined a taboo zone for each plant
reflecting its actual shape. These taboo zones have to be respected when look-
ing for valid stackable places. Since we focus on the packing of circular objects
it is sufficient to store the center and the radius to indicate a stackable place.
Furthermore we need a statically defined minimal footprint to guarantee a suffi-
cient contact surface and also a maximal boundary to prevent damage from the
underlying plants. On the strength of stability we also restrict the stack height
to a maximum of two per trolley layer. Basically this reflects the packing habit
of human packers.

Definition 2:
We say a stackable place is valid for a certain pot category, if the footprint of
pots assigned to this category guarantees a sufficient contact surface without
violating the taboo zones of the underlying plants.

(a) Non stackable place. (b) Valid stackable place for the
stacked plant (assuming same pot
hight).

Fig. 4. Visualization of Definitions

It is easy to recognize the set of stackable places when the basic layer follows
a homogeneous pattern. One needs to identify the size of the radius, the size of
the taboo zone and the used placement strategy (cf. Fig. 2). By means of this
information one can calculate an offset along a direction vector pointing out of
each underlying circle center. So finding the center of the stackable places could
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be seen as a pattern/raster shift of the underlying layer. Such a pattern shift is
shown in Figure 5 where the center of each stackable place is moved along the
direction vector −→v .

Fig. 5. Pattern postponement along a direction vector v (10 l pots following a homo-
geneous pattern)

3.2 Stacking on heterogeneous patterns

In analogy to homogeneous pattern, we say a layer follows a heterogeneous pat-
tern, when plants of different categories (with miscellaneous pot diameters) and
different pot heights were used to fill the basic layer of a trolley. Figure 3 shows
such a heterogeneous arrangement.

Obviously it is much harder to spot stackable places on the top of a layer fol-
lowing a heterogeneous pattern. Since pot heights may vary one need to identify
regions in the layer where at least three neighbored pots are having the same pot
height. Furthermore these three pots need to be grouped in a way that offers a
valid stackable place - which is close enough to allow stacking but wide enough
to respect taboo zones of the underlying plants. Moreover one needs to calcu-
late the centers of the stackable places for each possible triangular constellation
individually. Such a center of a stackable place could be calculated as follows:

When regarding a troika of pots of the same height, the centers A, B and C
of these three circular objects are forming a triangle. We want to find a point
P having the same distance to each of A, B and C. Such P is the center of the
circumscribed circle of the triangle which is the intersection point of the perpen-
dicular bisectors of the sides. This is shown in Figure 6 (a). Now, one need to
show that the identified stackable place having P as center is a valid stackable
place for a certain pot category according to Definition 2. In order to do so, we

Seite 34



(a) Finding P as center of a
possible stackable place

(b) Identifying the category of the stack-
able place

Fig. 6. Finding stackable places

will formalize Definition 2 based on the sketch in Figure 6 (b).

Given are the points A, B and C as centers of the three neighbored pots Ca, Cb, Cc

with known radii. All of these pots are planted and each taboo zone is known and
identified by a taboo radius. We already calculated point P and define PA, PB
and PC as straight lines - each going through P and one of the centers A, B
and C. Further we name the intersection points of these lines with the taboo
circles Oi and the intersection points of these lines with the pot bounding circles
Ii (i ∈ a, b, c).

To reduce search space we introduced the concept of categories in [1]. Still fol-
lowing this concept, each plant is classified as member of a specific cylindric
category. Such a category could be seen as a virtual box hosting plants with
similar dimensions. The radius Rc of the cylinder is taken to define a valid
stackable place for a certain pot category.

We say the stackable place having P as center is a valid stackable place for
a certain pot category Catn (n ∈ N) , if

Rc ≤ min[
∣∣POa

∣∣ ,
∣∣POb

∣∣ ,
∣∣POc

∣∣] and

Rc ≥ max[
∣∣PIa

∣∣ ,
∣∣PIb

∣∣ ,
∣∣PIc

∣∣].
We define the set of stackable places S. Valid stackable places are assigned

to pot categories so that each category holds a subset Vn of S, Vn ⊆ S (n ∈ N
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and n is corresponding to the index of the categories Catn). The data structure
SP is a hash holding the key value pairs of categories and subsets Vn of S :

SP = { Cat1 => V1 ,
Cat2 => V2 ,
... ,
Catn => Vn }

Further we have a second hash CS holding the key value pairs of categories
Cn and corresponding plant sets Pln(n ∈ N ) which are subsets of all non placed
plants:

CS = { Cat1 => Pl1 ,
Cat2 => Pl2 ,
... ,
Catn => Pln }

The stacking algorithm formalized in Algorithm 1 works as follows: Given
the hashes SP and CS, the algorithm starts to assign plants in ascending or-
der with respect to their plant category (which means highest dimension first,
ordered by the height) to stackable places (assign(...)). During this processing,
the hash SP - representing valid stackable places per category - is updated per-
manently (updateVx(...)). This leads to a shrinking set of valid stackable places.
Whenever a plant is assigned to a stackable place, such plant is deleted from CS
(removeElementFromPlj(...)). The algorithm stops the stacking for a trolley
layer, when the hash SP is empty or when all plants were placed. Figure 7 shows
a graphical representation of an exemplary calculation.

1. SP // hash, given as described

2. CS // hash, given as described

3. Vi // subset of S
4. Pli // subset of all non placed plants

5. WHILE ( ∃i ∈ N : Vi 6= ∅ ∨ Pli 6= ∅ )

– j = min{i ∈ N : Vi 6= ∅ ∧ Pli 6= ∅}
– assign(vjx, pljy) // ( x, y ∈ N, vjx ∈ Vj , pljy ∈ PLj )

– removeElementFromPlj(pljx)
– updateVx(vjy)

Algorithm 1: Stacking on heterogeneous patterns
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Fig. 7. Stacking on heterogeneous patterns

4 On the influence on stacking

After we have implemented the aforementioned stacking strategies, we compare
the computed solutions with and without stacking to solutions generated by
humans. As we improved only one aspect of the previous mentioned it is not
surprisingly, that humans still need fewer trolleys. But as can be seen in table 1
the quality of the solutions with stacking increases.
Scenario 1 comprises homogeneously and heterogeneously packed layers. Scenario
2 is more difficult, as there exist no homogeneous layers. Due to the aforemen-
tioned model extension concerning the form of pots, the homogeneously packed
layers are equal either packed by hand or computed. So the quality difference
can be explained by different packed heterogeneous layers and differences be-
tween the assumed and real height of the layers. For this reason the quality of
the schedules in scenario 1 is better then in scenario 2.
Nevertheless in both cases stacking can improve the computed results drasti-
cally. Of course the usage of percent values is problematic, as the number of
CC-trolleys is a discrete value. But the improvement by stacking is as significant
in absolute as in relative numbers. Analyzing the trolleys packed by humans we

scenario #CC needed without stacking with stacking

#CCs abs. delta delta in % #CCs abs. delta delta in %

1 5 7 2 40% 6 1 20%

2 8 14 6 75% 10 2 25%
Table 1. Results of the Case Study of effective packing

had to state that human packers take advantage of the fact that they are break-
ing rules the planning strategy has to respect. For example plants were stacked
up to three levels per trolley layer or plants were stacked on the base of only
two plants. So it was possible to place more plants on one layer and to pack the
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plants more densely. Of course such constraint violation is not thinkable for the
algorithm. It is actually in discussion that the packing rules should be applied
for humans as well to avoid plant damages.

5 Related Work

The plant packing problem could be considered as an exotic problem with re-
spect to its special domain. The complex structure of the problem makes it
hard to assign this problem to a certain research area. As a variation of the
3D respectively 2D bin packing problem it belongs to the field of combinatorial
optimization which is part of the operations research. Otherwise the problem of
finding optimal patterns for putting circular objects into rectangular shapes is
also regarded in the field of computational geometry as well as the 3D instance of
this problem in the area of sphere packing. Furthermore a number of constraints
is limiting the search space and the defined data structure containing pairs of
categories and feasible places reminds of modeling for a constraint satisfaction
problem.
To the best knowledge of the authors a problem like this was never published
which hinders general benchmarking with similar solutions. Nonetheless bench-
mark analysis of certain parts of the problem stays open as future work.

6 Summary and Future work

When observing human packers it turned out that plant stacking reflects a usual
habit to increase compactness of the packing. By know our planning algorithm
was not implementing such a case. This paper shows our approach to enable
the algorithm to support plant stacking. We distinguished between stacking on
homogeneous and heterogeneous patterns and indicated solutions for both of
them. It is assumed that stacking will have a relevant impact on the quality of
packing solutions. First test results are reinforcing such assumption.

For the sake of simplicity we are dealing with plant categories rather than in-
dividual plants. However, the categories are either boxes or cylinders whereas a
plant pot is usually tapered. So contrary to cylinders the top and bottom di-
ameters of the pots are unequal. Further research will have to detect if such a
simplification leads to proper results or if the data model needs to be updated.
Early tests using such data models and limited to homogeneous patterns are
indicating, that computed solutions were on a par with solutions generated by
human packers in such cases.

Inspired by human packing habits for a second time, the parallel packing of trol-
ley layers is another field of further research. As described, the objective function
(minimization of the overall height of all trolleys) is already designed globally
but the algorithm works in layers. Using parallel packing one may assume better
results, but with respect to complexity and the corresponding runtime of the
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algorithms we would like to watch more real life results of this approach first.
This is because the program based on the planning algorithms is also used in a
real time context: In order to be able to calculate the associated shipping costs
the dispatcher needs to know how many trolleys are necessary to fulfill an order,
which is given by phone at that moment.
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Abstract. The paper proposes a new approach to infinite-state action planning with automata theory.
State sets and actions are encoded as Presburger formulae and represented using minimized automata.
The symbolic exploration that contributes to the planning via model checking paradigm repeatedly
applies partitioned images on such automata to compute the automata for the successors of the current
state set. The implementation adapts a library for automata manipulation.

1 Introduction

With recent developments of the problem domain description language PDDL [9], modern action planning
features arithmetic expressions. Despite that numerical planning is undecidable in general [13], in recent
planning competitions, explicit-state planners have reported considerable success in solving benchmark
domains with numbers. As these planners all rely on heuristic or local search, there is no guarantee on the
plan quality.

For propositional planning, several optimal planning approaches are known. Planners like Satplan [18]
and Graphplan [3] optimize the parallel plan length, while other planners optimize the number of steps [21].
For propositional planning problems with preferences [10], where the degree of satisfaction is computed in
a (linear) cost metric, optimal plans have been generated [7].

As resources in time and space are limited, compact symbolic representations like BDDs [5] have been
exploited to explore the planning state space more efficiently. They represent sets of states and actions
uniquely and compactly. State sets can either be generated due to the non-deterministic structure of the
problem, in which case the set represents the current belief [2]. In deterministic planning, our focus, state
sets are generated during the exploration, like the set of states in a certain breadth-first layer.

One drawback of BDDs is that they refer to a fixed-sized binary state encoding. For propositional
domains, a minimized multi-variate variable encoding of a planning problem can be inferred [14], but due
to their structural limitations BDDs cannot handle unbounded numbers.

This work proposes a novel metric planning approach for symbolic exploration based on automata
theory, which generates step- or cost-optimal plans in domains that contain numerical expressions. The
language expressiveness includes linear expressions in the preconditions and effects. Each state set is rep-
resented as a set of linear constraints. Therefore, the approach can cope with infinite sets of states.

The paper is structured as follows. First, we introduce to Presburger arithmetics and present an equiva-
lent finite state automata representation, which together with the basic operations allows to prove theorems
on first-order expression. Next we consider how to represent state sets and actions in the formalism, mak-
ing explicit, which fragment of PDDL the approach is designed for. Three different encoding strategies
for propositions are discussed. We then formalize the automated translation process of a planning problem
into Presburger formulae and automata. Next we propose exploration algorithms that are capable of finding
shortest and cost-optimal plans even in infinite state spaces. Finally, we provide an implementation of the
planner in Java and draw conclusion.

2 Presburger Arithmetics

Presburger arithmetic is the first-order theory of addition and ordering over the integers1. Terms in Pres-
burger arithmetic consist of constants 0 and 1 and sums of terms. For example, x+x+1+1+1 = 2x+3

1 Usually the Presburger arithmetic is defined on natural numbers, but negative numbers can be realized using the
2-complement.
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is a term. Equations and inequations over terms are atomic formulae. The first-order theory over the natural
numbers with addition are the set of all sentences, which are true in first-order predicate logic over atomic
formulae. Given a successor function the Presburger arithmetic expressions can be formalized by a set of
axioms and a schema for induction.

The automata encoding for Presburger formulae exploits the fact that integer numbers can be expressed
by words over the alphabet {0, 1}, using the 2-complement representation. Here, the binary representation
is written from left to right, such that the most significant bit is located left. The representation is not unique
as the bit string can be prefixed with the an arbitrary number of zeros without changing its interpretation. In
general, vectors of integer numbers can be represented as terms over {0, 1}n. For example, the pair (4, 13)
generates the vectors

(
00100
01101

)
=

(
000100
001101

)
=

(
0000100
0001101

)
= . . .

The automata representation accepts all solutions to a Presburger equation or inequation. For example,
an automaton for x − 3y = 1 has 5 states (see Figure 1): The initial state a whose outgoing transitions
interpret the sign bits correctly, b for x − 3y = 0, c for x − 3y = 2, d for x − 3y = 1 (accepting) and e,
which the automaton takes if the word already read is not a prefix of some solution. The transition from
a to b is labeled by

(
0
0

)
. For

(
0
1

)
we go to e, since for x = 0 and y = −1, x − 3y has a value of 3 which

cannot become smaller when reading further bitvectors, as x cannot become smaller and y cannot become
larger. For a similar reason we go to e when reading

(
1
0

)
. For

(
1
1

)
we go to c.

Fig. 1. Sample automaton for x− 3y = 1 (e omitted).

As the automaton for a Presburger formula is not unique, minimization is needed. One of the main
advantages of Presburger formulae compared to most other representation formalisms in planning is that
they can concisely represent infinite sets of states. For example the set of all odd numbers is represented by
the equation ∃k : x = 2k + 1 and leads to an automaton with two states.

The conjunction of two atomic formulae is realized via intersecting the two automata. The disjunction
of two atomic formulae might yield a non-deterministic automaton (that can be determinized with a possible
exponential blow up). Negation requires to represent the complement of the language accepted by the
automata, which (in case it is deterministic) simply toggles the acceptance condition. The projection of one
variable is a linear-time operation, that also may lead to a non-deterministic automaton.

To prove the correctness of a theorem in Presburger arithmetic, one simply has to construct the automa-
ton for it, and check, if its language is not empty. A lower bound for such decisions is triple exponential in
the size of the formula [8], and an matching upper bound with automata has been given by [19].

21. Workshop Planen und Konfigurieren (PuK 2007) Seite 41



3 Representing State Sets and Actions

This section describes how the semantics of a problem and its domain can be represented as a set of
minimized finite automata. Henceforth, we assume that both the problem and the domain have been fully-
instantiated. Our approach supports many of the elements of PDDL2.2 [16]. We impose the following
restrictions (R):

1. Functions have integer values only.
2. Numerical expressions are linear.
3. Linear expressions used in preconditions or effects do not contain fractional numbers or divisions.
4. Scalars used in scale-up or in scale-down assignments are constant expressions.
5. There are no temporal actions.
6. The domain does not contain conditional effects.
7. The problem does not specify timed initial literals.

In the simplest case, a problem is given by one initial state and a set of goal states. An action can be
modeled as a (finite or infinite) set of transitions within the state space, where a transition t is a pair (s1, s2)
of a predecessor state s1 and a successor state s2.

3.1 Encoding the State Space

The state space induced by the domain is encoded using integer variables such that sets of states as well as
sets of transitions can be characterized by Presburger formulae.

Numerical components A planning domain defines a set F = {f1, . . . , fn} of zero-arity functions and a
set P = {p1, . . . , pm} of zero-arity predicates, with n, m ∈ N0. We map each function fi, i = 1, . . . , n,
onto a variable xi, in the following referred to as a current state variable . The variables xi in a Presburger
formula describe properties of the numerical components of those states that are members of the state set
to be characterized by the formula. Since xi can be assigned to arbitrary integer, we are able to encode
infinite sets of states. To be capable of characterizing transition sets, too, for each current state variable xi

we create a successor state variable x′i, which denotes the value of xi in the successor state.

Propositional components Predicates can be represented in a similar straightforward way, but it may
be rewarding to choose a more advanced encoding. In our work we have considered the following three
encodings.

Definition 1 (Binary Encoding) A binary encoding introduces a current state variable yj and a successor
state variable y′j for j = 1, . . . ,m. If predicate pj is currently true, then yj is assigned to −1. The fact
that pj is currently false is expressed through yj = 0. The current state variable and the successor state
variable belonging to a predicate p are denoted by curr(p) and succ(p), respectively.

Definition 2 (Prime Number Encoding) Let G1, . . . , Gl be the blocks of a partition of P . For each pj ∈ P ,
let group(pj) be the index k ∈ {1, . . . , l} for which pj ∈ Gk holds. A prime number encoding introduces a
current state variable gk and a successor state variable g′k for each group Gk of predicates. Each pj ∈ P
is assigned to a prime number prime(pj), which is unique within Ggroup(pj). The domain of gk and g′k
is the set of all products of prime numbers assigned to the members of Gk, where the prime factors of
each product must be pairwise different. Predicate pj is true if, and only if, prime(pj) is a prime factor of
ggroup(pj). The current state variable and the successor state variable belonging to a group G are denoted
by curr(G) and succ(G), respectively.

Definition 3 (Mutex Group Encoding) Let G1, . . . , Gl be the blocks of a partition of P , where all predi-
cates being the member of the same group Gk are mutual exclusive, i.e., at most one predicate in Gk can
be true at any point in time. Again, for each pj ∈ P , let group(pj) be the index k ∈ {1, . . . , l} for which
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pj ∈ Gk holds. A mutex group encoding introduces a current state variable gk and a successor state vari-
able g′k for each predicate group Gk. All members of a group Gk are numbered uniquely from 1 to |Gk|. Let
num(pj) be the number of pj within Ggroup(pj). The domain of gk and g′k is {0, . . . , |Gk|}. Predicate pj

is true if, and only if, ggroup(pj) = num(pj). The fact that no predicate in Gk is currently true is expressed
through gk = 0. The current state variable and the successor state variable belonging to a group G are
also denoted by curr(G) and succ(G), respectively.

The binary encoding straightforward, but it doesn’t make any attempts to reduce the dimensionality of
the state space. For prime number encodings, moderate group sizes should be selected, as products grow
very fast for an increasing number of factors. The larger the amount of places at which a predicate pj

occurs, the lower prime(pj) should be. Groups should be sized as similar as possible. For many domains
it is possible to automatically identify groups of mutual exclusive predicates [14]. If such a partitioning is
known, a corresponding mutex group encoding should be chosen.

3.2 Linear Expressions and Numerical Effects

Linear expressions may occur in effects as the right side (rvalue) of assignments (like increase), and in
preconditions as operands of binary comparisons (like <=). Each linear expression is simplified such that
the result is of the form a0 + a1z1 + · · · + adzd, where a0, . . . , ad are non-zero integers and z1, . . . , zd

are pairwise different current state variables. We can do that because we require that linear expressions
occurring in effects or preconditions do not make use of non-integer numbers or divisions. For a linear
PDDL2.2 expression e let lin(e) be this simplified representation.

Let trans(P ) be a Presburger formula describing a PDDL2.2 segment P . For a function fi, linear
expressions e, e1 and e2, a constant expression c and a relation ≺∈ {=, <=, <, >=, >}, we define

– trans((assign fi e)) := (x′i = lin(e))
– trans((increase fi e)) := (x′i = xi + lin(e))
– trans((decrease fi e)) := (x′i = xi − lin(e))
– trans((scale-up fi c)) := (x′i = lin(c) · xi)
– trans(( ≺ e1 e2)) := (lin(e1) ≺ lin(e2))

Obviously, for an assignment a the formula trans(a) describes exactly the set of transitions which
correctly update the lvalue of a in dependence on the old content of the lvalue and the rvalue, evaluated
before applying a. Functions other than the one updated by a can be changed arbitrarily. The translation of
binary comparisons should be self-explanatory.

Due to the restriction on integers, our semantics of scale-down differs from the PDDL2.2 semantics:

– trans((scale-down fi c)) :=
((xi ≥ 0 ∧ ∃r : (xi = lin(c) · x′i + r ∧ 0 ≤ r < |lin(c)|))∨
(xi < 0 ∧ ∃r : (xi = lin(c) · x′i − r ∧ 0 ≤ r < |lin(c)|)))

The result of a division is the non-fractional part of the result a precise division would yield. The
formula is a distinction of two cases. For one state exactly one disjunct is satisfiable. If xi is not negative,

then x′i will be equal to lin(c)

|lin(c)|
xi−(xi mod |lin(c)|)

|lin(c)| , which is equivalent to xi = lin(c)·x′i+(xi mod |lin(c)|).

For xi < 0, we have x′i = − lin(c)

|lin(c)|
−xi−((−xi) mod |lin(c)|)

|lin(c)| , which is equivalent to xi = lin(c) · x′i −
(xi mod |lin(c)|).

3.3 Propositional Effects and Access to Predicates

Propositional preconditions access predicates in a reading, whereas propositional effects access predicates
in a writing manner. As the translation of these accesses is also determined by the encoding of the logical
state space, we will discuss special aspects of the translation process for each encoding introduced above.
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For p ∈ P , let read(p) be a Presburger formula which is true in a state s, if, and only if, p is true in s
according to the state encoding.

If one pair of Presburger variables describes a group of predicates instead of a single predicate, then
the computation of the value for the successor state variable may require complete knowledge about all
updates to some member of the group performed by an effect. For this reason, the translation of an effect
is more complex than the translation of a read access. For D ⊆ P and A ⊆ P , write(D,A) is a Presburger
formula, which is true for a transition t = (s1, s2), if, and only if,

– all predicates p ∈ D are false in the successor state s2,
– all predicates p ∈ A are true in s2, and
– all predicates p ∈ P\(D ∪A) are true in s2 (if p is true in s1).

For D ∩A = ∅, write(D,A) is undefined. The formula write(D,A) can be used to encode the logical part
of an effect by choosing for A the set of all predicates that occur in a positive literal and choosing for D
the set of all predicates that occur in a negative literal, but not in a positive literal (PDDL2.2 first executes
the deletions, and then executes the addings). Note that (D,A) = (∅, ∅) is a valid choice.

The initial state could be described by a goal description, which is translated into a Presburger formula
that reads the predicates, but as we will see later, negations may cause the acceptance of invalid states. On
the one hand, the invalid states could be removed by building the conjunct of the formula with another
formula that characterizes the whole state space. On the other hand, it is possible to describe an initial
state by a much more elegant formula, because due to the fact that all predicate valuations are known, the
formula needs not to read the current state variables. This motivates the definition of init. For a set T ⊆ P ,
init(T ) is a Presburger formula, which accepts only one logical state, namely the state in which, according
to the state encoding, p ∈ P is interpreted as true if, and only if, p ∈ T .

In the following, we provide definitions of read, write and init for all three encodings.

Binary Encoding Per construction, a predicate p ∈ P is to be interpreted as being true, if, and only if,
curr(p) is equal to−1. Obviously, for the following definitions of readbin, writebin and initbin, the axioms
of read, write and init hold with respect to the semantics of the binary encoding:

readbin(p) := (curr(p) = −1)
writebin(D,A) := (

∧
d∈D(succ(d) = 0)∧∧

a∈A

(succ(a) = −1) ∧
∧

p∈P\(D∪A)

(succ(d) = curr(d)))

initbin(T ) := (
∧

t∈T

(curr(t) = −1) ∧ (
∧

p∈P\T

(curr(p) = 0))

Prime Number Encoding To read a predicate p ∈ P in prime number encoding, it is sufficient to check,
if prime(p) is a prime factor of curr(Ggroup(p)). Thus,

readprime(p) := (∃k : curr(Ggroup(p)) = prime(p) · k)

is a sound definition of read with respect to the prime number encoding.
A formula describing the propositional part of an effect must take into account two aspects. First,

if p is added by the effect, then the value of curr(Ggroup(p)) is to be multiplied with prime(pj) only
if prime(pj) is not already a prime factor of curr(Ggroup(p)). Similarly, if p is deleted by the effect,
then the value of curr(Ggroup(p)) is to be divided by prime(pj) only if prime(pj) is a prime factor of
curr(Ggroup(p)). Second, it must update each group variable according to all updates that affect some
member of the group. If the formula simply was a conjunction of subformulae, where each subformula
describes the value of succ(Ggroup(p)) for exactly one p ∈ P that is updated by the effect, then the
formula might be contradictious when a group is affected by more than one update.

We first build formulae, which characterize updates to single predicates, ignoring what happens to all
group variables other than the one affected by the update. For a predicate p ∈ P and two variables h0 and
h1, we define
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add(p, h0, h1) := (((∃k : curr(Ggroup(p)) = prime(p) · k) ∧ h1 = h0) ∨ (¬(∃k : curr(Ggroup(p)) =
prime(p) · k) ∧ h1 = prime(p) · h0))

del(p, h0, h1) := (((∃k : curr(Ggroup(p)) = prime(p)·k)∧prime(p)·h1 = h0)∨(¬(∃k : curr(Ggroup(p)) =
prime(p) · k) ∧ h1 = h0)).

The formula add(p, curr(Ggroup(p)), succ(Ggroup(p))) is true for a transition t = (s1, s2) if ei-
ther p is true in s1 and the variable representing the group p belongs to remains unchanged so that p
is also true in s2, or p is false in s1 and the variable representing the group p belongs to is multi-
plied with prime(p), such that p is true in s2. Thus, add(p, curr(Ggroup(p)), succ(Ggroup(p))) correctly
characterizes the adding of p ignoring all other group variables. An analogous argumentation shows that
del(p, curr(Ggroup(p)), succ(Ggroup(p))) correctly characterizes the deletion of p ignoring all other group
variables.

The definitions of add and del cover the first aspect. The parameters h0 and h1 enable a formula that
represents the whole effect to cover the second aspect, too. In order to avoid contradictions, an update to p
does not write its result to succ(Ggroup(p)), but into an own auxiliary variable, which becomes the input for
the next update. The first auxiliary variable is identical to curr(Ggroup(p)) and becomes the input for the
first update, the last auxiliary variable is the output of the last update and is identical to succ(Ggroup(p)).
By existentially quantifying the auxiliary variables away, we obtain the formula we were looking for. For
i = 1, . . . , l, be Gi ∩D = {di,1, . . . , di,lDi

} and Gi ∩A = {ai,1, . . . , ai,lAi
}. Now we define

writeprime(D,A) := (
∧

1≤k≤l ∃h0 : . . .∃h|Gk| :
(h0 = curr(Gk) ∧ succ(Gk) = hlDk +lAk
∧

∧
1≤j≤lDk

del(dk,j , hj−1, hj)
∧

∧
1≤j≤lAk

add(ak,j , hlDk +j−1, hlDk +j)))

initprime(T ) := (
∧

1≤k≤l curr(Gi) =
∏

t∈T∩Gk
prime(t)).

Mutex Group Encoding To check, if a predicate p is true in a mutex group encoding it suffices to compare
the appropriate group variable to num(p):

readmutex(p) := (curr(Ggroup(p)) = num(p)).

If an effect adds p ∈ P , num(p) will be the correct new value for curr(Ggroup(p)). Now we assume
that no member of Gi is affected by an add. If p ∈ Gi is deleted by the effect while p is currently true, then
we must choose succ(Gi) = 0, otherwise succ(Gi) = curr(Gi) is appropriate. The formula delset(G, D)
correctly updates the variable representing a group G, where no p ∈ G is affected by an add, and D is the
set of all deletes affecting some member of G. Now this subsection can be concluded with the definition of
writemutex and initmutex.

delset(G, D) := (((
∨

d∈D curr(G) = num(d))∧succ(G) = 0)∨((
∧

d∈D curr(G) 6= num(d))∧succ(G) =
curr(G)))

writemutex(D,A) := ((
∧

G∈{G1,...,Gl}:A∩G=∅ delset(G, G ∩ D)) ∧ (
∧

G∈{G1,...,Gl}:A∩G={p} curr(G) =
num(p)))

initmutex(T ) := ((
∧

G∈{G1,...,Gl}:T∩G={p} curr(G) = num(p)) ∧ (
∧

G∈{G1,...,Gl}:T∩G=∅ curr(G) = 0)).

3.4 Derived Predicates

A grounded derived predicate is of the form (:derived (pj)Φ), where pj is a predicate and Φ is a goal
description. Φ may contain other predicates, which may be derived themselves. For two derived predicates
p and q be p ≺ q if, and only if, q depends on p, that is, there is a sequence z0, . . . , zl of derived predicates,
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such that z0 = p, for each zk, 1 ≤ k ≤ l there is a :derived definition, which derives zk from a
goal description containing zk−1, and zl = q. ≺ is reflexive and transitive. As the set of all :derived
definitions of a domain must not contain cyclic definitions, ≺ is also antisymmetric. Thus, ≺ is a partial
order.

Now it is clear that a :derived definition can be seen as a macro for its goal description with the
predicate it derives as its name. Our aim is to remove all derived predicates from the domain by substituting
each occurence of a derived predicate q by a goal description, which is equivalent to q. In the domain, we
first replace all :derived definitions d1, . . . , dz deriving the same predicate q by one new :derived
definition deriving q from the disjunction of the goal descriptions of d1, . . . , dz . Afterwards we topolog-
ically sort all derived predicates according to ≺ and obtain a linear order q1 ≺ . . . ≺ qc. Predicate q1

is one of the most independent derived predicates, i.e., q1 is independent from all other derived predi-
cates. For k = 1, . . . , c, all other derived predicates predicate qk depends on lay within {q1, . . . , qk−1}.
For k = 1, . . . , c, in the goal description of the :derived definition belonging to qk we substitute each
occurrence of a derived predicate q by the goal description of the :derived definition belonging to q
(which is already free of derived predicates). When this has been done, then each occurrence of a derived
predicate q in a precondition of an action or in the goal specification of the problem is substituted by the
goal description of the :derived definition belonging to q.

3.5 Goal Descriptions, Effects and Initializations

We extend our translation function trans to goal descriptions. For a predicate p ∈ P and goal descriptions
d1, . . . , dz the following definitions are given:

– trans(p) := read(p)
– trans((not d1)) := (¬trans(d1))
– trans((and d1 . . . dz)) := (

∧
1≤k≤z trans(dk))

– trans((or d1 . . . dz)) := (
∨

1≤k≤z trans(dk))
– trans((imply d1 d2)) := (¬trans(d1) ∨ trans(d2))

Goal descriptions only read current state variables.
A PDDL2.2 effect is a conjunction of numerical effects, where literals are either positive or negative.

For an arbitrary effect e, let pos(e), neg(e) and fluent(e) denote the set of predicates occurring in a positive
literal, the set of predicates occurring in a negative literal and the set of numerical effects contained in e,
respectively. Let pres(e) be the set of all functions f ∈ F that are not affected by some a ∈ fluent(e). The
translation of e is

– trans(e) := (write(neg(e)\pos(e), pos(e)) ∧ (
∧

a∈fluent(e)
trans(a)) ∧ (

∧
f∈pres(e)

succ(f) = curr(f)))

An initialization specified by a problem can be seen is a conjunction of literals and equations. Literals
not mentioned in the :init section are assumed to be false (closed world assumption). Here, functions
that are not explicitly initialized are initialized with 0. For an arbitrary :init section start, let pos(start),
equat(start) and uinit(start) denote the set of predicates occurring in a positive literal, the set of equations
and the set of not explicitly initialized functions f ∈ F , respectively. Then trans(start) can be defined as

– trans(start) := (init(pos(start)) ∧ (
∧

u∈equat(start)
trans(u)) ∧ (

∧
v∈uinit(start)

curr(v) = 0))

3.6 Domains and Problems

For an action act with a precondition pre and an effect post, the translation is defined through

– trans(act) := (trans(pre) ∧ trans(post))

The transition relation defined by trans(act) contains a transition t = (s1, s2) if, and only if, the
predecessor state s1 fulfills the precondition, and the successor state s2 is the result of applying post to s1.

The translation of a problem and its domain consists of the following steps:
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1. Substitution of derived predicates in all conditions, preconditions and in the goal specification of the
problem

2. Selection of a logical state encoding
3. Translation of the actions
4. Translation of the :init section

How a :metric specification of a problem is translated, will be explained in the planning section.

3.7 Building Automata for the Formulae

The next step is to create a minimized deterministic finite state automaton (DFA)

Aϕ = (Qϕ, Σtrans, δϕ, initϕ, Fϕ)

for each formula ϕ, using the algorithm described in [20], with Qϕ being the state set, Σtrans being the
alphabet, δϕ : Q × Σtrans → Q being the transition relation, initϕ ∈ Qϕ being the initial state and
Fϕ ⊆ Q being the set of accepting states. Aϕ recognizes the set of all solutions to ϕ. The numerical state
space is represented by n current state variables and n successor state variables. Let l be the number of pairs
consisting of a current state variable and a successor state variable, which represent the logical state space.
The bitvectors of the alphabet Σtrans = {0, 1}2(n+l) have one component for each variable. We assign all
current state variables to the components with the indices 1, 3, . . . , 2(n+ l)−1, whereas all successor state
variables are assigned to the components with the indices 2, 4, . . . , 2(n + l). For the initial state and the
goal state set, automata are constructed, too. Since these automata recognize sets of planning states rather
than sets of transitions from one planning state to another, they use the alphabet Σstate := {0, 1}n+l.

The entire representation of the domain and the problem is denoted by R, with R = (A, I,G), where
A is the set of all automata constructed for the actions, I is the automaton constructed for the initial state,
and G is the automaton constructed for the goal state set.

4 Planning

For deterministic finite automata A1 and A2, A1 ∩A2 (A1 ∪A2) denote the minimized deterministic finite
automata recognizing the intersection (union) of the languages L(A1) and L(A2) recognized by A1 and A2;
A1\A2 be the minimal DFA recognizing L(A1)\L(A2). A1 = A2 hold if, and only if, L(A1) = L(A2).
For a DFA A = (Q, Σtrans, δ, init, F ) the projection projcurr(A) is defined as the result of determinizing
and minimizing

A′ := (Q,Σstate, δ′, init, F )

with δ′(q, (a1, . . . , an+l)) := {r ∈ Q | ∃b1, . . . , bn+l : δ(q, (a1, b1, . . . , an, bn)) = r}, whereas the pro-
jection projsucc(A) is defined as the result of determinizing and minimizing

A′ := (Q,Σstate, δ′, init, F )

with δ′(q, (b1, . . . , bn+l)) := {r ∈ Q | ∃a1, . . . , an+l : δ(q, (a1, b1, . . . , an, bn)) = r}. In both cases, be-
fore determinization and minimization is done, A′ is modified by another algorithm to ensure that all rep-
resentations of a solution are accepted (see ...). The alphabet can be restored using the expansions expcurr
and expsucc. The set expcurr(A) is obtained by replacing the transition relation δ′′ : Q × Σstate → Q of
A by δ′′′ : Q × Σtrans → Q, defined through δ′′′(q, (a1, b1, . . . , an+l, bn+l)) := δ′′(q, (a1, . . . , an+l)).
The set expsucc is defined analogously with δ′′′(q, (a1, b1, . . . , an+l, bn+l)) := δ′′(q, (b1, . . . , bn+l)). The
minimal DFA A with L(A) = ∅ using the alphabet Σstate is denoted by ⊥ (the complement of ⊥ is >).

4.1 Breadth First Search

Given a representation R = (A, I,G), we are looking for a shortest sequential plan, which transforms the
initial planning state recognized by I into a goal state G ∈ L(G). The planning graph induced by R is
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Algorithm 1 Breadth-First-Search
Input: Representation R = (A, I,G)
Output: Shortest sequential plan or ’no plan’

stack := ∅; layer := reached := I; stack->push(I)
while layer ∩ G = ⊥ do

layer′ := ⊥
for all A ∈ A do

trans := expcurr(layer) ∩A
layer′ := layer′ ∪ projsucc(trans)

layer := layer′\reached
if layer = ⊥ then

return ’no plan’
else

reached := reached ∪ layer
stack->push(layer)

stack->pop()
stack->push(layer ∩ G)
return Extract-Plan(R, stack)

infinite, directed and unweighted, but the outdegree of each node is finite; it cannot exceed |A|. A shortest
sequential plan corresponds to a shortest path from L(I) to a G ∈ L(G). In the following, we identify
automata A with their languages L(A).

Obviously, a breadth first search that starts from I is capable of finding a shortest path (cf. Algorithm 1).
For each action whose precondition is true in the initial state, we compute the successor state that results
from applying the action to the initial state. The set of all these successor states, without the initial state,
forms the next layer. Because DFAs are closed under union, it is possible to represent the layer by one
single DFA. Be L0 := I. When the exploration has completed layer Li(i ≥ 0), layer Li+1 is obtained by
doing the following for all A ∈ A. First, B := expcurr(Li) ∩ A is computed. Li is not compatible to A
since Li is a set of planning states, whereas A is a set of transitions. expcurr(Li) converts Li to the set of
transitions from any planning state in Li to any planning state. B covers exactly those transitions (s1, s2)
with s1 in Li, s1 fulfilling the precondition of the action the automaton A corresponds to, and s2 being
the successor state that results from executing the action in s1. The projection C := projsucc(B) only
recognizes the successor states. Li+1 becomes the union of all C computed for the A ∈ A minus the set of
all states reached by the exploration so far. By intersecting Li(i = 0, . . .) with G before computing Li+1,
we check whether or not we have already found a goal state. All Li are stored, as they are needed for the
reconstruction of a plan. If Li+1 = ⊥, then that part of the state space, which is reachable from the initial
state has been completely explored without finding a goal state. In this situation, we have proved that there
is no solution. Exploration does not terminate if infinite many planning states are reachable from the initial
state while there is no solution.

4.2 Reconstruction of a Solution

In situations where algorithm 1 reaches a nonempty subset G ⊆ G, we will mainly be interested in a plan,
which transforms the initial state into one of the members of G. If the length z of a shortest plan is at least
1, then algorithm 1 creates a stack with L0 on its bottom and G = Lz ∩ G on its top (otherwise the stack
will only contain L0 ∩ G, and plan extraction becomes trivial). The stack may induce various plans since it
results from executing in each s ∈ Li all actions, which are executable in s. Plan extraction cannot be done
in forward direction like breadth first search, because the stack does not provide any information about,
which action is selected next in order to reach a goal. For this reason, plan extraction works in backward
direction, starting from G. The algorithm searches for an action act which transforms a subset S ⊆ Lz−1

into a subset of G. Action act will be the last action executed by our plan. Afterwards, if z ≥ 2, then an
action to be executed just before act is determined by finding an action that transforms a subset S′ ⊆ Lz−2

into a subset of S. More precisely, plan extraction considers pairs (Li−1, Li) of layers and pairs (Si−1, Si)
with Si−1 ⊆ Li−1 and Si ⊆ Li (i = z, . . . , 1). We choose Sz := G. Si−1 is obtained from Si by first
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finding an automaton Ai ∈ A with ∅ 6= Bi−1 := expcurr(Li−1) ∩ expsucc(Si) ∩ Ai. expcurr(Li−1) is
the set of all transitions t = (s1, s2) with s1 ∈ Li−1 and s2 being an arbitrary planning state. expsucc(Si)
is the set of all transitions t = (s1, s2) with s1 being an arbitrary planning state and s2 ∈ Si. Thus, Bi−1

is the set of all transitions t = (s1, s2) with s1 ∈ Li−1, s2 ∈ Si and t ∈ Ai. In Si−1 := projcurr(Bi−1)
only the current states remain. Si−1 is the set of all predecessors of Si under action(Ai), the action that
corresponds to Ai. action(Ai) will be the i-th action executed by the plan. Algorithm 2 summarizes the
ideas described. The validity of the plan extracted by the algorithm results from S0 = I, Sz = G and the
fact that, for i = 1, . . . , z, action(Ai) transforms a state si−1 ∈ Si−1 into a state si ∈ Si.

Algorithm 2 Extract-Plan
Input: Representation R = (A, I,G), a stack stack
Output: Sequential plan of length |stack| − 1

plan := []; post := stack->pop()
while stack 6= ∅ do

pre := stack->pop(); post′ := ⊥
while post′ = ⊥ do

a := nextA ∈ A
post′ := expcurr(pre) ∩ expsucc(post) ∩A
post′ := projcurr(post′)

post := post′

plan := [action(a)].plan
return plan

4.3 Solving Metric Problems

An extension of algorithm 1 is also able to solve metric problems (cf. Algorithm 3). For metric problems,
the representation R includes an additional component M which represents the metric, i.e., R now is
a 4-tuple (A, I,G,M). M is a linear expression a1z1 + · · · + adzd with pairwise different variables
zi ∈ {x1, . . . , xn}, a1, . . . , ad ∈ Z\{0} and d ≥ 1. Since we permit the use of rational numbers and
divisions in metrics, the original metric must be scaled by a suitable factor. If the original metric is to
be maximized, we turn the maximization problem into a minimization problem by multiplying the metric
with−1. If a summand c ·total-time occurs in the simplified scaled metric, then this summand will be
removed, and we keep c in memory for later use (setting c := 0 if no such summand occurs). Minimizing
M is equivalent to optimizing the original metric, but M is compatible to Presburger arithmetic. Given a
valueM takes, it is easy to calculate the corresponding value of the original metric. For upperValue ∈ Z let
boundAut(M, upperValue) be the minimal DFA for M ≤ upperValue, using the alphabet Σstate. Define
boundAut(M,∞) := >.

Again, the planning graph is explored using breadth first search. The while loop now uses true as
its guard because hitting the goal set does not exclude that further hits in following layers would lead to a
smaller value for the metric. The algorithm maintains the value bound the metric M takes for the best goal
state found so far, with initially bound := ∞.

As long as the exploration has not found a goal state yet, each layer Li is intersected with G. If the
intersection B is not empty, then B may contain various goal states, where each goal state makes the
metric take a certain value. We are interested in the smallest value the metric takes for some s ∈ B (a
smallest value exists since B is finite). For a finite set S 6= ∅ of planning states and a metric M, let
minimalValue(M, S) be the smallest valueM takes for some state in S. To compute minimalValue(M, S),
first an upper bound u is found by evaluating the metric for an arbitrary s ∈ S and then intersecting S with
boundAut(M, u− e · 2i) for i = 0, 1, 2, 3, . . . and some integer e ≥ 1, until the intersection is empty. The
last u − e · 2i is a lower bound for minimalValue(M, S), and the exact value can be determined using a
binary search approach. We update bound with minimalValue(M, B) and copy the stack, since solution
reconstruction will need the stack as it is now, if exploration terminates without finding a better goal state.
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After the goal state has been hit at least once, whenever a layer Li is completed, the algorithm computes
B := Li ∩ G ∩ boundAut(M, bound− timeterm− 1). We subtract 1 because we would like to know if Li

contains a goal state which reaches a metric value that is smaller than the one we are already able to realize.
But this alone would not be correct, as the metric actually contains the summand c · total-time, which
has increased by c · (i − j) since the last update to bound, if the last update was done when examining
layer Lj . The algorithm guarantees that, at this point of computation, timeterm is equal to c · (i− j). Thus,
bound − timeterm is the value M must take now in order to let the original metric take the same value as
before. If B is not empty, the algorithm proceeds as described above. Exploration terminates if, and only
if, Li = ∅ for some i. At any time, it is possible to stop the algorithm and extract a plan from the stack
saved when the latest update to bound was performed.

Algorithm 3 Metric-Breadth-First-Search
Input: R = (A, I,G,M), coefficient c of total-time
Output: Shortest seq. plan minimizing M or ’no plan’

stack := stack′ := ∅; layer := reached := I
bound := ∞; timeterm := 0; stack->push(I)
while true do

inter := layer ∩ G ∩ boundAut(M, bound− timeterm− 1)
if inter 6= ⊥ then

bound := minimalValue(M, inter); timeterm := 0
stack′ := stack; stack′->pop()
stack′->push(inter ∩ boundAut(M, bound))

timeterm := timeterm + c
for all A ∈ A do

trans := expcurr(layer) ∩A
layer′ := layer′ ∪ projsucc(trans)

layer := layer′\reached
if layer = ⊥ then

if bound = ∞ then
return ’no plan’

else
return Extract-Plan((A, I,G), stack′)

else
reached := reached ∪ layer′

stack->push(layer)

5 The Triple-A Planning System (TTAPS)

We have implemented our approach in Java , adapting an already existing automata library. Our tool TTAPS
(for The Triple-A Planning System) has full PDDL2.2 functionality up to the restrictions R1−R7, but its
performance has not yet left the status of a prototype.

TTAPS comes as an executable Java archive, including sample PDDL-files Automata currently use
bitvector alphabets as described above. For each pair (q1, q2) of automaton states q1 and q2 with at least
one transition from q1 to q2, there is exactly one object that represents all transitions from q1 to q2. A BDD
characterizes the set of labels that belong to one of those transitions. Our BDDs do not share structures, so
there is space for optimization, too. But another, very promising approach is to make {0, 1} the alphabet of
all automata, and let automata read each vector serially instead of parallelism. This approach can also be
combined with another encoding of integers leading to asymptotic smaller automata in certain cases [1].

In the diploma thesis of Björn Borowski, example domains and problems are provided that have de-
signed as test instances the current planner prototype is able to solve.
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6 Conclusion

The paper proposes an optimal planner in Presburger arithmetic for metric problems. It contributes to the
area of planning via model checking [12]. The expressiveness covers a large part of current PDDL. The
memory problems that are inherent to representing large sets of states are addressed by using a symbolic
representation based on minimized (and therefore unique) automata. As a feature, the approach can deal
with infinite state sets.

The paper is the first report on optimal plan finding in infinite state numerical domains. It implements
a planner on top of the existing library AAA2. All other related planners are non-optimal and provide
no guarantee on optimal plan finding. Previous work on metric action planning is based on representing
the states explicitly. For example, Metric-FF [15] is a forward-state heuristic search planner that uses an
involved Graphplan inspired heuristics to guide the search process. LPG [11] is a local search planner
that gradually improves an initial invalid plan resolving conflicts by inserting and deleting actions, until it
eventually becomes sound. SGPlan [6] also uses local search and partitions the overall problem into tightly
connected subproblems. Until a plan is found, the planner first resolves local constraint violations and then
global constraint violations.

There is recent work on SAT encodings of state-space planning in numeric domains [17]. The approach
proposed in this paper first infers a finite state encoding using an approximate fix-point analysis, and then
uses the finite-state variables to infer the domain. The approach is fast, provides optimality guarantees, and
applies well to current benchmark domains. However, as it relies on finite domain encodings of numbers,
it is less general than the approach presented here.

In the diploma thesis of Björn Borowski example cases, correctness proofs and experimental results
were provided as well as an extension to Dijkstra search.

In future work we will work on performance improvements in the exploration and might try tackling
real numbers using the results of [4].
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Problem with Affine Gap Costs
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Abstract. Multiple sequence alignment (MSA) is a problem in compu-
tational biology with the goal to discover similarities between DNA or
protein sequences. One problem in larger MSA instances is that the
search exhausts main memory. This paper applies disk-based heuristic
search and further compression schemes to solve MSA benchmarks. We
extend iterative-deepening dynamic programming, a hybrid of dynamic
programming and IDA*, for which optimal alignments with respect to
similarity metrics and affine gap cost are computed. We achieve consid-
erable savings of main memory with an acceptable time overhead. By
scaling buffer sizes, the space-time trade-off can be adapted to existing
resources.

1 Introduction

Computational biology or bioinformatics is dedicated to the discovery and im-
plementation of algorithms that facilitate the understanding of biological pro-
cesses [6]. The field encompasses different areas such as building evolutionary
trees and operating on molecular sequence data. We observe a tight analogy
between biological and computational processes. For example generating test
sequences for a computational system relates to generating experiments for a
biological system. On the other and many biochemical phenomena reduce to the
interaction between defined sequences.

We selected one problem in which heuristics have been applied for increasing
the efficiency of the exploration. The sequence alignment problem that originates
in computational biology plays a rising role as a testbet for search algorithms
in AI. It has been denoted as the Holy Grail of algorithms on string, trees and
sequences [6]. DNA (or protein) sequences are compared and made as similar as
possible by introducing gaps. The problem is of interest, as it allows to detect
evolutionary developments and relationships, and to determine the function of
certain parts of the DNA. For example, during the transition from living in the
water to living on land, the DNA part that is responsible for breathing should
have been inserted.

For DNA sequence alignment we have the alphabet Σ = {A, G, C, T} for the
4 standard nucleotides adenine, guanine, cytosine and thymine. For the case of
protein sequences, Σ consists of 20 amino acids. When comparing sequences at
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Fig. 1. Suboptimal alignment of two sequences.

a given index we observe either a match, mismatch, or a gap in one (or several)
of the sequences. Gaps can be interpreted as a loss/gain of abilities. A mismatch
can link to a mutation in the evolution. The global alignment often results in
the biologically most plausible one.

The standard representation of the MSA problem is a grid with an origin in
the upper left corner node. Along each axis one sequence is written, prefixed by
the gap character. A solution of the MSA problem corresponds to a path from the
origin to the lower right corner node. A step along the axis corresponds to intro-
ducing a gap, a step diagonal to two sequences a match or mismatch. This yields
an interpretation of the grid as an acyclic graph with edges that correspond to
one of the above steps. An example graph for the two sequences ACTTCGATTACG
and ACTCGATTAACG and an alignment path for the alignment ACTTCG_A_TTACG
and AC_TCGATTAAC_G is shown in Fig 1. Storing the graph explicitly causes mem-
ory problems, as the number and the lengths of the sequences are supposed to
be large. An implicit graph is generated on-the-fly. Only after a successor v of
v′ is generated the edge (v, v′) is stored in main memory.

Despite their limitation to moderate number of sequences, however, the re-
search into exact algorithms is still going on, trying to push the practical bound-
aries further. They still form the building block of heuristic techniques, and
incorporating them into existing tools could improve them. For example, an al-
gorithm iteratively aligning two groups of sequences at a time could do this with
three or more, to better avoid local minima. Moreover, it is theoretically impor-
tant to have the “gold standard” available for evaluation and comparison, even
if not for all problems.

Since MSA can be cast as a minimum-cost path finding problem, it is amenable
to heuristic search algorithms developed in the AI community; these are actually
among the currently best approaches. Therefore, while many researchers in this
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area have often used puzzles and games in the past to study heuristic search
algorithms, recently there has been a rising interest in MSA as a test-bed with
practical relevance. A number of exact algorithms have been developed previ-
ously that can compute alignments of a moderate number of sequences. Some of
them are mostly constrained by available memory, some by the required com-
putation time, and some on both. It is helpful to roughly group them into two
categories: those based on the dynamic programming paradigm, which proceed
primarily in breadth-first fashion; and best-first search, utilizing lower and/or
upper bounds to prune the search space. Some recent research, including the one
we refer to, attempts to beneficially combine these two approaches.

Even with on-the-fly generation of the weighted problem graph, state-of-the-
art heuristics and advanced memory reduction techniques, the amount of RAM
used by the search algorithms becomes crucial in large alignment problems. This
paper considers strategies to overcome the problem, applying external algorithms
that limit the RAM usage and control the access to the hard disk.

The structure of the paper is as follows. First, we introduce known MSA al-
gorithms including IDDP. Next, we present two external variants of IDDP with
increasing complexity. We study mathematical aspects of the programs, includ-
ing the correctness, optimality and run-time complexities. Finally, we provide
experimental evidence for the impact of the externalization.

2 MSA

The sequence alignment problem is a generalization of the problem of comput-
ing the edit distance, that aims at changing a string into another by using the
three main edit operations of modifying, inserting, or deleting a letter. Each edit
operation is charged, and the minimum-cost operations sequence is sought. For
instance, spell checkers have to determine the lexicon word whose edit distance
from a (possibly misspelled) word typed by the user is minimal. The same task
arises in version control systems.

The state space of the multiple sequence alignment problem consists of all
possible alignments of prefixes of the input sequences m1, . . . ,mk. If the prefix
lengths serve as vector components we can encode the problem as a set of vertices
x = (x1, . . . , xk), xi ∈ {0, . . . , |mi|} with associated cost vector vx. A state x′ is
a (potenital) successor of x if x′i − xi ∈ {0, 1} for all i.

When designing a cost function, computational efficiency and biological mean-
ing have to be taken into account. The most widely-used definition is the sum-of-
pairs cost function. First, we are given a symmetric matrix containing penalties
(scores) for substituting a letter with another one (or a gap). In the simplest case,
this could be one for a mismatch and zero for a match, but more biologically
relevant scores have been developed.

An optimal alignment corresponds to a path with minimal costs. A simple
example of a cost function assigns cost 0 to a match, 1 to a mismatch, and 2
to a gap. Therefore, the solution in Figure 1 has costs 16, 12 for all gaps and 4
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for the mismatches. The optimal alignment ACTTCGATTA_CG and AC_TCGATTAACG
has cost 4.

A substitution cost matrix correspond to a model of molecular evolution
and estimate the exchange probabilities of amino acids for different amounts of
evolutionary divergence. Based on such a substitution matrix, the sum-of-pairs
cost of an alignment is defined as the sum of penalties between all letter pairs
in corresponding column positions.

A major issue in MSA algorithms is their ability to handle gaps. Gap penalties
can be made dependent on the neighbor letters. Moreover, it has been found that
assigning a fixed score for each indel sometimes does not produce the biologically
most plausible alignment. Since the insertion of a sequence of x letters is more
likely than x separate insertions of a single letter, gap cost functions have been
introduced that depend on the length of a gap.

Altschul [1] argues that this model is too simple and that at least a character-
pair scoring matrix and affine gap costs have to be included in the cost. Affine
gap costs induce a linear function a + bx, where x is the size of the gap, a is
the cost for gap opening and b is the cost for extending the gap. Use of an
affine gap cost in multiple sequence alignment is a challenge because identifying
the opening of a gap is challenging. In terms of [1] the gap costs we consider
are quasi-natural. It is the cost model used in practice by biologists and their
alignment programs [21].

In order to deal with the biologically more realistic affine gap costs, we can no
longer identify nodes in the search graph with lattice vertices, because the cost
associated with an edge depends on the preceding edge in the path. Similarly as
in route planning with turn restrictions, in this case, it is more suitable to store
lattice edges in the priority queue, and let the transition costs for u → v, v → w
be the sum-of-pairs substitution costs for using one character from each sequence
or a gap, plus the incurred gap penalties for v → w followed by u → v. Note
that the state space in this representation grows by a factor of 2k.

2.1 Optimal Alignment Algorithms

There is a host of algorithms that has been applied to solve the MSA prob-
lem. In contrast to its name, dynamic programming is a static traversal scheme,
traversing the problem graph in a fixed order. The storage requirements are con-
siderable, all reachable nodes are visited. Given k sequences of maximal length
n this accumulates to O(nk) nodes and O(2k · nk) edge visits.

In order to save memory Hirschberg [8] proposes a strategy that stores only
the search frontier and reconstructs the solution path in divide-and-conquer
manner. Hirschberg noticed that when we are only interested in determining
the cost of an optimal alignment, it is not necessary to store the whole matrix;
instead, when proceeding e.g. by rows, it suffices to keep track of only k of them
at a time, deleting each row as soon as the next one is completed. This reduces
the space requirement by one dimension, a considerable improvement for long
sequences. Unfortunately, this method doesn’t provide the actual solution path;
In order to recover it after termination of the search, re-computation of the lost
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cell values is needed. The solution is to apply the algorithm twice to half the
grid each, once in forward direction, and once in backward direction, meeting
at a some intermediate relay layer. By adding the corresponding forward and
backward distances, the cell lying on an optimal path can be recovered.

The underlying problem graph structure is directed and acyclic and follows
a k-dimensional lattice or hypercube. It allows to apply traditional search al-
gorithms. Dijkstra’s algorithm [4] generates the graph with increasing cost of
reaching a node. It has the advantage that it can stop traversing the graph when
the goal has been reached, which reduces the number of generated states. A* [7]
behaves similar to Dijkstra’s algorithm, but explores the graph according to the
cost function f(v) = g(v)+h(v), where h(v) is a heuristic function that estimates
the cost of reaching the goal from v. The effect is that the goal is reached faster.
Given that the heuristic is a lower bound, the first solution found is still opti-
mal. IDA* [10] is an iterative-deepening variant of A*. In each iteration IDA*
expands all states below a cost threshold that is successively increased (by the
minimum possible) in case no goal is found.

The reduction of the search frontier has inspired most of the upcoming al-
gorithms. Frontier search [12] combines A* with Hirschberg’s approach to omit
already expanded states from the search. It is motivated by the attempt of
generalizing the considerable space reduction for the Closed list achieved by
Hirschberg’s algorithm to general best-first search. It mainly applies to problem
graphs that are directed or acyclic but has been extended to more general graph
classes. It is especially effective if the ratio of Closed to Open list sizes is large.

Sparse-memory graph search [18] stores some of the already expanded states
to speed-up the computation. It is based on a compressed representation of the
Closed list that allows the removal of many, but not all nodes. A node is not
deleted until all its neighbors have been expanded. Compared to frontier search
it describes an alternative scheme of dealing with back leaks.

Sweep-A* [19] is the MSA adaption of breadth-first heuristic search [20].
It traverses the cost-bounded graph g- (instead of f -)wise as the breadth-first
search frontier is expected to be smaller than the best-first search frontier.

2.2 IDDP

Iterative-deepening dynamic programming [15], IDDP for short, is a hybrid of
dynamic programming and IDA*. A difference to the above approaches is that
not the nodes but the edges are expanded; due to the fact that the algorithm
is designed to work with affine gap costs. The algorithm distinguishes between
the level of an edge (v, v′), i.e., the search tree depth of v′, and the g-value of an
edge, i.e., the distance to the start edge se. Analogously, the h-value is defined
as the estimated distance to the target edge te.

IDDPs fixed search order matches the one in dynamic programming and has
several advantages over pure best-first selection. Since Closed nodes can never be
reached more than once during the search, it is safe to delete useless ones (those
that are not part of any shortest path to the current Open nodes) and to apply
path compression schemes, such as the Hirschberg algorithm. No sophisticated
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schemes for avoiding ’back leaks’ are required. Besides the size of the Closed
list, the memory requirement of the Open list is determined by the maximum
number of nodes that are open simultaneously at any time while the algorithm
is running. As opposed to that, if dynamic programming proceeds along levels of
anti-diagonals or rows, at any iteration at most k levels have to be maintained
at the same time, and hence the size of the Open list can be controlled more
effectively. By arranging the exploration order such that edges with the same
head node (or more generally, those sharing a common coordinate prefix) are
dealt with one after the other, much of the computation can be cached, and
edge generation can be sped up significantly.

The remaining issue of a static exploration scheme consists in adequately
bounding the search space using the h-values. A* is known to be minimal in
terms of the number of node expansions. If we knew the cost of a cheapest
solution path beforehand, we could simply proceed level by level of the grid,
however only immediately prune generated edges e whenever f(e) > f∗. This
would ensure that we only generate those edges that would have been generated
by algorithm A*, as well.

IDDP applies a search scheme that carries out a series of searches with suc-
cessively larger thresholds, until a solution is found. The use of such an upper
bound parallels that in IDA*. Similar to A*, an estimate for the path from se to
te via the current edge e is given by f(e) = g(e)+h(e). As said, IDDP combines
the advantages of dynamic programming and IDA*. The traversal order remains
fixed, so that each node is expanded at most once. The order is along an increas-
ing level, such that all states that do not lie on a shortest path can be removed.
Additionally, path compression algorithms can be applied to store less states in
main memory. By using lower bounds the search space is additionally reduced,
such that no node expanded by A* is expanded by IDDP (up to tie breaking). By
the same argument as in IDA*, IDDP will find an optimal solution. An example
is provided in Figure 2.

IDDP itself shares similarities with iterative-deepening bounded dynamic
programming (IDBDP) as introduced by [12]. IDBDP also performs a series of
iterations with gradually increasing upper bounds, starting with a lower bound
on the alignment cost, until a solution is found. The work refers to [16] for
approximate string matching, but has not been adapted to affine gap costs.

The use of a global upper bound U additionally saves memory as it prunes
generated edges whose f -value is outside the current threshold. If a node is the
only (remaining) successor of its parent node, then it can cause further deletions.

IDDP main search routine is simple. A sequence of sub-searches with increas-
ing cost thresholds is invoked until the goal is found. The threshold Θi plays the
same role as in IDA*. It is initialized with the lower bound L of the problem,
and Θi is determined by the smallest possible cost value of generated nodes with
cost larger than Θi−1.

The estimate is a pattern database [3]. It is determined by the alignment of
m < n sequences, bootstrapping the alignment algorithm on all possible subsets
of size m. The lower bound is the sum of the cost of these subset alignments,
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Fig. 2. Computing the optimal alignment with IDDP. Bold arrows denote edges on the
optimal path, shallow arrows denote generated edges not pruned by the current cost
threshold, the anti-diagonal line denotes the active layer.

divided by
(

n−2
m−2

)
[9]. For the triple heuristic that we use we have m = 3. If

an upper bound U is known, then the pattern database construction is trun-
cated, very much in the sense of limiting external memory pattern database
construction in the work of [22].

3 Externalizing IDDP

Externalization considers maintaining data structures on (one or several) hard
disks by the application program. All MSA approaches we discuss maintain layers
on disk.

In the first implementation (see Figure 3) only the nodes are flushed. The
main reason is that edges were heavily linked due to the successor relationship,
to the origin and target nodes, and the heap. When writing the nodes to disk
memory addresses for the edges can be flushed, too, as they do exist in main
memory. Whenever a node is needed, it has to be read from disk; a random
access that may cause one I/O. Internally, the grid coordinates of a node are
maintained in a trie data structure, in which common prefixes of the coordinate
vector are shared. For this simple externalization, however, we store the full
vectors according to an inorder traversal of the trie on disk. The next step is to
substitute the file pointers that are used in the edges by condensed information
about the filename and byte offset. Moreover, each layer is stored in one file.

The above external IDDP algorithm calls for many random accesses. In a
buffered extension of the externalization, all data requested from disk is read
into an internal read buffer, and all data that has to be flushed is written into
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Fig. 3. File structure for simple external IDDP without edges flushed. A file consists
of all nodes v1, v2, . . . in one layer. Each node consists of its coordinates c1, c2, . . ., and
the addresses of the first and last edge of the ingoing and outgoing adjacency lists
(ei,1, ei,k, eo,1, eo,l).

an internal write buffer. If the buffers become empty (or full) they are refreshed
(or flushed) via block-wise file accesses.

Nodes are to be read, if an outgoing edge is expanded. On the other hand, the
coordinates of the nodes are sufficient to determine if the edge has introduced a
gap. For the affine gap costs we further have to check, whether a gap is either
continued or opened.

Moreover, the buffered variant does no longer support the internal compres-
sion of the list of already expanded nodes through deletion of states, as the buffers
already reduce the memory for each layer considerably, and further backup data
is flushed to the disk. This implies that each coordinate between two nodes v
and v′ can differ by either 0 or 1, such that the coordinate difference between v
and v′ can be encoded by the integer diff(v, v′) =

(v′1 − v1)2k−1 + (v′2 − v2)2k−2 + . . . + (v′k − vk)20.

Using the reversed encoding given v′ and diff(v, v′) we can reconstruct v. There-
fore, the node that is referred to as the origin of an edge does not have to reside
in memory (see Figure 4).

Moreover, using layers an internal heap for maintaining the expansion order
is no loner needed. We can simply take the order that is present in the file for
the active layer1.

How many buffers are needed? For the expanded layer, we need one read
buffer for the nodes with edges that have not yet been expanded, and one write
buffer for the nodes with edges that have been expanded. Additionally, we need
n write buffers for placing successors in one of the next n layers. Nodes are sorted
with respect to their coordinates.

External sorting follows the mergesort paradigm using as many file-pointers
as there are peaks with respect to the sorting criteria. We do not provide extra
buffers to each of the file pointers, as we assume that these disk read operations

1 The important aspect is that the algorithm works on expansion sets so that any
order will do. For external algorithms this implies that we can sort the file. For a
parallel extension this implies that we can distribute the workload among different
processors.
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Fig. 4. File structure for external IDDP with edges flushed, including trie compres-
sion. A file consists of all nodes v1, v2, . . . in one layer. Each node itself consists of its
coordinates c1, c2, . . . , c#c and its adjacency list e1, . . . , e#e; each edge consists of its
diff-value, its g-value, the diff-value of its predecessor.

are buffered already on the hardware. If there are enough file pointers available,
each state is looked at exactly once, so that the sorting matches the scanning
complexity. Unfortunately, the number of file pointers is limited on most oper-
ation systems. If the number exceeds 1024, we invoke early merges to unify the
first 1024 peaks into one, an idea that also saves disk space [11].

If duplicates are detected during the expansion, their adjacency lists are
merged. An advantage for the buffered version, denoted as external IDDP, is
that the memory requirements can be adapted to match the existing hardware.
Another advantage is that the internal trie structure for the coordinates can be
used to compress the data on disk. Only the coordinates are stored that do not
match the prefix of the previous one.

4 Mathematical Aspects

External algorithms are measured in the number of file accesses (I/Os) and the
number of times they sort or scan N data items, denoted as scan(N) and sort(N).

We distinguish between the total number of nodes |V | = O(nk) and the
number of expanded nodes |VExp| = |{n′ ∈ V | e = (n, n′) ∧ f(e) ≤ f∗}| as
well as between the total number of edges |E| = O(nk · 2k) and the number of
expanded edges |EExp| = |{e ∈ E | f(e) ≤ f∗}| where f∗ is the optimal solution
path cost.

Let L be the initial lower and U be the global upper bound. The optimality
of IDDP is inherited from IDA* and dynamic programming, provided that U is a
correct upper bound. It is also simple to see that the last iteration is actually the
largest, since each iteration contains at least one edge more than the previous
one.

Theorem 1. The number of iterations is polynomial in n, k and the maximal
edge cost C.
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Proof. Any alignment is bounded by nk, since otherwise there is a gap at one
index in all sequences. Using the sum-of-pairs, the maximal cost of a path is less
than k2C · nk = O(k3nC).

We first analyze the externalization without edge storage and buffering.

Theorem 2. Simple external IDDP requires at most O((U −L) · |EExp|) I/Os.

Proof. The last iteration of the unbuffered externalization applies O(|EExp|)
I/Os in the worst case, since every read access to a node may require one I/O,
and for each expanded edge we may issue a read request. Therefore, the overall
time complexity is O((U − L) · |EExp|) I/Os.

Now we analyze the complexity of the buffered externalization with full node
and edge storage.

Theorem 3. External IDDP requires at most O((U−L)·(sort(|EExp|)+scan(|VExp|)))
I/Os.

Proof. The last iteration of the buffered externalization applies O(sort(|EExp|)+
scan(|VExp|)) I/Os. To perform delayed duplicate detection we sort the layers
with respect to the nodes. The number of nodes in the next layer is bounded
by the number of edges from the nodes in the previous layer. Therefore, the
cumulated sorting efforts for removing duplicates in the individual layers are
less than the sorting efforts for the entire set EExp. For reading a layer and for
solution reconstruction at most scan(|VExp|) I/Os are needed. Therefore, given
that there are at most U − L + 1 iterations, the overall run time is bounded by
O((U − L) · (sort(|EExp|) + scan(|VExp|))) I/Os.

It has to be said that for both cases the factor U−L can be avoided by using
a strategy called refined threshold determination [17]. It adjusts the threshold
increase between every two iterations in such a way that at least twice as many
elements are considered in the next iteration. With refined threshold determina-
tion the efforts for the last iteration are larger than the joint efforts for all other
iterations. As the jumps in the thresholds are bigger than the minimum possi-
ble, one has to expand more nodes in the last iteration to guarantee optimality,
which in turn affects the exploration efficiency.

Theorem 4. The triple heuristic can be computed in polynomial time wrt. k
and n.

Proof. We have
(
k
3

)
= O(k3) triples and the maximum number of expanded

nodes for each triple is O(n3). Therefore, the total internal time complexity for
the heuristic is O(n3 · k3).

Theorem 5. For storing all sequences of length 1 the uncompressed represen-
tation requires O(k2k) space, while trie compression requires O(2k) space.
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k Cost h(se) Time RAM

1lcf 6 134,097 133,540 5:30:22 219,824
1rthA 5 70,387 70,243 0:00:20 11,216
1taq 5 119,552 119,160 12:02:26 678,020
1ac5 4 39,675 39,515 0:03:13 44,352
1bgl 4 80,552 80,406 0:03:45 42,380
1dlc 4 49,276 49,141 0:02:48 29,724
1eft 4 33,151 33,053 0:00:39 12,060
1gowA 4 40,727 40,577 0:03:09 22,348
2ack 5 69,608 69,060 3:39:14 419,944
arp 5 58,300 57,865 1:12:22 91,636
glg 5 66,606 66,408 0:06:22 44,644
1ajsA 4 34,501 34,277 0:09:57 66,964
1cpt 4 36,612 36,414 0:02:54 38,784
1lvl 4 39,849 39,602 0:20:18 194,432
1ped 3 16,333 16,170 0:00:05 11,244
2myr 4 41,281 40,935 5:48:18 937,612
gal4 5 - 56,632 - >1,048,576

Table 1. IDDP (time in hh:mm:ss and space in kilobytes).

Proof. We take the alphabet Σ = {0, 1} to denote whether or not a gap is
introduced. We observe that for full storage of all sequences of length 1, all
bitstrings for the values from 0 to 2k in binary are generated. This accumulates
to space requirements in the order of O(k2k). The trie representation will store
only the changes from the bitstring of value l to the bitstring of value l − 1,
added for all l ∈ {0, . . . , 2k}. By the amortized time complexity analysis of a
binary counter [2], it is well-known that these bit-flips induce a time complexity
in the order of O(2k).

5 Experimental Results

We experimented on an Opteron 2.2GHz Linux machine with 1 gigabyte memory
and a total runtime limit of 480 hours.

In Table 1 we display the cost-optimal solutions obtained with internal IDDP
on long sequences of the BAliBASE2. We denote the number of sequences to be
aligned, the initial and optimal cost, as well as the resource consumption of the
exploration. IDDP was invoked with tree collapsing.

The results for the first externalization are shown in Figure 2. Unfortunately,
this approach failed, as additional to the loss in computation time due to external
writing and reading, it does not save RAM wrt. internal IDDP. The core reason
is that the memory data gain for externalizing the nodes is fully consumed by
the file pointers that are used to substitute them.
2 Some long sequence problems were solved too quickly to collect accurate memory

data and thus omitted from this presentation.
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Time RAM DISK

1lcf 65:06:04 293,396 978,885
1rthA 0:00:47 11,684 7,065
1taq >480:00:00 - -
1ac5 0:50:37 58,340 21,314
1bgl 0:49:51 65,088 42,398
1dlc 0:18:11 43,120 25,779
1eft 0:01:39 14,400 6,901
1gowA 0:16:37 50,732 13,718
2ack 114:31:16 630,808 1,000,490
arp 22:18:53 109,856 523,375
glg 0:21:56 63,744 11,167
1ajsA 1:35:28 70,232 84,077
1cpt 0:39:52 49,396 28,271
1lvl 9:54:40 337,068 183,147
1ped 0:07:05 9,708 15,279
2myr >480:00:00 - -
gal4 >480:00:00 - -

Table 2. Simple external IDDP.

The results of the second externalization (including buffering and edge flush-
ing) are shown in Table 3. We see that there are considerable savings in the
crucial resource of main memory especially for the larger problems, while the
increase in time remains moderate. As an example for 1taq we have a 4.4-fold
decrease in space and a 5-fold increase in time. The discrepancy of disk space
and RAM usage can be large (in 1taq with a factor of about 23.2). The external
version could newly solve gal4 with optimal cost 57,286.

Up to the storage structures for the estimate, the RAM requirements remain
constants. An edge requires 72, a node 32, and the coordinates 40 bytes. External
IDDP used 40 bytes for an edge, 56 bytes for a node, and 40 bytes for the
coordinates of a node. We also conducted experiments on a 32-bit system. For
IDDP an edge now requires 40, a node 20, and a coordinate 20 bytes. In the
external version an edge consumes 24, a node 28, and node coordinates 20 bytes.
For example, on a 32-bit system, IDDP consumed 140,392 kilobytes to solve 1lcf,
while in the external version only 79,988 kilobytes were used.

There is another time-space trade-off. As the heuristic is computed in boot-
strapping manner – calling the IDDP algorithm for a smaller set of sequences
(3 in case of the triple heuristic) – it is possible to externalize the heuristic
calculations, too. This results in a constant RAM usage. In the experiments,
we obtained memory requirements of 670,249 kilobytes for solving 1lcf exter-
nally. The time increased from 6:40:23 for external IDDP with internal heuristic
calculations to 18:18:54 for external IDDP with the external triple heuristic.

Last but not least, we measured the effect of trie compression. Compared to
efforts in literature [5] the compression does not loose accuracy. To our own
surprise, the savings were only moderate. We uncompressed the compressed
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Time RAM DISK

1lcf 6:40:23 106,772 437,888
1rthA 0:00:43 13,684 1,365
1taq 60:03:41 129,356 3,012,294
1ac5 0:03:34 40,276 4,787
1bgl 0:03:31 48,888 8,860
1dlc 0:03:29 36,992 2,044
1eft 0:00:44 11,184 1,262
1gowA 0:03:41 30,896 1,246
2ack 4:59:43 264,240 363,705
arp 1:26:30 69,300 182,314
glg 0:07:01 51,940 3,332
1ajsA 0:10:28 60,148 19,148
1cpt 0:03:10 42,220 6,094
1lvl 0:20:11 179,744 42,567
1ped 0:00:22 255 3,311
2myr 12:05:19 722,324 533,749
gal4 182:55:51 580,008 7,354,524

Table 3. External IDDP.

files for gal4, consisting of 7,531,032,328 bytes. The files grew to a total size
of 7,734,791,156 bytes. We applied Lempel-Ziv compression to obtain a reduc-
tion of the files to 2,991,879,250 and 3,086,344,138 bytes, respectively. Therefore,
Lempel-Ziv obtains a compression factor of about 60%, independently of the fact,
whether or not the files were already compacted by trie compression.

Compared to the literature, the cost function used in [12] does neither use
similarity measures nor affine gap costs. As in our initial example, it charges no
penalty for a match, one unit for a mismatch, and a two units for a gap in either
string. Moreover, [12] took the 1pamA example from reference 3 (instead from
reference 1) from the BALiBASE.

Niewiadomski [13] showed very good results in solving BAliBASE alignment
problems with internal parallel frontier search. The solution process for 1pamA
with delayed duplicate detection on 16 processors using MPI communication
took about a day, but the peak RAM requirement for solving 1pamA was 55.8
gigabytes; much more than the 1 gigabyte that we have provided. As a general
rule, the more RAM available, the larger the buckets and the faster the algorithm.
[13] used similarity matrices but fixed gap cost.

K-group A* [21] extends Sweep-A* [19] and uses quasi-natural gap costs.
In difference to our approach that takes Jones,Taylor and Thorton’s PET-91
matrix, the authors applied Dayhoff’s PAM-250 matrix with gap opening cost
of 20 and gap-extension cost of 8 (where we used gap opening costs of 8 and
extension costs of 9 as in [15]). Therefore, the optimal costs of IDDP variants
with K-group A* and the OMA program by [14] that applies the same cost
function in Table 4 do not match. Moreover, the algorithms were run on 300 and
400 MHz systems. Nonetheless, the comparison shows that IDDP does challenge
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OMA 5-Group A* IDDP Ext-IDDP

1aboA 10,674 973 10,674 199 10,665 8 10,665 15
1aho 9,807 6 9,807 0 8,828 0 8,828 0
1hfh 19,208 23 19,208 3 17,628 2 17,628 9
1idy 9,542 3 9,508 45 8,637 3 8,637 10
1krn 11,409 3 11,409 0 10,302 0 10,302 1
1pfc 17,708 19 17,708 3 15,843 0 15,774 5
1plc 14,205 4 14,195 0 12,745 0 12,745 3
2mhr 16,687 4 16,687 0 14,765 0 14,765 3
451c 13,364 200 13,364 74 12,171 1 12,171 8

Table 4. Comparison with other quasi-natural gap cost sequence alignment solvers
(costs in units, time in seconds).

the state-of-the-art for quasi-natural gap costs and the externalization does not
loose much of its efficiency.

6 Conclusion and Discussion

We have presented two externalizations of IDDP. As expected, the brute-force
externalization is less time and space efficient. As there are more edges than
nodes, outsourcing the nodes only does not pay off. For the buffered externaliza-
tion in which edges are also externalized, we established a memory gain even for
small instances. As the heap is no more needed, an additional space advantage
is obtained.

Out of the 82 BAliBASE (Reference 1) entries, only 1pamA remained un-
solved within the slot of two weeks time. The process terminated with a hard
disk consumption of 41 gigabytes. We have to resume the exploration given that
all information is saved in the current threshold and the generated layers on
disk. In order to keep the RAM requirements small for less complex problems,
we have used small buffers. As a consequence for solving 1pamA the buffer size
has to be enlarged in further experiments.

The question for the user is, whether time or space is his crucial resource. If
there is not much time and considerable RAM he should first use internal IDDP.
If the system still starts swapping, a buffered version with large buffers should
be tested. If there is much time and less space, smaller buffers can be used.

As for the MSA problem both time and space are critical resources, the
next step will be to distribute external IDDP among different processors. As the
order of expansion in one layer is arbitrary, by the virtue of delayed duplicate
detection, we expect almost linear speed-ups. We will also study file compression
schemes to save space.

Besides parallelization, in the future we will look closer at variants that show
anytime behavior. An anytime divide-and-conquer heuristic search algorithm
that splits the sequences has been applied together with several other accelera-
tion techniques by [14]. The method is adaptive in that depending on the time
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one wants to spend on the alignment, a better (up to an optimal alignment) can
be obtained.
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Abstract. The paper addresses an underspecified spatio-temporal planning 
problem, which encompasses weakly specified constraints such as different 
kinds of activities together with corresponding spatial assignments such as 
locations and regions. Alternative temporal orders of planed activities together 
with underspecified spatial assignments available at different levels of 
granularity lead to a high combinatorial complexity of the given tour planning 
problem. The proposed Region-based Direction Heuristic resembles the human 
spatial problem strategies such as regionalization as well as operation on 
different levels of abstraction. The paper introduces a cognitively motivated 
approach for efficient generation of alternative solutions. The produced 
alternative solutions meet user’s anticipation, i.e., cognitive optimization 
criteria such as correspondence to abstract high-level plans. 

Motivation 

Constraint satisfaction is a widely accepted technology for dealing with complex 
combinatorial problems that gained much attention in such scientific fields like 
scheduling, planning, and configuration. Constraint satisfaction is based on the logical 
programming paradigm: “the user states the problem, the computer solves it” 
(Freuder, 1997). Therefore, the problem solving process is usually hidden from the 
user. Yet, there exists a variety of real-world problems, where an exact definition of 
constraint satisfaction criteria is difficult due to the missing knowledge of a user about 
the problem domain. An example of such type of problems is an underspecified 
spatio-temporal planning task like planning of an individual journey to a foreign 
country. 

For the illustration we consider planning of an individual journey to Crete, a 
famous holyday island in Greece. Let the journey be constrained in time – say, 14 
days, and involve different activity types, such as hiking, water sports and 
sightseeing. Our traveler visits Crete for the first time in her life and wants to rent a 
car and to enjoy swimming at beautiful sea coasts of Crete, hiking in natural parks 
and visiting different sightseeing attractions. Additional constraints involve activities 
such as hiking in widely known Samaria Gorge and visiting the famous sightseeing 
attraction the ancient Venetian harbor in Chania. To define her activities the traveler 
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has to deal with a variety of alternative locations that can be visited during the trip 
together with different options regarding the activity types. The goal of the illustrated 
spatio-temporal planning task is to select an appropriate set of activities which take 
place at different locations and put them into a feasible temporal order under 
consideration of constraints regarding specific activity types, temporal scope of a 
journey and partially defined locations.  

The exemplified spatio-temporal planning problem can be represented as a set of 
partially constrained activities. Each activity involves an activity type, duration and a 
location. In other words, our traveler may have certain idea regarding the activity 
types she wants to pursuer or locations she wants to visit. Yet, especially in the early 
tour planning stage, most of the activity types are not assigned to specific locations. 
An assisting constraint satisfaction system should complete the underspecified data by 
finding alternative values for activity types and locations and an appropriate order of 
activities which fit into the temporal scope of a journey.  

Weakly specified constraints contribute to a high combinatorial complexity of the 
problem and a large number of alternative solutions. Observation of all possible 
feasible solutions is a cognitively demanding task (Knauff et al., 2002). Therefore, 
when dealing with the addressed underspecified planning problems we have to 
consider the following two aspects: a) computational complexity when searching for 
all feasible solutions exhaustively, b) a huge solution space. 

The paper introduces a cognitively motivated approach for dealing with 
underspecified spatio-temporal planning problems. The Region-based Direction 
Heuristic is proposed, which allows for efficient generation of alternative solutions. 
The proposed heuristic resembles the human spatial problem strategies such as 
regionalization (clustering) as well as operation on different levels of abstraction 
(Hayes-Roth & Hayes-Roth, 1979; Wiener & Mallot, 2003; Seifert, to appear) and 
allows for pruning of the significant parts of the problem space. The solutions 
generated in this vain meet the cognitive optimization criteria, which are derived from 
the psychological findings as well as empirical results discussed in this paper.  

Definition of the underspecified spatio-temporal planning problem 

Let V be the set of locations (vertices), where activities can take place and E be the 
set of edges between the locations in V. Then G = {V, E} is a complete graph. Each 
location i in V is associated with an activity type at, such as for example sightseeing, 
hiking or swimming.  

Each edge in E has symmetric, nonnegative cost cij associated with it, where cij is 
the distance between location i and location j, or cij is the cost of traveling between 
the two locations.  

The spatio-temporal planning problem involves finding alternative orders of 
activities, further defined as tours, which are specified by a set of activity constraints 
AC = {ac1,…, acn}. An activity constraint is represented as ack = (dck, atck, sak), 0< k 
≤ n, where the number of activity constraints corresponds to the number of the 
resulting activities, dck is an activity duration constraint, atck is an activity type 
constraint and sak is a spatial assignment. An activity type constraint involves a set of 
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optional activity types, for example hiking or swimming. A spatial assignment can be 
defined as a specific location, or as a location from a set of selected locations. The 
duration constraints of the corresponding activities as well as the start, the end 
location and the temporal bound Tmax have to be defined by a user. 

The resulting tours consist of alternative orders of activities. Each activity is 
represented as ak = (dk, atk, lk), 0< k ≤ n, where n is total number of activities, dk a 
duration, atk is a type, and lk is a location of an activity. The locations in each 
resulting tour should be all different from each other and the total time taken to visit 
locations cannot exceed a specified limit Tmax. 

Related problems 

In the past forty years much scientific effort has been put into the research of the 
related complex combinatorial problems such as the Traveling Salesman Problem 
(TSP), Generalized TSP, Orienteering Problem (OP), as well as different variants of 
such optimization problems (e.g. the one-period bus touring problem, Deitch & 
Ladany, 2000).  

The classical Traveling Salesman Problem involves finding an optimal route 
between specified destinations, where each of the destinations can be visited only 
once. Since in our case the destinations are specified partially by specific activity 
types, the addressed spatio-temporal planning problem has a closer relation to the 
Orienteering Problem. The OP considers vertices, which have nonnegative rewards 
and aims at finding a set of destinations, which bring the greatest reward requiring the 
total path cost not exceeding a given bound. Due to the high combinatorial 
complexity of the OP many heuristic methods have been proposed in the area of 
Operations Research (e.g. Tsiligirides, 1984; Chao et al., 1996; Tasgetiren, 2002). 
Recently, the algorithms for solving OP have been utilized for solving Over-
Subscribed Planning problems, such as planning of scientific experiments performed 
for example by an autonomous system such as a Mars rover. Due to certain 
limitations such systems can achieve only a subset of possible goals. The OSP 
problems aim at finding an optimal plan for an unmanned Mars rover, which brings 
the greatest reward from a set of possible goals (e.g., Smith, 2004). 

The addressed underspecified spatio-temporal planning problem has a close 
relation to the OP and OSP problems, since in both cases specific limitations like a 
predefined temporal bound have to be taken into consideration. However, the 
algorithms providing solutions to the OP and OSP problems aim at finding an optimal 
set of goals, where the goal rewards are independent from each other. In our case, the 
assistance system has to provide alternative tours, which fulfill logical constraints on 
specific activity types and spatial assignments, which means that a set of goals are not 
independent, but have to fulfill certain logical constraints. Such dependency cannot be 
easily transformed into weighted rewards, which are used for optimization in the 
described OP and OSP problems.   

Most of the algorithms for the optimization problems generate a large number of 
solutions to select the best among them as a result. The first idea that comes to mind 
is to take the solutions produced so far and test if they fulfill the logical constraints. 

Seite 70

schatten
Rechteck



4      Inessa Seifert 

Yet, since during the search procedure only those locations are selected, which 
contribute to the improvement of the current optimal state, this approach would lead 
to gaps in the solution space. Such unexpected gaps in the solution space can make a 
user insecure in terms of system’s reliability. 

The state of the art planning algorithms deal with problems that have clear 
quantitative optimization criteria, whereas the requirements on the solutions produced 
by the addressed spatio-temporal assistant system are different. First, the solutions 
have to be generated efficiently, to avoid long response times of the system. Second, 
the generated set of feasible solutions should be acceptable for the user, which means 
the solution space should be transparent to the user and should preferably not contain 
any unexpected gaps. In the following, we are going to grasp the usability 
requirements on the assistance system by proposing a cognitively motivated approach. 

Cognitively motivated approach 

When provided with a map and information about possible activities people are 
able to solve weakly specified planning problems without any help of an artificial 
system. However, depending on the size of a map and information available, people 
need a significant amount of time to produce a single or a limited number of 
alternative solutions. An important requirement on the assistance system is to respond 
to a weakly specified user input by proposing a set of acceptable solutions, which can 
be easily examined and understood by a user. The main idea of the proposed 
cognitively motivated approach is to utilize cognitive principles used by humans to 
generate solutions efficiently that fulfill the requirements described above.  

The following figure (Fig. 1) illustrates the relation between the entire solution 
space, the solution space produced by humans, and the solution space generated by 
the assistance system. 

entire solution space human solution space

solution space produced by the assitance system 
Fig. 1. Solution space: human and assistance system 

The entire solution space contains all possible solutions to a given underspecified 
planning problem. The proposed heuristics uses optimization criteria, which aim at 
minimizing the difference between the human-like solution space and the solution 
space produced by the assistance system. 
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In the next section we introduce empirical findings regarding human problem 
solving strategies, in order to derive the cognitive principles and optimization criteria, 
which are going to be formalized and applied to the generation procedure.  

Human spatial problem solving strategies 

Human cognitive processing of information is considered to be model-based. A 
mental model is a symbolic representation, which integrates information from all 
senses and from general knowledge and simulates a possible situation in the world 
(Johnson-Laird, 1983). Such models consist of a finite number of interrelated items, 
or informational units, and the basic processes that operate on them. Knauff et al. 
(1995) have shown that when reasoning about underspecified temporal relations, 
where many alternative solutions were possible, only few were mentally constructed 
and utilized for subsequent reasoning. The subset of solutions constructed by the 
humans has been called Preferred Mental Models (PMM). 

Various psychological findings and experimental studies regarding mental spatial 
knowledge representation provide evidence that humans operate on a hierarchically 
organized, topologically interrelated, loosely coupled knowledge fragments. In the 
literature spatial mental knowledge representation are denoted as cognitive maps (e.g, 
Hirtle, 1998), cognitive collages and spatial mental models (Tversky, 1993).  

Wiener & Mallot (2003) showed that hierarchically structured, i.e., regionalized, 
large-scale environments facilitate navigation and route-planning tasks. In 
regionalized environments subjects’ knowledge representations contained different 
levels of granularity, such as places and regions, as well as so called connectivity 
relations between regions. Such representations helped to reduce the memory load 
and contributed to a better performance in route-planning and navigation tasks. The 
addressed study revealed an interesting behavioral phenomenon. In the scope of the 
study the participants had to visit multiple targets situated in different regions. The 
tracks of the resulting routes have shown that people navigated from one region to 
another, visiting the targets within a region and then moving to the next one, and 
avoided returning back to already visited regions.  

Based on the assumptions, that (1) mental knowledge is hierarchical, (2) regions 
help to solve spatial problems more efficiently, and (3) humans avoid visiting the 
same region twice, we conducted an exploratory study to identify the cognitive 
principles utilized for planning of activities in advance using a geographical map. The 
first results of the study have been introduced in (Seifert, to appear). The next section 
provides a brief overview of the study and its results. 

Tour planning study 

The participants of the study were provided with a map of Crete, which included 
topographical information together with symbols for different activity types annotated 
to the corresponding locations. The participants of the study were asked to produce a 
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plan of a journey for two imaginary friends, draw the solution on the maps and 
describe their decision steps on an additional sheet of paper. 

The study revealed that the participants utilized hierarchical spatial problem 
solving strategies operating on different levels of granularity to solve the spatial 
planning task efficiently. The identified strategies involved structuring of a map into 
regions and imagining a circle or an ellipse that helped to put regions as well as 
locations to be visited in a particular order (Seifert, to appear). 

Region-based Direction Heuristic 

In our previous works we introduced the Region-based Representation Structure, 
which allows for definition of spatial constraints at different levels of granularity, for 
example as super-ordinate regions, activity regions or locations (Seifert et al, 2007). 

Locations are associated with specific activity types and represent nodes of the 
graph, which are connected with each other via edges carrying distance costs. Activity 
regions contain locations, which share specific properties, like the user’s requirements 
on activity types, which can be accomplished in that region. Super-ordinate regions 
divide a given environment into several parts. The structuring principles for super-
ordinate regions are based on the empirical findings regarding mental processing of 
spatial information (e.g., Lyi et al., 2005; Tversky, 1993; Hirtle, 1998). The RRS 
includes topological relations: how different locations are connected with each other. 
Containment relations between locations, activity regions, activity regions and super-
ordinate regions are represented as part-of relations. Such spatial partnomies (Bittner 
& Stell, 2002) allow for specifying spatial constraints and reasoning about spatial 
relations at different levels of granularity. The RRS includes neighboring relations 
between corresponding super-ordinate regions, which resemble the region 
connectivity identified by Wiener & Mallot (2003). The neighboring relations 
between the super-ordinate regions as well as edges between locations are 
supplemented with the 8 cardinal direction relations (East, South, North, West, North-
East, North-West, South-East, South-West), in order to apply the proposed Region-
based Direction Heuristic. In the following section we demonstrate our approach 
using a simple tour planning example.   

Tour planning example 

The original constraints involve an overall scope of the journey of 14 days. Our 
traveler begins and ends her journey at the international airport in Chania. The 
traveler wants to spend 2 days in Chania, to enjoy the sight of the Venetian harbor, 
and spend 3 days for hiking in the Samaria Gorge. She plans 2 days for visiting 
several sightseeing attractions in the Northern Coast, and plans 3 days for hiking in 
some other Cretan natural park. The rest 4 days of her journey are left unspecified 
(see Fig. 2).  
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Chania SitiaHeraklion

Samaria Gorge

North

South

EastWest

sightseeing
attractions

 
Fig. 2. Spatial constraints of an individual journey to Crete. 

 
The set of the partially specified activity constraints can be defined as follows: 

AC={ac1(2, ?, Chania), ac2(3, ‘hiking’, Samaria Gorge), ac3(2, ‘sightseeing’, set of 
locations at the Northern Coast ), ac4(3, ‘hiking’, ?), ac5(4, ?, ?)}. The symbol ‘?’ 
stands for an unspecified value. 

To solve spatial planning problem efficiently people generate an abstract plan, 
which involves various types of activities, priorities and a representation of an 
environment at different levels of granularity (Hayes-Roth, Hayes-Roth, 1979; 
Wiener & Mallot, 2003). Accordingly, the generation procedure for alternative 
solutions involves two levels of abstraction. 

The first step of the proposed cognitively motivated approach is to generate a set of 
abstract plans, consisting of various orders of neighboring super-ordinate regions. 
Each of the produced orders of the neighboring super-ordinate regions has to fulfill 
the specified constraints regarding the activity types and locations to be visited.  

The second step should be performed for each valid abstract plan. The Region-
based Direction Heuristic utilizes the direction relations between the neighboring 
super-ordinate regions of an abstract plan. For example, since the journey starts in the 
super-ordinate region R1 (Chania), one of the abstract plans contains tours that go 
through R2, R3, R4, R5, R6 returning to R1 (see Fig. 3).  

 

R5R6
R1

R2 R3 R4

 
Fig. 3. Example abstract plan: order of super-ordinate regions. 

The following figure (Fig. 4) illustrates cardinal direction relations between the 
neighboring super-ordinate regions. The edges between different locations, which 
represent nodes of the graph, are also supplemented with cardinal direction 
information between the corresponding nodes. 
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R2

R1

R3

1
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0
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34
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n´
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n´ n´
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n´

 
Fig. 4. Direction deviation cost depends on the abstract plan: direction relations between the 

super-ordinate regions. 

In the following, we describe the Region-based Direction Heuristic for the A* 
forward search algorithm. A* employs an additive evaluation function f(n) = g(n) + 
h(n), where g(n) is the cost of the currently evaluated path from the starting node s to 
the current node n and h is a heuristic estimate of the cost of the path remaining 
between n and some goal node. In our case, the heuristic estimate depends on an 
abstract plan. Returning to the illustrated tour planning example, the direction relation 
between the neighboring super-ordinate region R1 and R2 is for example South, 
correspondingly the direction relation between the super-ordinate regions R2 and R3 
is East. The heuristic estimate h is a deviation cost of the direction relation between 
the current node n and n´, from the direction relation between the corresponding 
super-ordinate regions. In other words, each deviation from the main course of a tour 
has a greater value. For example, if the main direction between R2 and R1 is South, 
the direction deviation costs according to the direction relation between n and a 
successor n’ would be South=0, South-East=1, South-West=1, East=2, West=2, North-
East=3, North-West=3, and finally, if n´ lies in the opposite direction North, the 
heuristic estimate receives the greatest “penalty” value North=4 (see Fig. 4). 

The classical A* forward search procedure keeps expanded nodes in a list of paths, 
further called Routes. Currently optimal path is kept in Pathmin. 

 
1. Put the start node s as a first path on a list of Routes with 0 as a solution cost. 
2. Select from the Routes a path with the minimal solution cost, further Pathmin. 
3. If Pathmin reached the final destination and all activity constraints are fulfilled, 

return the result, if not - fail. 
4. For all nodes n´ sharing an edge with the last node n of the Pathmin repeat the 

following procedure: 
a. Nodes n and n´ belong to the same super-ordinate region, or n´ belongs 

to the next super-ordinate region of the plan. 
b. If n´ belongs to the next super-ordinate region of the plan, check if the 

constraints regarding the executed part of the abstract plan are fulfilled. 
For example, all spatial assignments which belong to the visited super-
ordinate regions have to be included in the current path. 

c. Calculate the heuristic estimate from the abstract plan and current edge 
direction relation and add it the solution cost of the path. 
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d. If n´ is already on the path, add additional loop cost to the solution cost. 
e. Add the distance cost from n to n´ to a path cost. 
f. Check if a path cost doesn’t validate the temporal scope Tmax. 
g. Add the node n with the corresponding solution cost to a list of Routes.  

5. Go to the step 2. 
The accumulated value of the evaluation function represents a solution cost 

measure, which indicates, how good a tour fits into a given abstract plan, i.e., meets 
the cognitive optimization criteria.  

The proposed heuristic prunes not only significant parts of the problem space, but 
also generates tours that avoid detours to already visited super-ordinate regions. 
Solutions generated in this vain are inline with the empirical findings presented in the 
section, which describes the human problem solving strategies.   

The algorithm has been implemented in the logical programming language 
PROLOG. To improve the computational performance of the generation procedure 
we limited the number of Routes, i.e., the size of the tree with the expanded nodes and 
the number of possible loops. This paper reports the early results on implementation 
of the proposed Region-based Directions heuristic. In the future, we are going to 
assess the quality of the produced solutions according to the abstract plans given to 
the system.  

Conclusion 

In the scope of the paper we introduced a Region-based Direction Heuristic, which 
prunes significant parts of the problem space, when generating solutions for 
underspecified spatio-temporal planning problems. The proposed heuristic resembles 
human spatial planning strategies and searches for a cognitive optimum, i.e. 
correspondences to abstract plans, consisting of alternative orders of super-ordinate 
regions. The assistance system produces a set of solutions which avoid detours 
between super-ordinate regions. Due to the hierarchical structure of the solution 
space, the produced tours can be easily communicated to a user, since it suits the 
hierarchical principles of mental processing of spatial information.  

In our previous work (Seifert, 2006) we introduced a collaborative assistance 
approach, which provides a user with operations to modify solutions by relaxation and 
specification of constraints. Herewith, the proposed generation procedure serves as a 
starting point for a further collaborative search for an improved solution. The 
operations for modification of produced tours complement user’s reasoning 
capabilities and allow for moving from human-like solutions towards unexplored 
parts of a solution space. 
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Zusammenfassung In wissensbasierten Konfigurierungssystemen wer-
den Komponenten zur Constraint-Verarbeitung für die Verwaltung von
Abhängigkeiten während des Konfigurierungsprozesses eingesetzt. Die
Effizienz von Constraint-Lösungsverfahren ist allerdings stark proble-
mabhängig. Zudem kann es aufgrund einer Vielzahl unterschiedlicher
Domänen und der Vielfältigkeit der Anwendungsszenarien notwendig
werden, an die jeweilige Domäne angepasste Constraint-Lösungsverfah-
ren einzusetzen. Zur Behandlung von unterschiedlichen Constraint-Do-
mänen innerhalb des strukturbasierten Konfigurierungswerkzeugs Eng-

Con sind Constraint-Solver sowohl für finite als auch infinite Domänen
erforderlich. Die Steuerung muss durch eine Komponente geleistet wer-
den, mit der sich unterschiedliche Constraint-Solver je nach Bedarf und
domänenspezifisch einsetzen lassen. Die Modularität ist dabei entschei-
dend für die Austauschbarkeit einzelner Komponenten. Es stellt daher
einen sinnvollen Ansatz dar, ein modulares Constraint-Framework ein-
zusetzen, in das je nach Bedarf, und dem in der jeweiligen Wissensba-
sis definiertem Problem, unterschiedliche Constraint-Solver mit jeweils
für das spezifische Problem effizienten Lösungsverfahren eingesetzt wer-
den können. Das Framework wird durch einen strategiebasierten Ansatz
unterstützt, der eine flexible Kooperation unterschiedlicher Constraint-
Lösungsalgorithmen erlaubt.

Key words: Wissensbasierte Konfigurierung, Konfiguration, Constraint
Satisfaction Problem, Constraint-Solver, Java-Framework, finite, infini-
te, diskrete, kontinuierliche Domänen, reellwertige Intervalle

1 Motivation

Für die Konfigurierung variantenreiche Produkte lassen sich von Konfigurie-
rungswerkzeugen mit unterschiedlichen wissensbasierten Methoden aus einzel-
nen Komponenten komplexe Aggregate erstellen. Constraints1 sind ein Mittel

1 constraint (engl.): Einschränkung, Beschränkung, Restriktion
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zur Repräsentation von Abhängigkeiten zwischen den Komponenten einer Kon-
figuration (vgl. [11], [23], [25]).

Wissensbasierte Konfigurierungswerkzeuge verwenden Constraints zur Be-
schreibung von Abhängigkeiten zwischen Konzepten der Wissensbasis [19]. Die
Auflösung der Abhängigkeiten wird von integrierten Constraint-Systemen ver-
waltet [26]. Die eingesetzten Constraint-Solver hingegen werden üblicherweise
nicht innerhalb des eigenen Systems implementiert, sondern sondern sind von
Fremdherstellern eingebundene externe Komponenten. Diese weisen häufig Ei-
genschaften auf, die den Einsatz innerhalb eines wissensbasierten Konfigurie-
rungssystems einschränken. Zudem ist die Anbindung an das Konfigurierungs-
system in der Regel auf einen einzigen Constraint-Solver beschränkt und damit
sehr unflexibel.

Benötigte Constraint-Solver müssen arithmetische Funktionen zur Berech-
nung von intensional in Form von algebraischen Ausdrücken formulierten Con-
straints bieten. Neben klassischen Constraint-Solvern zur Behandlung von fini-
ten Domänen sind für die Constraint-Verarbeitung in wissensbasierten Konfi-
gurierungswerkzeugen Constraint-Lösungsmethoden für infinite, d. h. reellwerti-
ge Intervalldomänen erforderlich. Entsprechende Constraint-Solver müssen eine
hohe Präzision durch Intervallarithmetik aufweisen (z. B. für Anwendungen im
Maschinenbau) sowie unabhängig von der Constraint-Domäne ein inkrementell
anwachsendes Constraint-Netz propagieren können.

Darüber hinaus ergeben sich Anforderungen an den Constraint-Lösungsme-
chanismus häufig in Abhängigkeit von der Aufgabenstellung des jeweiligen Konfi-
gurierungsproblems. Neben stabilen Constraint-Lösungsverfahren, die eine hohe
Effizienz für möglichst viele Problemstellungen bieten, ist es deshalb erforder-
lich, problemabhängig unterschiedliche Verfahren nutzen zu können. Benötigt
wird eine Komponente, an der sich flexibel unterschiedliche Constraint-Solver
mit verschiedenen Eigenschaften, sowohl bezogen auf die Lösungsverfahren als
auch auf die zu verarbeitenden Wertedomänen, einbinden lassen.

Die vorliegende Ausarbeitung gliedert sich in die folgenden Anschnitte: Nach
einer kurzen Einführung in die wissensbasierte Konfigurierung mit EngCon in
Abschnitt 2 werden in Abschnitt 3 die benötigen Methoden zur Constraint-
Verarbeitung vorgestellt. In Abschnitt 4 wird das Konzept für ein hybrides Con-
straint-Framework entwickelt. Anschließend wird in Abschnitt 5 eine Übersicht
über verwandte Arbeiten gegeben. Die Ausarbeitung endet in Abschnitt 6 mit
einer Zusammenfassung und einem Ausblick.

2 Wissensbasierte Konfigurierung mit EngCon

Wissensbasierte Konfigurierungssysteme nutzen deklarativ und explizit repräsen-
tiertes Wissen, um komplexe Konfigurierungsaufgaben zu lösen oder Experten
bei der Lösung einer Konfigurierungsaufgabe zu unterstützen. Sowohl EngCon

[19] als auch dessen Vorläufer PlaKon [5] und KonWerk [10] sind in erster Li-
nie strukturbasierte Konfigurierungswerkzeuge. Der Schwerpunkt dieser Systeme
liegt auf einem begriffshierarchie-orientierten Kontrollmechanismus. Zusätzlich
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Ein hybrides Framework für Constraint-Solver 3

kommen weitere Inferenzmechanismen zum Einsatz, wie z. B. ein ausgereiftes
Constraint-System.

Der Schwerpunkt von EngCon liegt im Gegensatz zu klassischen Systemen
nicht auf Inferenzen, die aufgrund von Expertenregeln gebildet werden (

”
regel-

hafte Expertise“), sondern auf Inferenzmechanismen, die aufgrund der wissens-
basierten Architektur der Domäne angewendet werden. Zur Repräsentation des
Objektwissens der Domäne wird in EngCon eine framebasierte Repräsentation
verwendet, die die zusammengefasste Spezifikation der Objektstruktur, der Ei-
genschaften und möglichen Belegungen in einer sog. Begriffshierarchie innerhalb
der Wissensbasis ermöglicht. In einer Ontologie stehen hier die Konzepte über is-
a- und has-parts-Relationen in taxonomischen und partonomischen Hierarchien
zueinander in Beziehung.

Die Art des Vorgehens bei der Lösung des Konfigurierungsproblems wird
durch den strukturbasierten Konfigurierungsansatz anhand der Struktur der
Konfigurierungsobjekte innerhalb dieses Domänenmodells definiert. Zur Erstel-
lung einer Konfiguration werden die Konfigurierungsschritte Zerlegung (Instanti-
ierung der Bestandteile eines Aggregates), Spezialisierung (

”
Verfeinerung“ einer

Instanz zu einer spezielleren Instanz) und Parametrierung (Setzen bzw. Ein-
schränken der Wertebereiche von Objekteigenschaften) eingesetzt [19].

Die Wissensbasis von EngCon ist eine flexibel austauschbare, deklarative
Beschreibung, d. h. für jede Anwendung kann spezielles Wissen definiert und
eingebunden werden. EngCon ist dadurch domänenunabhängig und kann durch
einen Austausch der Wissensbasis beliebige variantenreiche Komponenten kon-
figurieren.

Eine Besonderheit von EngCon ist der inkrementell und interaktiv verlau-
fende Konfigurierungsprozess. Am Ende einer strukturbasierten Konfigurierung
steht immer genau eine Lösung. Im Gegensatz zu anderen Konfigurierungswerk-
zeugen, die häufig eine Breitensuche vornehmen und abschließend alle gefun-
denen Lösungen präsentieren, findet während der Konfigurierung mit EngCon

eine benutzergesteuerte Tiefensuche statt, mit dem Ziel, interaktiv eine für den
Benutzer geeignete Lösung zu finden.

3 Constraints

Die Verwendung von Constraints ist eine vielfach eingesetzte Methode zur Re-
präsentation und Auswertung von Abhängigkeiten. Durch Constraints werden
Relationen zwischen (Constraint-)Variablen definiert. Neben der Definition sol-
cher

”
Beschränkungen“ werden Constraints eingesetzt, um die Werte von Varia-

blen dynamisch den Anforderungen der Constraints entsprechend anzupassen.
Constraints sind in diesem Sinne Randbedingungen, welche die Konsistenz der
Variablenwerte in einem System sicherstellen [26].

3.1 Finite-Domain-Constraints

Das allgemeine Constraint Satisfaction Problem (CSP) bezeichnet eine Klasse
von kombinatorischen Problemen, die mittels einer Menge von Randbedingungen
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4 Wolfgang Runte

bzw. Constraints über eine Menge von Variablen formuliert werden. Die Aufgabe
besteht darin, eine wohlgeformte Belegung für eine endliche Menge von Variablen
zu finden. Wohlgeformt bedeutet in diesem Fall eine konsistente Belegung der
Variablen mit Werten, so dass alle Randbedingungen erfüllt werden [7].

Definition 1. (Constraint Satisfaction Problem, CSP)
Ein Constraint Satisfaction Problem wird durch ein Tripel (V,D,C) beschrieben,
wobei V = {v1, . . . , vn} eine endliche Menge von Variablen mit assoziierten
Wertebereichen D = {D1, . . . , Dn} mit {v1 : D1, . . . , vn : Dn} ist. C ist eine
endliche Menge von Constraints Cj(Vj), j ∈ {1, . . . ,m}, wobei jedes Constraint
Cj(Vj) eine Teilmenge Vj = {vj1 , . . . , vjk

} ⊆ V der Variablen zueinander in
Relation setzt und deren gültige Wertekombinationen auf eine Teilmenge von
Dj1 × · · · × Djk

beschränkt.

Klassischerweise bezieht sich die Literatur bei der Definition von CSPs häufig
auf eine strengere Form, in der die Domänen der Variablen aus diskreten, end-
lichen Mengen (engl. finite domains, FD) bestehen (vgl. [28], [17]).

Definition 2. (Finite Constraint Satisfaction Problem, FCSP)
Sei P = (V,D,C) ein CSP. Wenn die Domäne Di jeder Variablen vi ∈ V dis-
kret und endlich ist, wird P ein Finite Constraint Satisfaction Problem (FCSP)
genannt.

Weil bei einem FCSP die Wertebereiche der Variablen endlich sind, ist auch
der Lösungsraum endlich. Die Anzahl der möglichen Lösungen ergibt sich wie-
derum aus dem kartesischen Produkt aller Wertebereiche D1 × · · · × Dn. Die
Kardinalität dieser Menge, und entsprechend auch der Aufwand zur Berechnung
dieser möglichen Lösungen, wächst exponentiell mit der Anzahl der Variablen.

3.2 Intervall-Constraints

Neben klassischen CSP über finite Domänen stellt sich für die Constraint-Ver-
arbeitung in wissensbasierten Konfigurierungssystemen das Problem der Be-
handlung von reellwertigen algebraischen Constraints. Die Wertebereiche der
Constraint-Variablen werden hier als Ober- und Untergrenzen von reellwerti-
gen Intervallen definiert, zwischen denen sich unendlich viele, nicht abzählbare
Elemente befinden [2]. Diese Wertebereiche werden deshalb auch kontinuierlich
genannt.

Intervall-Constraints werden z. B. eingesetzt, wenn unscharfe Informationen
behandelt werden müssen, d. h. wenn das Wissen über Parameter nur in Form
eines Werteintervalls bekannt ist, oder wenn die Aufzählung aller Lösungen nicht
möglich ist, da unendlich viele existieren.

Im Gegensatz zu diskreten, endlichen Wertebereichen, für die Konsistenz-
und Lösungsalgorithmen die einzelnen Werte in den Domänen der Constraint-
Variablen mittels kombinatorischer Methoden aufzählen und auf Zugehörigkeit
zu den Constraint-Relationen überprüfen können, lässt sich im Fall von reellwer-
tigen Intervallen nicht für jeden einzelnen Wert bestimmen, ob er als konsistente
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Ein hybrides Framework für Constraint-Solver 5

Belegung geeignet ist. Während CSPs über endliche Domänen zur Klasse der
NP-vollständigen Probleme zählen, sind CSPs über unendliche Domänen un-
entscheidbar. Daher werden hier durch Konsistenz- und Suchverfahren lediglich
die Ober- und Untergrenzen der Intervalle überprüft bzw. angepasst, so dass
inkonsistente Werte ausgeschlossen werden (vgl. [4], [6], [14], [16], [3]).

Definition 3. (Intervall Constraint Satisfaction Problem, ICSP)
Ein Intervall Constraint Satisfaction Problem wird durch ein Tripel (V, I, C) be-
schrieben. Neben den die Menge der Constraints C beschränkenden Variablen
V = {v1, . . . , vn} wird eine Menge von Intervallen I = {I1, . . . , In} als Wer-
tebereiche der Variablen mit {v1 : I1, . . . , vn : In} definiert. C ist die endliche
Menge von Constraints Cj(Vj), j ∈ {1, . . . ,m}. Jedes Constraint Cj(Vj) setzt
eine Teilmenge Vj = {vj1 , . . . , vjk

} ⊆ V zueinander in Relation, und beschränkt
den Lösungsraum der involvierten Variablen auf eine Teilmenge des kartesischen
Produkts Ij1 × · · · × Ijk

von k Subintervallen.

Das kartesische Produkt mehrerer Intervalle wird aus geometrischen Gründen
auch kurz Box genannt. Ziel ist es, eine Menge n-stelliger, möglichst kanonischer
Boxen zu isolieren, die den Lösungsraum des CSP approximieren, ohne gültige
Lösungen zu verlieren. Jede n-stellige Box approximiert jeweils eine mögliche
Lösung des CSP. Eine Box wird

”
kanonisch“ genannt, wenn sie aus Intervallen

besteht, deren Grenzen entweder jeweils dieselben oder direkt aufeinander fol-
gende Zahlen sind, d. h. wenn sie möglichst punktgenaue Lösungen darstellen.
Um dies zu erreichen wird mittels Such- und Konsistenztechniken sowie ma-
thematischer Verfahren durch den Raum navigiert, der durch das kartesische
Produkt I1 × · · · × In aufgespannt wird [2].

4 Das YACS-Framework

Zur Behandlung unterschiedlicher Constraint-Domänen innerhalb eines wissens-
basierten Konfigurierungswerkzeugs ist eine Kooperation von mehreren Con-
straint-Solvern erforderlich. Diese Kooperation muss durch eine Komponente
geleistet werden, mit der sich unterschiedliche Constraint-Solver je nach Bedarf
und domänenspezifisch einsetzen lassen. Die Modularität des Systems ist dabei
entscheidend für die Austauschbarkeit einzelner Komponenten. Die Constraint-
Komponente muss im Detail die folgenden Anforderungen erfüllen:

– Das System muss eine modulare Architektur und einheitliche Schnittstellen
für unterschiedliche Lösungsverfahren aufweisen.

– Constraint-Lösungsverfahren müssen sich flexibel einbinden und problemab-
hängig austauschen lassen.

– Das System muss hybrid sein, d. h. neben finiten Domänen müssen infinite
Domänen in Form von reellwertigen Intervallen unterstützt werden.
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6 Wolfgang Runte

– Der inkrementelle Aufbau des Constraint-Netzes innerhalb einer interaktiv
durchgeführten, wissensbasierten Konfigurierung muss unterstützt werden.

Der im folgenden Vorgestellte Ansatz ermöglicht die flexible Kooperation und
Kombination von Lösungsalgorithmen zu Constraint-Solvern mit neuen oder er-
weiterten Eigenschaften. Der Name YACS steht dabei für Yet Another Con-
straint Solver . YACS ist allerdings mehr als nur ein einzelner Constraint-Solver.
Es bezeichnet vielmehr ein hybrides System für den flexiblen Einsatz von Con-
straint-Lösungsverfahren für finite und infinite Domänen. Sie sind eingebettet
innerhalb einer modularen Framework-Architektur.

4.1 Der Framework-Ansatz

Durch das Aufkommen von objektorientierten Sprachen und objektorientierter
Programmierung (OOP) entstanden Ansätze, welche verstärkt die Steigerung
der Wiederverwendbarkeit von einmal entwickelten Software-Komponenten zum
Ziel hatten [15]. Im Besonderen sind dies objektorientierte Software-Frameworks,
in denen ein Rahmenwerk und eine Architekturhilfe für die Bewältigung eines
bestimmten Aufgabenspektrums bereitgestellt wird [8]. Objektorientierte Con-
straint-Frameworks im Speziellen dienen dazu, OOP-Sprachen und Techniken
zur Constraint-Verarbeitung zu verbinden und in unterschiedlichen Szenarien
nutzbar zu machen. Ein Constraint-Framework ist eine Möglichkeit, Constraints
als Inferenz-Mechanismus unabhängig von einer konkreten Domäne nutzbar für
unterschiedliche Anwendungen zu machen. Ein Framework bietet hierfür allge-
meine Mechanismen, die zur Nutzung durch eine bestimmte Anwendung an die
jeweils spezielle Problemstellung angepasst werden können [21].

Durch ein Constraint-Framework wird ein allgemeiner Kontrollzyklus vor-
gegeben, in den unterschiedliche Lösungsverfahren je nach Bedarf eingebunden
werden können. Allgemeine Verfahren zur Constraint-Verarbeitung sind inner-
halb eines Frameworks in einer erweiterbaren Bibliothek bereits enthalten. Die
Architektur eines Frameworks sollte dabei eine einfache Nutzung garantieren,
und in diesem Fall die komplexen Mechanismen des CSP-Formalismus vor dem
Benutzer weitestgehend verbergen [21].

4.2 Constraint-Lösungsstrategien

Flexibilität hinsichtlich der einzusetzenden Lösungsverfahren kann durch ein
Konzept von modularen und austauschbaren Constraint-Lösungsstrategien er-
reicht werden. Zur Strukturierung des Constraint-Lösungsvorgangs wird die-
ser Prozess in drei Phasen eingeteilt: Preprozessing , Konsistenzherstellung und
Lösungssuche. Diese Phasen spiegeln sich innerhalb von Constraint-Lösungs-
strategien wieder (vgl. Abbildung 1). In der ersten Phase wird ein Preprozessing
des Constraint-Problems vorgenommen. Dies kann sich z. B. auf die Binärisie-
rung eines Constraint-Netzes oder die Zerlegung von Constraints in primitive
Constraints beziehen, um anschließend darauf aufbauende Lösungsalgorithmen
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Ein hybrides Framework für Constraint-Solver 7

anwenden zu können. In der zweiten Phase werden Filter- bzw. Konsistenzalgo-
rithmen zur Einschränkung der Domänen der Constraint-Variablen angewendet.
Da dies allein i. A. nicht zu einer Lösung des Constraint-Problems führt, können
in einer dritten Phase Suchverfahren zum Auffinden von Lösungen in den redu-
zierten Wertebereichen eingesetzt werden.

Lösungssuche

Konsistenzherstellung

Preprozessing1

2

3

Abbildung 1. Aufbau einer Constraint-Lösungsstrategie

Zu beachten ist, dass in jeder Phase mehrere Einträge innerhalb einer Lösungs-
strategie existieren können. So ist es z. B. möglich, mehrere Preprozessing-Schrit-
te auf ein Problem anzuwenden, bevor Verfahren aus der nächsten Phase zum
Einsatz kommen. Dies gilt ebenso für Konsistenz- und Suchverfahren.

Ebenso ist es möglich, dass für eine Phase innerhalb einer Strategie keine
Einträge existieren. Nicht für alle Konsistenz- und Suchverfahren ist ein Prepro-
zessing erforderlich. Gleichfalls kann ein Suchverfahren auch ohne vorherigen Fil-
teralgorithmus angewendet werden, insbesondere wenn das Suchverfahren bereits
Filtermechanismen enthält. Sind für eine Anwendung keine exakten Lösungen
sondern nur eingeschränkte Wertebereiche erforderlich, kann auf ein Suchver-
fahren in der dritten Phase verzichtet werden. Mehrere Beispiele für mögliche
Constraint-Lösungsstrategien sind in Abbildung 2 zu sehen.

Strategie 3Strategie 2Strategie 1

Forward Checking

Knotenkonsistenz

-

konfliktbasiertes
Backjumping

(1) Knotenkonsistenz
(2) Kantenkonsistenz

Binärisierung

-

Hull-Konsistenz

Zerlegung in
primitive Constraints

1

2

3

1

2

3

1

2

3

Abbildung 2. Beispiele für Constraint-Lösungsstrategien

Die Verwaltung derartiger Constraint-Lösungsstrategien muss von einer Kom-
ponente vorgenommen werden, die in der Lage ist, aufgrund einer klaren Spezi-
fikation die Zuordnung der jeweiligen Strategien zu einzelnen Teilproblemen des
gesamten Constraint-Problems vornehmen zu können.
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8 Wolfgang Runte

4.3 Ein hybrides Constraint-System

Ein hybrides Constraint-System zeichnet sich dadurch aus, dass es in der Lage
ist, ein hybrides Constraint Satisfaction Problem zu verarbeiten:

Definition 4. (Hybrides Constraint Satisfaction Problem)
Ein System zur Verarbeitung eines hybriden Constraint Satisfaction Problems H
wird durch die Angabe von sieben Komponenten

H = (C,S, δ, Vfd, Dfd, Vint, Dint)

beschrieben. Dabei ist C = {C1, . . . , Cm} eine endliche Menge von Constraints
und S = {S1, . . . , Sn} eine endliche Menge von Constraint-Lösungsstrategien.
Die Funktion δ ordnet jedem Constraint Ci, i ∈ {1, . . . ,m}, eine eindeutige
Strategie Sj, j ∈ {1, . . . , n}, zu:

δ : Ci → Sj .

Der Bezeichner Vfd steht für eine endliche Menge von FD-Variablen {v1, . . . , vk},
mit denen die Wertebereiche Dfd = {D1, . . . , Dk} mit {v1 : D1, . . . , vk : Dk}
assoziiert sind. Ebenso sind die Intervallvariablen Vint = {v1, . . . , vl} mit den
Wertebereichen Dint = {D1, . . . , Dl} mit {v1 : D1, . . . , vl : Dl} assoziiert. Jedes
Constraint Ci setzt eine Teilmenge der Variablen aus Vfd und Vint zueinander in
Relation und beschränkt deren gültige Wertekombinationen auf eine Teilmenge
des kartesischen Produkts ihrer Wertebereiche.

Ein hybrides CSP vereinigt somit Constraints über Variablen mit finiten
und infiniten Domänen. Jedem Constraint ist eine Lösungsstrategie zu des-
sen Verarbeitung zugeordnet. Dies führt zu einer Aufteilung des ursprünglichen
Constraint-Problems in unterschiedliche Teilprobleme, welche durch die jeweils
zuständige Constraint-Lösungsstrategie definiert werden (vgl. Abbildung 3).2

Ausführungsmodell Der
”
YACS Constraint-Manager“ (YCM) ist die Kom-

ponente an der Schnittstelle zwischen einer vorhandenen Anwendung und dem
YACS-Framework. Dem YCM obligt die Verwaltung der neu hinzukommenden
unterschiedlichen Constraint-Netze, der Constraint-Lösungsstrategien, der Con-
straint-Solver und letztendlich der Steuerung des Lösungsprozesses.

Von dem aufrufenden System erhält der Constraint-Manager YCM die Infor-
mationen, welche Constraints mit welcher Strategie aufzulösen sind. Der Con-
straint-Manager aktiviert die entsprechenden Constraint-Lösungskomponenten
und übergibt in der jeweiligen Bearbeitungsphase das entsprechende Constraint-
Netz zur Verarbeitung an die dafür vorgesehene Komponente.

Der Prozess des Constraint-Lösens ist analog zum Aufbau der Constraint-
Lösungsstrategien in drei Phasen unterteilt. In jeder Phase werden sequenti-
ell jeweils die Constraint-Netze aller Strategien der Reihe nach bearbeitet. Das

2 Teilprobleme entstehen, indem mehrere Constraints derselben Strategie zugeordnet
werden.
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Teilprobleme
Strategie 1

Strategie 2

Strategie ...
Strategie n

Gesamtproblem

Teilproblem 1

Teilproblem 2

Teilproblem ...
Teilproblem n

Abbildung 3. Zuständigkeiten unterschiedlicher Strategien für Teilbereiche des
Constraint-Problems

heißt die in den Strategien angegebenen Constraint-Verfahren werden in den
entsprechenden Phasen auf die zugehörigen Constraint-Netze angewendet.

– Phase 1 (Preprozessing): Das jeweilige Constraint-Netz wird wenn möglich
vollständig konvertiert oder es wird festgestellt, dass es sich mit den gegebe-
nen Algorithmen nicht umformen lässt.

– Phase 2 (Konsistenzherstellung): Es wird solange propagiert, bis keine Ände-
rungen der Wertebereiche mehr eintreten (d. h. Konsistenz hergestellt ist)
oder eine Inkonsistenz auftritt.

– Phase 3 (Lösungssuche): Die Suchalgorithmen finden die geforderten Lösun-
gen oder stellen fest, dass keine Lösung existiert.

Maximale Flexibilität wird erreicht, wenn in der Wissensbasis für jedes Con-
straint der Name einer entsprechenden Strategie zu dessen Lösung angegeben
werden kann. Der Name der jeweiligen Strategie entspricht dabei einem eigenen
Teilbereich des ursprünglichen Constraint-Problems. Jede Strategie ist für die
Verarbeitung eines (Sub-)Constraint-Netzes vorgesehen. Bei der Initialisierung
wird durch den Constraint-Manager von YACS sichergestellt, dass alle geforder-
ten Strategien existieren und angewendet werden können.

Die Strategien werden separat von der Wissensbasis des Konfigurators de-
finiert. Die Anwendung übergibt die Constraints jeweils mit dem Namen der
zugehörigen Strategie an den YACS Constraint-Manager. Dieser generiert dar-
aus die unterschiedlichen Constraint-Netze und wendet die entsprechenden Con-
straint-Lösungsstrategien an.
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Framework-Klassen

Constraint-Lösungsalgorithmen

FD IA

integrierte
Constraint-Verwaltung

Konfigurator

Constraint-Lösungsstrategien
Strategie-Layer

Framework-Layer

Algorithmus-Layer

Domänen-Layer

YACS-Framework

Konfigurierungs-
werkzeug

. . .

Abbildung 4. Systemarchitektur von YACS

4.4 Architektur des YACS-Frameworks

Das YACS-Framework stellt eine modulare und wiederverwendbare Constraint-
Lösungskomponente dar. YACS ist ein hybrides System für den flexiblen Einsatz
von Constraint-Lösungsverfahren für finite und infinite Domänen. Die Lösungs-
verfahren sind eingebettet innerhalb einer strategiebasierten, modularen Frame-
work-Architektur:

– Constraint-Lösungsstrategien: Der flexible Einsatz von Constraint-Lösungs-
verfahren wird über ein Strategiekonzept realisiert. Abstrahiert von den ei-
gentlichen Lösungsalgorithmen können von dem Wissensingenieur problem-
abhängig bzw. anwendungsspezifisch unterschiedliche Constraint-Lösungs-
strategien eingesetzt werden. Diese Lösungsstrategien müssen vorab in Ab-
hängigkeit von den vorhandenen Lösungsverfahren definiert werden.

– Framework-Architektur: Durch die Framework-Architektur wird sicherge-
stellt, dass Lösungsverfahren flexibel ausgetauscht und zudem auf einfache
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Weise neue Lösungsalgorithmen implementiert bzw. Fremdsysteme integriert
werden können. Das YACS-Framework stellt hierfür einen geeigneten Rah-
men mit einheitlichen Schnittstellen bereit.

In Abbildung 4 ist eine Übersicht über die Systemarchitektur von YACS,
angebunden an ein wissensbasiertes Konfigurierungswerkzeug, zu sehen. Aufset-
zend auf einem Domänen-Layer , einer Umgebung zur arithmetischen Verarbei-
tung von finiten Domänen (FD) und reellwertigen Intervallen (eine Intervall-
arithmetik, kurz IA), werden die eigentlichen Algorithmen zum Auflösen von
Constraint-Problemen implementiert (Algorithmus-Layer). Constraint-Verfah-
ren aus Fremdsystemen können an dieser Stelle über Wrapper-Klassen eingebun-
den werden. Die Algorithmen bzw. die sie umschließenden (Wrapper)-Klassen
müssen wiederum den Schnittstellen des Framework-Layers von YACS genügen.

Der durch das Framework vereinheitlichte Zugriff auf Constraint-Lösungsver-
fahren ermöglicht es dem Strategie-Layer , dem Anwender bzw. dem übergeord-
netem System eine flexible Auswahl an Lösungsverfahren anbieten zu können.
Abstrahiert von den Lösungsverfahren können auf dieser Ebene aus einer Reihe
vordefinierter Constraint-Lösungsstrategien problemabhängig die für die jewei-
lige Anwendung geeigneten Strategien ausgewählt werden.

YACS wurde in der Programmiersprache Java implementiert und prototy-
pisch in das Konfigurierungswerkzeug EngCon integriert. Die benötigten Con-
straint-Lösungsstrategien werden separat mittels XML definiert, eingelesen und
angewendet. Die Intervallarithmetik wurde mit Hilfe der Bibliothek IAMath3

realisiert. Der Prototyp von YACS ist im Internet verfügbar.4

5 Verwandte Arbeiten

Bekannte Constraint-Bibliotheken mit integrierten Constraint-Solvern sind z. B.
die C-Lib5, die Java Constraint Library (JCL)6 [27] und der IASolver7 [12].
Diese Systeme sind allerdings nicht hybrid, d. h. es lassen sich ausschließlich
entweder finite oder infinite Domänen verarbeiten. Zudem ist eine inkrementelle
Constraint-Verarbeitung nicht vorgesehen und die Erweiterbarkeit ist aufgrund
der fehlenden Framework-Architektur nur eingeschränkt möglich.

Constraint-Frameworks im eigentlichen Sinn sind z. B. die Systeme BackTalk
[20] und POOC [24]. Beide sind allerdings ebenfalls auf finite Domänen be-
schränkt. POOC fokussiert zudem den Bereich Constraint Programming (CP),
d. h. es werden in erster Linie die für die Programmierung mit Constraints
benötigten global constraints angeboten.

In [13] wird ein allgemeines und formales Schema für die Kombination von
Constraint-Systemen und die Kooperation von Constraint-Solvern zur Behand-

3 http://interval.sourceforge.net/interval/java/ia_math/
4 http://sourceforge.net/projects/constraints
5 http://ai.uwaterloo.ca/~vanbeek/software/software.html
6 http://liawww.epfl.ch/JCL/
7 http://www.cs.brandeis.edu/~tim/Applets/IAsolver.html
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lung von Constraints mit vermischten Wertedomänen vorgestellt. Strategien wer-
den hier in Form von frei modellierbaren Kooperationsstrategien eingesetzt. Mit
diesen kann beschrieben werden, welche Constraint-Verfahren wie und in welcher
Reihenfolge (sequentiell/parallel) kombiniert werden.

In [18] wird eine Sprache namens BALI zur Steuerung von Kooperationen
entwickelt. BALI erlaubt es, die Kooperation unterschiedlicher Constraint-Sol-
ver auf hoher Ebene durch eine eigene Sprache zu beschreiben, und auf diese Wei-
se effizient neue Prototypen von kooperierenden Solvern zu erstellen. Neben un-
terschiedlichen Kooperationsprimitiven, welche die sequentielle, die unabhängig
parallele und die nebenläufige Ausführung von Constraint-Lösungsmechanismen
erlauben, bietet BALI mehrere Lösungsstrategien an. Darunter befindet auch
sich eine inkrementelle Variante [18].

6 Zusammenfassung und Ausblick

Aufgrund einer Vielzahl von Constraint-Lösungsverfahren und möglicher Kom-
binationen derselben, deren unterschiedlichen Eigenschaften und der proble-
mabhängigen bzw. anwendungsspezifischen Effizienz unterschiedlicher Verfah-
ren, ist zur Unterstützung der wissensbasierten Konfigurierung eine Komponente
notwendig, mit der sich flexibel, je nach Problemstellung unterschiedliche Con-
straint-Lösungsmechanismen einsetzen lassen.

Das Framework-Konzept von YACS bietet eine flexible und nutzerfreund-
liche Architektur zur Implementierung von Constraint-Lösungsverfahren. Die
Framework-Architektur wiederum wird in Bezug auf die Abstraktion von den
tatsächlich eingesetzten Verfahren durch ein Strategiekonzept ergänzt.

In den Constraint-Lösungsstrategien werden die tatsächlich einzusetzenden
Lösungsverfahren definiert. Dies geschieht problemabhängig und flexibel je nach
Anwendung und Einsatzzweck. Der Wissensingenieur kann sich somit bei der
Erstellung der Wissensbasis auf vordefinierte und dokumentierte Constraint-
Lösungsstrategien stützen, und diese zur Behandlung der im Rahmen der Kon-
figurierung entstehenden Constraint-Probleme gezielt einsetzen. Sollten Anpas-
sungen notwendig werden, so ist eine einfache Wartung, Pflege und auch Neuim-
plementierung oder -anbindung von Constraint-Lösungsverfahren durch eine mo-
dulare Struktur und die Framework-Architektur gewährleistet.

Die Möglichkeit, auf unkomplizierte und durchschaubare Art und Weise An-
passungen an YACS bzw. an den Constraint-Lösungsstrategien von YACS vor-
nehmen zu können, kann sich positiv auf die Akzeptanz der Lösung bei den
zuständigen Wissensingenieuren bei gleichzeitig höchstmöglicher Flexibilität aus-
wirken. Das YACS-Framework wurde zudem für den Anwendungsfall der struk-
turbasierten Konfigurierung entwickelt und getestet. YACS unterstützt daher die
domänenspezifischen Eigenheiten wie ein inkrementell anwachsendes Constraint-
Netz und sowohl finite als auch infinite Wertebereiche.

Zur Erhöhung der Flexibilität ist die Anwendung strategiebasierter Ansätze
ein gängiges Mittel zur Steuerung der Propagation und Lösungssuche von koope-
rierenden Constraint-Solvern. Das Konzept für YACS wurde aus der Idee heraus
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Ein hybrides Framework für Constraint-Solver 13

geboren, größtmögliche Flexibilität hinsichtlich der einzusetzenden Constraint-
Lösungsmechanismen zu bieten. Weniger im Vordergrund steht der Aspekt der
flexiblen Steuerung von Kooperationen unterschiedlicher Lösungsverfahren. Wei-
tere Arbeiten werden sich daher damit befassen, das Ausführungsmodell flexibler
zu gestalten, so dass z. B. neben einer sequentiellen Abfolge von Constraint-
Lösungsalgorithmen eine parallele Verarbeitung gewährleistet werden kann.

Ein weiteres Betätigungsfeld bietet die Untersuchung der
”
Überlappung“

von Teilproblemen unterschiedlicher Constraint-Lösungsstrategien. Eine Über-
lappung entsteht, wenn eine Variable in strukturell unterschiedlichen Teilproble-
men existiert, d. h. in Constraints, die unterschiedlichen Lösungsstrategien zuge-
ordnet sind. Werden bei Überlappungen infinite Variablen mit intervallwertigen
Domänen von diskreten Werten finiter Variablen beschränkt und umgekehrt,
besteht die Aufgabe darin, ein heterogenes Constraint-Problem zu verarbeiten
(vgl. [1], [9]). In jedem Fall ist bei Überlappungen von Teilproblemen ein Meta-
Constraint-Solver erforderlich, wenn globale Lösungen generiert werden sollen.

Eine ausführliche Fassung dieser Ausarbeitung ist in [22] zu finden.
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Abstract. Workforce scheduling is known as a complex and highly constraint 
problem. In the last few years the problem even become more complex due to 
the deregulation of laws limiting working times, flexibility and opening hours 
for shops at least in Germany. This paper describes an intelligent workforce 
scheduling component which shall be incorporated in a commercial workforce 
planning and scheduling system. Main points are the modelling of the 
workforce scheduling problem and a heuristic to provide a solution that regards 
the given hard and soft constraints. 

Introduction 

As cost of personnel has become one of the most significant factors in most service 
oriented companies it seems clear that one of the main goals when scheduling or 
improving business processes is to minimize these costs. This also means that one 
tries to use the minimum necessary personnel to fulfil the tasks to be done but this in 
the required quality. On the other hand the use of high quality and professional staff 
brings main advantages in customer satisfaction. Additionally, we have to respect the 
fact that effective deployment of workforce has not only direct monetary effects, also 
a higher motivation of the employees can be achieved [Geb04]. 

Therefore workforce scheduling has become increasingly important to provide the 
firms with schedules that present the right number (which means minimal) of the right 
persons (which means with the necessary qualification) at the right time. For the 
customers the goals are a little different: they demand a high number of highly 
qualified service personnel in order not to have to wait to long for being served. And 
last but not least, a schedule that respects the wishes and personal plans of the 
employees will lead to more satisfaction on their side. 

But several other constraints have to be regarded as well when trying to schedule 
the staff for a given time period. These reach from guaranteeing a minimal number of 
staff to all legal restrictions e.g. those for breaks.  
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2      Modelling and Solving Workforce Scheduling Problems 

Thus we start with a description of a workforce scheduling problem. This is likely 
to be found in several stores, retail or other service companies. The main goal of 
workforce scheduling is to find a schedule which is basically an assignment of 
persons to time intervals. With the schedule the demand of staff shall be fulfilled and 
all the other constraints have to be regarded and most often a cost function shall be 
optimized. 

Among the requirements and constraints are: 
- the number of personnel must fit the demand, 
- the qualification of the scheduled staff must fit the needs, 
- the different types of contracts have to be regarded, 
- the legal regulations have to be obeyed, e.g. 

o staff should not work longer than specified in contract  
o staff should not work more than one shift per day 
o holidays have to be regarded, 

- different shift models may occur (one, two, three shifts etc.), 
- breaks have to be regarded. 

An important sub-problem when scheduling the workforce is the break placement 
problem, which has to be done for each assignment of each employee. While an 
employee has a break he can not cover the workforce requirements. So breaks reduce 
the number of available employees. As a consequence break placement is an aspect 
which has to be coped with simultaneous to the staff assignment. In the worst case a 
bad break placement increases existing periods of understaffing, in the best case one 
can reduce overstaffing. But break placement has to respect a number of rules based 
on laws and other restrictions as well. 
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 Figure 1. Workforce scheduling: demand and possible solutions 
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Modelling and Solving Workforce Scheduling Problems      3 

The goals the schedule shall reach can be formulated in terms of 
- overtime: try to have no overtime, which means that there are time periods 

with more persons than needed 
- undersupply: try to have no undersupply, which means that there are time 

periods with less persons than needed 
- minimal cost schedule: try to have a schedule where the least costs erase. 

Most often a combination of these goals seems adequate. The demand is given by 
typical numbers e.g. calculated from forecasts. Figure 1 shows such a demand for one 
day (Bedarf) and two possible schedules (Strategie 4, Strategie 6) that do not meet the 
demands. The schedule here is presented cumulative not by the list of persons which 
is another kind of presentation. 

 
The rest of the paper describes an intelligent workforce scheduling component. 

First a model on the basis of other scheduling problems is presented. Then the 
heuristic strategy for constructing a weekly schedule is described. 

Modelling the Workforce Scheduling Problem 

According to our modelling approach of scheduling problems we will also use the 7-
tuple (O, R, P, HC, SC, G, E) used for several scheduling problems [Sau06] to 
describe the workforce scheduling problem. For the workforce scheduling example 
the sets mean: 

• Orders 
are the demand of personnel, i.e. the given workload profile 

• Resources 
are the staff with their individual quality profiles and their individual 
contracts 

• Products 
are the services the staff can provide 

• Hard Constraints 
are legal and other restrictions, e.g. maximum working hours, maximum 
numbers of shifts, not to work in two following shifts 

• Soft Constraints 
represent the constraints we want to achieve, e.g. not to have overtimes, not 
to have undersupply, have a fair distribution of the workload to the 
personnel, sometimes overtime may be allowed, sometimes undersupply 
may be possible, etc. 

• Goal functions 
Goal functions can give an impression of the schedule quality. They may be 
time oriented, e.g. sum of overtimes, sum of overtimes and sum of 
undersupply, etc. 

• Events 
events have to be formulated for the reactive scheduling part of the 
workforce scheduling problem, e.g. ill persons, late persons, persons missing 
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4      Modelling and Solving Workforce Scheduling Problems 

for other reasons, changes in demand, etc. In our first version the reactive 
workforce scheduling problem is not regarded. 

Compared to other problem representation based on this modelling approach, e.g. 
transportation scheduling [Sto04], here the resources have to be described in more 
detail. The schedule to be created shows the temporal assignment of the personnel. 

Search Space for the Workforce Scheduling Problem 

According to the modeling of the workforce scheduling problem the problem space 
can be presented as an And/Or tree. The tree represents the problem structure 
described above and already includes some of the constraints. One of the main 
differences to the other scheduling problems is that that combination of persons 
working together is not known in advance. This means that on the level of personnel 
group a subset of the personnel is to be found, i.e. a node represents a subset of the 
personnel. The solution is a subtree of the And/Or-tree for which holds: 
• it contains the root node,  
• for every And-node all successors are in the solution 
• for every Or-node one successor is in the solution. 
 

 
Figure 2. AND-/OR- tree for workforce scheduling 

In figure 2 a solution is depicted by the darkened nodes. The complexity of the 
solution space [Sau04] for such presentation is  

L =  (I P * PG )D , with  
• L  number of solutions 
• D  number of days/ shifts  
• PG  number of staff groups, in the worst case this may be 2P  

Seite 96

schatten
Rechteck



Modelling and Solving Workforce Scheduling Problems      5 

• P  number of persons 
• I  number of intervals per person. 

This means that even for small problem sizes the complexity of the search space is 
very high. Additionally, it is not possible to estimate the impact of the constraints on 
the size of the solution space. 

Heuristic for solving the WSP 

The general phases of the workforce scheduling process as presented by Ernst et. al. 
[EJKS04] are: 
• demand modelling 
• days off scheduling 
• shift scheduling 
• line of work scheduling 
• task assignment 
• staff assignment 

Within the project only two of the problems have to be solved, because the other 
tasks are already exist. In the retail trade business one can state a flexible demand 
model, which means that forecasting methods have to be used to determine future 
demand. The workforce requirements forecasting is done by an already existing 
module and gives a demand for a fixed period, in this case a week, showing the 
employees needed  for the time periods of the days. 

 
//** Basic workforce scheduling strategy 
WHILE days to schedule { 

select most difficult day to schedule 
calculate maximum interval 
select staff group for the day 
WHILE demand { 

IF conflict 
    THEN solve_conflict 
   ELSE 

select best suited person 
   select best suited interval  
   plan person 

reduce demand 
 } 
 remove scheduled day 
} 

Figure 3. Basic scheduling strategy 

Main input-data is the set of employees, each of them with potential different 
restrictions for assignment and break placement. This set of employees consists of 
two subsets. First is the primary pool, containing all employees working mainly for 
the organizational entity for which the schedule is computed. The second subset, 
called the secondary pool consists of employees that may be scheduled additionally 
but mainly are working in other entities. 

In a first step several heuristics were checked that could be useful for solving the 
workforce scheduling problem [GT04]. Alternatively a solution on the basis of 

21. Workshop Planen und Konfigurieren (PuK 2007) Seite 97

schatten
Rechteck



6      Modelling and Solving Workforce Scheduling Problems 

constraint programming packages was evaluated. But in most cases several 
constraints especially individual preferences could not be realized by the existing 
approaches. Thus a constructive heuristic was developed that incorporates the 
scheduling behaviour of human planners as well as it tries to respect the individual 
constraints of the employees.  

The main scheduling scheme looks as presented in figure 3. The basic approach is 
to construct the schedule in several steps, starting with a schedule neglecting breaks 
and in a second phase adding the breaks. Another general heuristic used is that of 
problem decomposition, i.e. the schedule is constructed day by day. The main 
scheduling heuristic then tries to find the right person for a given time period. 

In the heuristic scheduling knowledge is incorporated in the “select” statements 
and in the conflict resolution, e.g.  
• Select most difficult day: a difficult day is a day with high demands in different 

times  
• Select staff group: the staff group is composed of those persons that can be 

scheduled principally for that day and then reduced to the persons in the schedule 
• Select best suited person: this combines a number of rules, e.g. persons with most 

remaining working time, persons that exactly fit an interval, persons with longest 
remaining working time interval, persons with preferences on that interval 

• Select best suited interval: within the demanded interval a personal interval is 
chosen that best fits the demand and the working time constraints of the person. 
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Figure 4. Matching curve  

In a second phase the necessary breaks are added to the schedule, which sometimes 
lead to additional requirements in personnel, which then also is added to the schedule. 

The result is a daily workforce schedule, that shows who is working in which shift 
and time interval. Figure 4 shows a matching curve for a schedule showing an 
“optimal” result. 
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Related Work 

Often the retail trade workforce scheduling problem is treated as a scenario 
comparable to the workforce scheduling problem in call centers. And in fact there are 
a number of similarities [EJKS04]: 
• workforce requirements are dynamic fluctuating and therefore change from day to 

day 
• shifts can change in their length and starting points 
• over- and understaffing are possible and shall be minimized and can therefore be 

treated as a soft constraint 
• the number of possible shifts can become intractable high. 

Generally, several systems for staff scheduling, crew scheduling and nurse 
rostering have been proposed and some systems are available at the market. But in 
nearly all cases the solution is restricted to a dedicated problem and thus only 
concepts and ideas can be used for other similar problem scenarios. 

Most commercial systems have only simple scheduling capabilities and leave the 
scheduling tasks to the user of the system. But surprisingly there has not been done 
much research done in the area [EJK+04]. Most systems base on the constraint based 
approach, i.e. they see workforce scheduling as a constraint satisfaction problem and 
all constraints used are interpreted as hard constraints. Examples of such systems are 
systems developed with ILOG tools [Har07, ILOG07] or standalone systems like 
OC:Planner [Tol07]. Other work tries to solve the staff scheduling problem with 
integer programming tools but here only a few of the constraints, especially of the soft 
constraints, are regarded [BBD03]. 

Summary and Future Work 

Within the project a first prototype of a heuristic staff scheduler was developed 
which is now part of a commercial product in the staff planning area. The system 
combines general heuristic strategies with specific heuristic rules from the human 
schedulers and presents a solution that is visualized in an interactive staff planning 
system. Figures 5 and 6 give an impression of the user interface. Figure 5 shows the 
cumulative view of the demand and its fulfilment, figure 6 shows the detailed 
information for the staff. 

In next steps it has to be evaluated how flexible and extensible the approach is, i.e. 
how complex it is to integrate new requirements or constraints. 

Further research can be done on the integration of heuristic based and constraint-
based approaches to solve the workforce scheduling problems. 
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8      Modelling and Solving Workforce Scheduling Problems 

 
Figure 5. Matching curve within the goal system 

 
Figure 6. Example of detailed staff schedule  
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