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Abstract. The planning of surgical operations forms a substantial el-
ement of hospital management. It is characterized by high complexity,
which is caused by the uncertainty between the capacity offered and the
true demand. Also, as emergency cases occur the planning requirements
change. In our approach the proposals for the schedules are made with
the help of the heuristics. In order for a schedule to be accepted by those
involved, it should take account of the interests and preferences of all the
human actors. Existing systems do not do this and therefore suffer from
levels of non-acceptance of their resulting schedules. In this paper we
discuss suitable heuristics for operating theatre scheduling, the limits to
which preferences can be considered in the scheduling process, and the
validation of the approach in an experimental set of hospital scenarios.

1 Introduction

Operating theatre scheduling deals with assignment of limited hospital resources
(rooms, doctors, nurses, etc.) to jobs (patient treatments, surgery, etc.) over the
time, in order to perform a set of tasks according to their needs and priorities,
and to optimize usage of hospital resources [9, 12]. The whole process is restricted
by a whole series of constraints, limitations and preferences [9, 2]. It is further
characterized by a high level of complexity due to:

1. the uncertainty of the relationship between the capacity offered and the true
demand,

2. the inability to predefine treatments’ workflow,
3. emergency cases, causing disturbance in existing schedules and the need to

adapt as situation changes.

Typically, scheduling is currently done manually and involves specialized staff.
[6] discuss an example of an optimization that can be achieved using process
automization for nurses rostering1. In the hospital considered, one person takes
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1 rostering and scheduling are used as synonyms here



3-5 full working days to produce the nurses’ schedule for the period of one month.
That is only to the level of assigning shifts. Similar results have been reported
in other studies [4] (4-8 hours). Existing industrial schedulers usually assume a
predefined workflow. Furthermore, they do not take staff and patient preferences
into account and so are not generally applicable to the hospital domain [2, 9].
The current methods in this domain are therefore: no planning, pen and paper,
non-intelligent tool-based. Fully automated systems are not accepted because of
their inability to give proper consideration to preferences and the need to show
clear responsibility for decision making.

Existing solutions consider only sub-problems such as: nurse rostering, coor-
dination, or surgery planning. Most tools provide only GUI for manual schedul-
ing, although some check the validity of completed schedules, and some of the
more advanced generate draft schedules (however, preferences are not taken
into account). Some examples of such systems are Medico//S, ORBIS2, MEDI-
CUS [13], CARE2X3.

This paper presents a problem, based on real-world requirements (for more
details on the problem and the solution please see [9]). In the following section we
present our approach for semi-automatic, dialog- and preference-based schedul-
ing in hospital scenarios. Then, after introducing the scheduling problem to be
considered, the domain of discourse and the made assumptions in Section 2, we
describe the problem decomposition, the discussion of the developed heuristics
for each of the identified subproblems and provide a complexity analysis for the
developed heuristics. In Section 3 the experimental context is described and an
evaluation of the results presented. We finalize the discussion with conclusions
based on the evaluation and look forward to further challenges.

2 Scheduling Heuristic

We divide the operating theatre scheduling problem into the four sub-problems:
preference-based personnel assignment to shifts, preference-based building of
teams in a shift, preference-based task (operation) assignment to teams and
room assignment to tasks [9]. For each of the sub-tasks we have developed a
heuristic. Furthermore, we have implemented suitable problem-solving methods
and evaluated the implementation by the means of simulation [9]. The heuristics
produce a proposal for the schedule. It is however up to the human planner
whether to accept it in its entirety, accept parts of it, or to reject it completely.
We propose a semi-automated dialog-based approach for the rostering.

In this section we discuss the heuristics for operating theatre scheduling ac-
cording to the division of sub-tasks as described above. We assume that the
preferences of the actors involved that need to be taken into account are pro-
vided in a frame-based representation, and that their context will be valid in the
context of the domain: shift, team, task, and room [9].

2 http://www.sieda.com/
3 http://www.care2x.com/



Based on the nature of the preference, we distinguish between static (coworker,
treatment) and dynamic (shift) ones. Each preference has a value from the closed
domain {willingly, undecided, unwillingly}. We define the preference domain
range as

D = {w, u, w̄},

where w stands for “willingly”, u for “undecided” and w̄ for “unwillingly”.
Each employee is able to specify a preference xi ∈ D for another employee
expressing his/hers willingness to work together with that employee. In the same
way it is possible to specify preferences for shifts. If the preference is not specified
it has the value u (undecided) by default.

There are basically two approaches for the staff rostering problem: cyclic4

and non-cyclic [1]. In the first one, several sets of schedules are generated that
satisfy the demand requirements. Staff are then rotated from one set of sched-
ules to another in consecutive planning horizons. So for example, the schedule
may be repeated every week or with a two week interval. Although it is easy
to implement, cyclic schedules impose inflexibilities, and there is therefore less
acceptance of the resulting outcome. We therefore use a non-cyclic algorithms.

It is also important to note that there are two possible approaches for team
continuity: first one based on the static team assignment, that means a team
remains unchanged until the end of the duty; the second one allows the reassign-
ment of members to other teams (build new ones) when no job is assigned to the
current one, in order to achieve continuity of occupation. Static assignment is
less flexible, but has much less computational complexity since there is no need
to search for the common time gaps across all team members. Furthermore, in
the second, there may be individual time gaps that will not be filled in the future
with any tasks.

2.1 Preference-Based Adaptive Assignment of Personnel to Shift

Preference-based assigning of personnel to shift considers:

– hierarchical position (senior physician, assistant doctor, anaesthetist, nurse);

– contract work hours (treated as soft-constraints);

– shift preferences (that have dynamic character since prefered working time
can vary from day to day);

– hard-constraints:

• minimum/maximum number of personnel in the shift (day, shift and
qualification dependent);

• maximum duty duration;

• minimum inter-duty pause;

– fulfilled wishes quota.

4 sometimes also called rotational



The heuristic selects personnel so as to avoid hard-constraint violations for
each qualification in the following order of preference value:

willingly ≻ undecided ≻ unwillingly.

The best and simplest case is when the number of actors that work gladly in the
shift is within the bounds of the hard-constraints and maximum working time
is not exceeded. This means that they can all be selected for the duty and it
can be continued with the next lower position in the hierarchy of the depart-
ment. Unfortunately the hard-constraints often prevent this. So, for example,
the number of available personnel that would work “willingly” or “undecided”
in the shift may be smaller than the minimum staffing level required. In this
case all of the actors with these preferences have to be selected and those with
the lower preferences have to fill the gaps. It may also happen that only some
of the actors with the preference “unwillingly” for the current shift have to be
selected. So those that are not selected will be in a better position compared
to the selected ones. Furthermore, in the case of selecting only some with the
“willingly” preference, those that are not selected will find themselves in the
worse condition compared to the others. The selection procedure therefore con-
tributes to placing some actors in a worse condition, compared to the others.
Such a decision has to be memorized in order to achieve a degree of fairness in
the scheduling. That means that an additional measure has to be introduced in
order to keep track about the number of actor’s wishes that have been, respec-
tively have not been taken into account. The measure is mapped to the actor’s
weight. This weight is then used to influence further selection decisions of the
form “some from many” in order to achieve fairness of the scheduling and give
due consideration to the wishes of individual actors. It should also be considered
that medical personnel are usually contracted to work for a certain amount of
hours per week. The selection process therefore also needs to take into account
that physicians that have not yet completed their weekly contract hours should
have higher priority in getting a shift than those that are already on overtime.
The weight (importance) of the choice for an actor can be determined with the
help of the following weight function:

Weighti =RemainingWorkShifts · PositionWeight · α

+ Weighti−1 · stimulus · (1 − α)
(1)

where

– 0.5 ≤ α < 1 coefficient that determines influence of the previous weight
value. It is assumed, that the remaining working time has more influence
on the weight function than whether wishes have been complied with, or
rejected;

– PositionWeight weight, determined by the position of the actor;
– RemainingWorkShifts quota regular working shifts stated in the contract

as represented by the soft-constraints;



– Weighti−1 previous (old) weight value;
– stimulus determines the weight adjustment manner:

> 1 in case of dissatisfying selection;
= 1 if no preference was specified;
< 1 in case of taking into account a wish.

PositionWeight is used in the weight function since it is assumed that du-
ties may require personnel with some qualification, independent of the position.
However, the wishes of the physician with a higher position in the ward hierarchy
are given a higher significance.

Defined as above, the stimulus effect decreases the weight function in the case
of selecting an actor with the preference “willingly” or by not selecting one with
the preference “unwillingly”. The value increases by selecting with “unwillingly”
or by not selecting with “willingly”. The adjustment strategies of the weight
with respect to stimulus can be seen in Table 1.

preference value stimulus for selection stimulus for rejection

“willingly” < 1 > 1

“undecided” = 1 = 1

“unwillingly” > 1 < 1
Table 1. Weight Adjustment Strategies

The preference “undecided” is treated as neutral and does not influence the
stimulus, but the weight function changes in case of selection because of the
adjustment of remaining work shifts. At the beginning of the week the weight is
initialized as:

Weight0 = contractualWorkShifts · PositionWeight (2)

The weight is always adjusted each time the person is selected for the shift (since
the RemainingWorkShifts number changes) and also, for all those actors with a
preference ∈ {willingly, unwillingly} that were able to take the duty (i.e. caused
no hard-constraints violation). For not selected actors only the stimulus will have
an impact on the weight. If the RemainingWorkShifts reaches the value zero, the
weight function update decreases significantly if the actor is selected (since it is
treated as an undesired overtime):

Weighti = Weighti−1 · stimulus · (1 − α) (3)

In case of rejection, for those actors with a preference ∈ {willingly, unwill-

ingly} only the stimulus has an influence on the weight:

Weighti = Weighti−1 · stimulus (4)



Where there is a need to make a selection decision “select some from many”,
those with the higher value of the weight function are chosen. This contributes to-
wards fairness, since higher values mean that there are more contractual working
hours still unused in the current week, a higher position in the ward’s hierarchy
or smaller number of preferences already taken into account.

2.2 Preference-Based Building of Teams in a Shift

After the staff selection for the duties, the available personnel in the hospital
department is determined for each shift. As tasks arrive, there is a need to group
the shift personnel into teams in order to perform those tasks. Requirements
for personnels’ qualifications, resources, specializations of the involved actors in
each treatment have to be considered. In order to increase the acceptance of
the planning system in the hospital, it is also important to take into account
personal preferences of the involved actors. So, for example, the doctor “Z” may
prefer to work better with nurse “Y” than with the nurse “X”.

The problem can be formalized as follows: given S, D, E, N - sets consisting
of senior physicians, assistant doctors, anaesthetists and nurses having duty in
a shift, so that:

|S| = s, |D| = d, |E| = e, |N | = n with s < d < e < n.

This means that there are always more nurses in the shift than anaesthetists and
more anaesthetists than assistant doctors, and more assistant doctors than senior
physicians. Each employee can specify a preference with respect to another,
expressing his willingness to work with them:

∀ai, aj ∈ S ∪ D ∪ E ∪ N, i 6= j ∃ Paj
(ai) = xij ,

xij ∈ D, i, j ∈ (1, s + d + e + n).

Every employee is also characterized by the weight, that depends first of all
on the hierarchical position of the person:

∀a ∈ S ∪ D ∪ E ∪ N ∃ g(a) ≥ 0.

The utility of team i, consisting of ñ actors is defined as

Ui =

ñ
∑

k=1

qa1,...,ak−1,ak+1,...,añ
(ak) · g(ak) (5)

where

qaj
(ai)i6=j =











1 if Paj
(ai) = w,

0 if Paj
(ai) = u,

−1 if Paj
(ai) = w̄

(6)



is the value of the coworker preference of actor ai regarding the colleague aj .
Correspondingly, for a set of n coworkers a1, . . . , an it is defined as

qa1,...,ak−1,ak+1,...,añ
(ak) = qa1

(ak)+· · ·+qak−1
(ak)+qak+1

(ak)+. . .+qañ
(ak). (7)

The total utility of h teams in a shift, each with its own size of ñi is defined
as

Utotal =
∑

i

Ui =

h
∑

i=1

ñi
∑

k=1

q{a1,...,ak−1,ak+1,...,añ}i
(aki) · g(aki). (8)

The goal is now to build teams in such a way, that the total utility function
(satisfaction of coworkers to work together) is maximized.

It is assumed that there exist two configuration patterns for operation teams:
those with four actors (senior physician, assistant doctor, anaesthetist and nurse)
and, for less complicated operations, consisting of three actors (assistant doctor,
anaesthetist and nurse). The goal is to find teams, consisting of staff members
from a shift, and maximizing the total utility function.

So, for example, in case of preference and weight specifications as captured
in Table 2 the utility of the three-member teams is calculated as follows:

U(< A, B, C >) = qBC(A) · g(A) + qAC(B) · g(B) + qAB(C) · g(C)

= (0 + 1) · 80 + (−1 + 1) · 60 + (−1 + 0) · 40 = 40.
(9)

The total utility is then the sum of weighted adjacent satisfaction of all
the team members. So, the advanced teams are built up for all available senior
physicians. For the rest t = 1, . . . , d − s, assistants (where s = |S|, d = |D|)
smaller teams are built in a similar way, in order to facilitate treatment of another
(lower) complexity class. The maximum sum reflects the highest total utility of
all the teams involved and would be the optimal solution for the problem.

Heuristic. Now that the problem formally defined a feasible solution can be
introduced. It is guaranteed to be pareto-optimal (it is not possible to increase
the utility of one team, without decreasing the utility of another one), but not
the optimal in the general case, since long computations are required to han-
dle the very large numbers of different shift team combinations that need to
be considered. An obvious solution, in order to achieve pareto-optimality, is to

Employee Preference Preference Preference Weight

x to A PA(x) to B PB(x) to C PC(x) g(x)

A - u w 80

B w̄ - w 60

C w̄ u - 40
Table 2. Example for Team Utility Calculation



calculate for each shift the utility for each possible team combination, sort it,
and take those with the highest utility value. However, doing this dynamically
each time for each shift requires many computations and an extended waiting
time before seeing a proposed schedule. It can be improved by calculating the
utility for all possible team combinations in the department only once, since
the coworker preference bears a static character and is not changed often. The
complexity of such a computation is O(s ·d · e ·n) or O(n4) since n is the largest
of these four numbers. When any actor changes their preferences, the recalcula-
tions required are of O(n3). Having constructed the array of utilities it is sorted
into order so that teams with a higher utility are preferred over those with a
lower one. The heap sort is selected to facilitate the process. It is the slowest of
the O(n lg n) sorting algorithms, but unlike the merge and quick sorts it does
not require massive recursion or multiple arrays to work. This makes it the most
attractive option for very large data sets of millions of items.

Every time teams for a shift are built, it is now sufficient to process the sorted
array in descending order of team utilities until all the senior physicians (in case
of building advanced teams) or assistant doctors (in case of building teams for
less complex treatments) are assigned. The heuristic checks if all of the team
members considered have a duty in the shift and are not yet members of a team.
If this is the case, the actors are assigned to work in one team, since no other
combination of available actors can produce a higher current team utility value
(remembering that the array is sorted). This yields a pareto-optimal solution.
In the worst case there is a need to go through all of the elements in the array.

2.3 Preference-Based Task Assignment to Teams

The problem of scheduling we are faced with can be formulated as follows: given
a set of v teams, that have duty in the shift x as well as the set of q tasks,
that are planned for that shift. Each task has an approximate duration (since
it is often not possible to forecast how long an operation will take due to non-
determenistic workflow), contributing to the uncertainty degree of the schedules
generated. It is also characterized by its priority in order to distinguish between
emergency and regular cases. The main component of each task is a patient, that
is characterized by insurance (private or governmental), preferred treatment time
as well as a doctor preference. Each team is restricted within the shift by the
maximum working time allowed without a break and a minimum break duration
as stated in hard-constraints. It is also characterized by the time it finishes its
last task as currently scheduled. The goal is to assign those q tasks to v teams
in such a way that no hard-constraint is violated and the objective function gets
the highest value.

The scheduling problem is defined in the terms of the Graham’s notation
[11]:

Rm | rj , Mj , brkdwn | θ1

∑

wjTj + θ2

∑

ŵjZj



The first element of the triple - machine environment - refers in the case
of the operation theatre scheduling to the team environment. There is no exact
environment notation to express the situation faced with in the team scheduling.
That is why the most suitable environment is taken with the assumption noted
below. Rm stands for unrelated machines in parallel. Usually it is used if the ma-
chines have varying speeds and that speed of depends on the job being executed.
However, the speed of performing an operation is not the selection criterion for
the teams, and that is why it does not play any role here. Job j requires a single
operation and may be processed on any of the machines belonging subset Mj ,
however, different machines (teams) yield different values regarding optimality
criterion due to the needs of taking into account team and patient preferences.
The processing restrictions include release dates (rj), machine eligibility restric-
tions (Mj), and breakdowns (brkdwn). The first means that the job j can not
start before its release date rj . So, for example, patients, planned to be operated
on some specific date, can not be scheduled before that date. Machine eligibility
restrictions mean that not all m machines (teams) are capable of processing job
j (some specific kind of operation). The set Mj denotes the set of machines that
could process the job j. Breakdowns imply that machines (teams) are not con-
tinuously available (due to e.g. pauses, times for operation room preparation).
As the objective to be minimized is the total weighted tardiness (

∑

wjTj) plus
the total weighted team (treatment type) and patient (senior physician) dissat-
isfaction (

∑

ŵjZj) chosen, since it conforms the requirements of the operation
completion times and team’s and patient’s wishes in the hospital. The composite
objective includes also weights θ1 and θ2 for each of the two sub-objectives. So
the goal is to minimize the due date violations, where weight wj may be used to
specify the priority of the job e.g. urgent, normal, etc., as well as ŵj to specify
the importance of taking into account wishes of corresponding actors.

Heuristic. This heuristic selects tasks that are planned for the shift considered
and schedules first the urgent ones, and then the regular ones. Scheduling the
urgent tasks tasks before the regular ones matches the normal prioritization in
a hospital department. The schedule is developed with the help of dispatching

rules.
The dispatching rule determines which task should be scheduled as next.

Every time a team becomes free and the time since the last index update exceeds
some ∆, the ranking index is recomputed for each remaining job. Their list is
then sorted and the jobs with the highest ranking index are processed first. This
ranking index is a function of the time t, at which a team with the earliest last
job finish time becomes free, as well a the patient weight wj , task processing
time pj , task urgency uj, and the due date dj of the remaining jobs. The index
is based on [11] and defined as

Ij(t) =
wj · ij

pj

· e−
dj−pj−t

Kp̄ · euj (10)

where



wj is the patient’s weight, that is assigned to the task j;
ij is the insurance type of the patient from the job j;
pj is the task j processing time (duration);
dj is the due date - time, until the job has to be done;
t is the time, machine can begin processing at;
K is a scaling parameter;
p̄ is the average of processing times of the remaining jobs;
uj is the urgency of task j.

The first part of the index (
wj ·ij

pj
) determines the price that a patient is paying

for one slot of time for his task. The second two parts of it have exponential
character and represent the task urgency and the slack influence on the index.
K is the scaling parameter that can be found empirically and determines the
influence of the first exponent on the index function. The smaller K is, the higher
is the influence of the first exponent on the whole index. Sometimes K is also
called lookahead parameter. The slack of the job j is the time left before the
latest time point the job should be started, in order to do not exceed the due
date. It is less than zero if the job can no longer be finished before the due date.
This means that the smaller the value, the greater the due date violation. If the
slack is positive, the first exponent decreases the value of the index function.
Task urgency uj can be e.g. equal zero for regular tasks, have value greater than
zero for urgent ones, having the greater value the more urgent concrete task is.

After the weight calculation for tasks planned for the considered shift is
completed, the task list is sorted in the descending order of the weight. In this
order the tasks are further processed so that those with a higher weight get
scheduled first. The task under consideration is tested in order to determine
whether the patient has specified the preferences for the operation chief (senior
physician in case of teams having four actors, assistant doctor in case of smaller
teams consisting of three actors). If it is the case, we check whether the physicians
as specified by the patient preference are present on the shift. Those present
are then further categorized into sets with preference “willingly”, respectively
“unwillingly” (all other belong to “undecided”). Further, each of the sets is
sorted in the ascending order of the teams’ last task finish time and stored to
an ordered list. This contributes to the attempt to schedule the currently less
occupied teams within a preference value first. Having finished sorting, the lists
Lw, Lu, and Lw̃ are concatenated to the list L in the following order of preference
value:

L = CON{Lw,Lu,Lw̃}.

If the current task to be scheduled is an urgent one, the earliest possible starting
time is calculated without regard for the specified preference. Preferred teams
are only then considered if their starting time deviated from it by not more than
a small value ε since these tasks have to be executed as soon as possible:

currentTaskts − earliestPossiblets < ε, ε > 0. (11)



For regular tasks the physician preference has more influence than on the urgent
ones, since it is more important to take this preference into account, even if the
task will be scheduled later but still within the shift.

Next we process the ordered team list and select a team for the job. An
attempt is made to schedule the team for the next possible time. If this fails
because the team needs to take a break, the break is scheduled and we retry. If
it fails for the second time, the next team is considered. If the list is processed
to the end and if no team was chosen - the dialog-based scheduling mechanism
has to take over.

In case of success, the selected team is assigned to the appropriate position
in the list of shift teams, to keep it in ascending order of the finishing time of
the last task. Scheduling proceeds with the next job.

We introduce a function of the following arguments to handle the treatment
preferences of the team:

– doctor preference of the patient;
– last task finish time slot of the team;
– treatment preference of the team.

During the task scheduling, the function value is calculated for each team. The
teams are considered in order of the returned function value, rather than being
divided into three groups with patient preference values from D and sorting
regarding the last task finish time within the group.

An important feature of the task scheduling mechanism proposed is that it
allows rescheduling on demand. The dynamic character of job arrivals in a hos-
pital environment causes disturbances to pre-existing schedules, making reactive
scheduling necessary. The plan is being adapted to new situations as the changes
occur. However, the emphasis is to keep as much as possible of the existing plan
untouched. Rescheduling also takes place when an urgent task is added to the
system. In this case all tasks, that have already begun are kept unchanged. In
contrast, all un-started ones have their status changed to unscheduled and are
re-proceeded by the scheduler.

The proposed heuristic makes proposals for the task scheduling. However,
it is up to the human scheduler whether to accept or to reject it. The goal is
to minimize the manual rescheduling so that the proposed schedule is changed,
if at all, only slightly. Tasks, that were not able to be scheduled automatically
must be proceeded by the human anyway.

2.4 Room Assignment

The last stage in operating theatre scheduling covers the assignment of operating
rooms. This approach is subject to the condition that there are enough rooms
available in that their number at least equals the number of teams in the shift and
furthermore, the room, assigned to the team, has all the equipment and facilities
that the team may need for executing its tasks. In another case, if the teams
are kept only for operations and no rooms are available, personnel resources



are wasted. However, teams often pause between consecutive operations. Each
of these time gaps can be too small to reserve the room for another task, but
some optimization of these time windows is possible, such as maximizing the
available gaps between operations already scheduled. It is assumed that the
rooms considered for the optimization are all of the same type, so that it does
not matter which room is chosen from the proposed set, and it is not vital for
the personnel. Of course the hospital management goal is the full utilization of
the resources, but at the same time a reserve capacity is required in order to
handle emergencies and to deal with the device/room breakdowns. It is assumed
that all the team and time assignments are already made. The algorithm chosen
to facilitate the process comes from Kandler [5], who proposed it for scheduling
in a virtual enterprise. The important feature for the room assignment is that
the jobs are not shifted in time but retain their scheduled time slots unchanged.

3 Analysis and Comparison

In this section the proposed heuristics are evaluated in practice. The most in-
teresting criteria are the time needed to produce a valid schedule proposal as
well as the quotient of regarded/disregarded wishes of the personnel, and its
comparison to existing schedules produced by human actors (here the random
assignment is used because this reflects reasonably well the reality in todays
world where preferences are not considered). All evaluations were performed on
an Intel Pentium 4 CPU 2.40 GHz with 512 MB RAM running SUSE Linux
with default kernel version 2.4.21. The experimental setup was built using the
multi-agent system JADE 3.25 and the rule-based system JESS 6.16.

3.1 Shift Assignment Evaluation

The measures for shift assignment are made for 20 different values for the per-
sonnel size in the department (from 10 to 200, with the step 10), each with four
different required staff quotients (specified as a hard-constraint) in the shift. The
quotient is 20%, 30%, 40%, 50% of the overall number of personnel.

The quote of actors for each position was as follows: 10% senior physicians,
20% assistant doctors, 30% anesthetists, 40% nurses.

Shift preferences are generated for all actors and shifts as follows: with the
probability 1

3
the preference for the considered shift is generated by an actor. If

it has been generated, it is assigned a random value from the domain D (each
with the equal probability of 1

3
).

The number of required personnel usually varies due to different days and
shifts. Thus, we distinguish between a shift {early, late, night} as well as the day
of the week (regular working day, weekend or holiday). Furthermore, for each of
the days and qualifications, hard-constraints regarding the required staff number

5 Java Agent Development Framework, http : //jade.tilabs.it/
6 Java Expert System Shell, http : //herzberg.ca.sandia.gov/jess/
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For each qualification the maximum duty duration as well as the minimum
inter-duty pause hard-constraints were set to be equal to 16 hours. That is, it is



not allowed to work more then 16 hours consecutively, and between 2 shifts must
not be less than 16 hours. The soft-constraint that represents the contractual
work hours is set to 40 hours per week for each employee.

Shift assignment is performed for one month (4 weeks, each with 7 days, each
with 3 shifts that results in 84 shifts). The total number of staff in the hospital is
chosen as a parameter. Another parameter is the number of required personnel
per shift (four different configurations). The time required to produce such a
schedule grows linearly with the number of personnel, and the assignment for
one month takes less than a half of minute of computing time for 200 actors as
captured in Figure 1.

The important criterion for acceptance of the proposed plans by human ac-
tors is the degree to which their individual preferences are taken into account.
The presented simulations are made for the personnel of 200 actors selecting
10%, 30%, 50%, and 70% of total number for each shift for the period of one
month (84 shifts). Figure 2 shows the percentage of preferences met in each
shift. For a shift considered, the total number of preferences is calculated as the
number of actors that have specified a preference with a value from {willingly,

unwillingly} for the shift. It is important, that only those actors are playing a
role here that are allowed to work in the shift (no hard-constraint violation). A
preference is treated as respected in case of

– selecting an actor with preference value willingly;
– not selecting an actor with preference value unwillingly.

For 30% of total personnel in each shift all wishes are almost always fulfilled.
In case of selecting 10% usually none of the unwillingly actors is scheduled for
work, but not all who would like to work are selected, causing a slightly lower
quotient of the preferences met compared to the previous case. Choosing the se-
lection rate to 50% and 70% respectively of total personnel in each shift causes
all the willing actors to be selected as well as some undecided and, eventually
some unwilling too. Furthermore, selecting these numbers of staff causes viola-
tions of hard-constraints in some shifts due to the days off need. This leads to
understaffing in these cases. Beyond that, often those who would like to work
in the shift can’t be even considered due to the above mentioned need for time
off. Therefore actors with other preference values are selected. This contributes
to the variation of the percentage of the preferences met. The amplitude of
this variation is greater when selecting 70% of the entire staff. Nevertheless, the
overall quote of preferences met is high and the proposed plans are likely to be
accepted by the personnel, as compare to those manual schedules produced by
human actors that usually disregard most wishes.

3.2 Team Assignment Evaluation

We need to initialize the team utilities before we can begin with team building.
The initialization is done for the teams consisting of four and three actors. Due
to the fact that the number of team combinations grows exponentially with



the number of personnel, this is the most time consuming procedure in the
algorithms. However, in a real life scenario the initialization must be performed
only once. The changes are only needed if one decides to change one of his
coworker preferences. In this case only one dimension of the utility array has
to be recalculated. In Figure 3 the initialization and sorting times for teams
consisting of four actors are captured.
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Fig. 3. Teams of Four Members Utility Initialization Run-Time

As can be seen from the figure, most time is spent on the initialization of
the the team utilities and not on sorting. It is due to the need to query the
knowledge base for each of the possible team combinations for the preference
values of each actor regarding his coworkers. In case of three actors these are
3 · 2 = 6 queries and 4 · 3 = 12 queries for teams of four actors. For teams of
four members, however, a significant deviation of the initialization time from
initialization and sorting time is visible if the personnel size is 200 (the number
of different team combinations is then 20 · 40 · 60 · 80 = 3.840.000). Repeated
simulations provided the same outcome. Detailed analysis has shown that with
this number of combinations swapping occurred.

Simulation was performed in Java, instructing the Java Virtual Machine to
initially assign 72MB allowing up to 1GB. The total number of staff was chosen
analogously to the case of shift assignment. Coworker preferences are generated
as follows: about 50% of the actors are selected randomly to specify a coworker
preference. Each selected actor specifies preferences to roughly 20% of his random
coworkers. These preferences have values either willingly or unwillingly each with
the probability of 1

2
. For team utilities calculation we used the weight values as

follows: 100 for senior physician, 80 for assistant doctor, 60 for anaesthetist, and
40 nurse.



For a ward with 200 actors the initialization and sorting time of the team
utility array for teams of 4 actors takes less then 40 minutes, for teams of 3
actors less then one and a half minute.
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In contrast to the team initialization and sorting that has to be performed
only once, team building (assignment) is executed for each shift. In Figure 4
the time needed to build teams of four actors for one week is captured. The
worst case occurs if there is a need to go down to the last element in the list
of teams, sorted in descending order of team utilities. The other measures are
made for the actual time needed to assign teams, selecting 20%, 30%, 40%,
and 50% of the total personnel in each shift. Interesting questions that arise
analyzing the graphs are why the actual measures are well below the worst
case, and why it takes longer to assign less (selecting 20% of total) than more
teams (50%). The importance of a senior physician (represented by the weight)
is clearly greater than that of the other team members, leading to positioning
team configurations with his favored coworkers in the beginning of the sorted
team array. The more personnel is present in the shift, the higher the chances
that the people he prefers and that prefer him are also in the shift. The search
ends sooner due to the availability of teams that are located in the beginning of
the array. Even increasing the number of teams (the number of senior physicians
increases as well) does not contribute to longer run-times since in the beginning
senior physicians are iterated in the array due to their great influence.

Next, the question arises how much improvement the proposed team assign-
ment heuristic brings. It is not very obvious what kind of data should be taken
as a reference to compare with. On the one hand it is important to satisfy as
many coworker wishes as possible. On the other hand, the hierarchy has to be
taken into account, because the proposed team building heuristic may not be
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accepted in the ward if the wishes of e.g. two nurses have always more influence
on the decision than that of one senior physician. For demonstration purposes,
however, in order to be able to compare the number of preferences taken into ac-
count in the teams, the weight of each preference, independently of the position
and qualification of an actor, is set to be equal one: g(a) = 1.

As a reference for comparison, randomly built teams are chosen. Measures
are made for one week (21 shifts) and show the sum of team utilities within the
shift for the heuristic and random team building. The average values as well as
the number of teams in each shift are also captured in the diagram. Figure 5
shows the simulation results selecting 40% of total personnel in each shift for
building teams of four actors, with the size of the ward equal to 200 actors.

3.3 Task Assignment Evaluation

Last, but not least, job assignment is performed and evaluated for different
numbers of staff in the shift, for the period of one week. Tasks are generated in
such a way, that there are more jobs than the teams can perform in each of the
shifts. In case of dealing with teams consisting of four actors, there are 10% of
senior physicians in the department. Each shift has 32 slots (15 minutes one slot,
eight hours per shift), each operation or treatment lasts at least one time slot
(however, the duration of the operation is randomly generated from one to five
time slots long). The product of the senior physician number and the number
of slots within the shift gives the number of patients in the shift, for each of
whom a random task is generated. With the probability 0.2 the task is urgent.
Measures for the job assignment are captured in Figure 6 and performed for
different numbers of staff and shift selection quotient. Each team is restricted
by hard-constraints to operate a maximum of 4 slots consecutively (one hour)
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and has to take at least 4 slots off afterwards. The more teams in the shift,
the longer the task assignment lasts. The higher number of possibilities for the
teams, task can be proceeded at, causes the increase in required calculations.
For 200 personnel in the ward the job assignment for one week (21 shifts) takes
less than 6 minutes with the proposed heuristic.

4 Conclusion and Outlook

All the techniques described are heuristics that do not guarantee to find an op-
timal result. Instead, they aim to find a reasonably good solution in a relatively
short time. The presented algorithms facilitate shift assignment (choosing per-
sonnel to work in a shift), team assignment, task assignment as well as room
assignment. An important attribute of the heuristics is the consideration of the
preferences of the involved actors as well as fairness due to the introduced weight
functions.

Different heuristics could be developed in order to facilitate the scheduling
process. For example, another possible approach for team building could be to
use the features of an expert system by defining queries in order to find tuples of
team member that match with a given satisfiability value and are on duty in the
shift. The disadvantage of this approach is the impossibility to directly search
(match) for the team with the highest utility, since only preference values have
an influence on such a kind of pattern, not the weight an actor places on the
concrete preference. The number of queries required to fetch all possible team
preference combinations would be nm, where n is the number of team members,
and m is the number of possible preference values.

Staff timetables in medical departments are subject to lots of constraints,
restrictions, and preferences [3]. Scheduling of hospital personnel is particularly



challenging because of different staffing needs on different days and shifts, un-
certainty between the offered capacity and the true demand. Furthermore, it is
impossible to predefine a treatment’s workflow. As emergency cases occur (caus-
ing disturbance in existing schedules), there is a need of adaptation to situation
changes. Due to the complexity and uncertainty the applicability of traditional
(operations research and AI) methods from industrial scheduling to the oper-
ation theatres scheduling is problematic [10, 2, 9]. Usually a specialized person
is in charge of this task (medical director). Yet, this often does not takes into
account preferences of individual actors.

We have split the original problem into sub-problems and provided a preference-
based adaptive heuristics for each of them (for more details see [9, 7, 8]). The
system makes a schedule proposal and it is up to the responsible human actor
either to accept, accept parts of the proposition, or to reject the schedule. In this
paper we show, that the required time for shift, team, job and room assignment
is within acceptable ranges for a real-world ward size [9]. The comparison of
the heuristic approach to the random assignment was given. This allows to con-
clude that the proposed algorithms bring a substantial improvement regarding
the number of fulfilled wishes of the actors, while planning and scheduling, and
helps to save expensive human resources that are currently used in hospitals for
the manual scheduling process. However, the preferences of the involved actors
were randomly generated. It can often be the case that e.g. some actors are pre-
ferred by most others. Heuristic behavior with such a preference distribution is
not analyzed yet. Evaluations in a real-world setting would be of a great interest
and will be made in cooperation with the university hospital.
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