
Exploiting Landmarks for Hybrid Planning

Mohamed Elkawkagy and Pascal Bercher
and Bernd Schattenberg and Susanne Biundo 1

Abstract. Very recently, the well-known concept of land-
marks has been adapted from the classical planning setting to
hierarchical planning. It was shown how a pre-processing step
that extracts local landmarks from a planning domain and
problem description can be used in order to prune the search
space that is to be explored before the actual search is per-
formed. This pruning technique eliminates all branches of the
task decomposition tree, for which can be proven that they
will never lead to a solution. In this paper, we investigate
this technique in more detail and extend it by introducing
search strategies which use these local landmarks in order to
guide the planning process more effectively towards a solu-
tion. Our empirical evaluation shows that the pre-processing
step dramatically improves performance because dead ends
can be detected much earlier than without pruning and that
our search strategies using the local landmarks outperform
many other possible search strategies.

1 Introduction

In recent years, the exploitation of knowledge gained by pre-
processing a planning domain and/or problem description has
proven to be an effective means to reduce planning effort. Var-
ious pre-processing procedures, like effect relaxation [3, 13],
abstractions [11], and landmarks [19] have been proposed for
classical planning, where they serve to compute strong search
heuristics. However, pre-processing techniques can also be
used to perform some pruning of the search space before the
actual search is performed. Very recently, different techniques
have been introduced which restrict the domain and problem
description of an Hierarchical Task Network (HTN) problem
to a smaller subset, since some parts of the domain descrip-
tion might be irrelevant for the given problem at hand [5, 10].
In this paper, we investigate our previously introduced land-
mark technique [5] in more detail, which uses local landmarks
to prune the search space that is to be explored before the ac-
tual search is performed. We further investigate, how search
strategies can take advantage of these extracted local land-
marks.

While the use of landmark tasks is a novelty in hierarchical
planning, it is a familiar concept in classical state-based plan-
ning. There, landmarks are facts that have to hold in some
intermediate state of every plan that solves the problem. The
concept was introduced by Porteous et al. [19] and further
developed by Hoffmann et al. [14] and Zhu and Givan [26],
where landmarks and orderings between them are extracted

1 Institute of Artificial Intelligence, Ulm University, D-89069 Ulm,
Germany, email: forename.surname@uni-ulm.de

from a planning graph of the relaxed planning problem. Other
strands of research arranged landmarks into groups of inter-
mediate goals to be achieved [24] and extended the landmark
concept to so-called disjunctive landmarks [9, 18]. A disjunc-
tive landmark is a set of literals any of which has to be satisfied
in the course of a valid plan. A generalization of landmarks
resulted in the notion of so-called action landmarks [16, 25].
An action is an action landmark if it occurs in every solu-
tion plan. Most of the recent landmark approaches use land-
mark information to compute heuristic functions for a for-
ward searching planner [16, 20] and investigate their relations
to critical-path-, relaxation-, and abstraction-heuristics [12].
In summary, it turned out that the use of landmark infor-
mation can significantly improve the performance of classical
state-based planners.

In hierarchical planning, landmarks are mandatory abstract
or primitive tasks, i.e. tasks that have to be performed by
any solution plan. Local landmarks are abstract or primitive
tasks that are mandatory, given their parent task is manda-
tory (where a parent task is the abstract task that introduced
the local landmark by decomposition). That is, a local land-
mark is also a landmark if its parent is one, too. For an initial
task network that states a current planning problem, a pre-
processing procedure computes the corresponding local land-
marks. It does so by systematically inspecting the methods
that are eligible to decompose the relevant abstract tasks.
Beginning with the (landmark) tasks of the initial network,
the procedure follows the way down the decomposition hierar-
chy until no further abstract tasks qualify as local landmarks.
Using the precondition and effects of primitive tasks, one can
perform a relaxed reachability test [8]. A failure indicates that
the method which introduced the primitive task is no longer
eligible. If the tested primitive task was a local landmark, we
can even get further: its parent abstract task can never be de-
composed into a solution because one of its local landmarks
cannot be achieved. Hence, this abstract (parent) task can
also be pruned without the need of inspecting the primitive
tasks in the other methods for this abstract task. Being able
to prune useless regions of the search space this way, a hi-
erarchical planner performs significantly better than it does
without exploiting the local landmark information.

Before introducing the local landmark extraction procedure
for hierarchical planning in Section 3, we will briefly review
HTN planning in general and our underlying framework and
planning procedure in particular (Section 2). Afterwards, Sec-
tion 4 shows how the information about local landmarks can
be used during planning. It presents experimental results from
a set of benchmark problems of the UM-Translog [1] and



Satellite domains, which give evidence for the considerable
performance increase gained by pre-processing the planning
problem to prune unnecessary parts and by the use of the
novel search strategies using the local landmarks. The paper
ends with possible extensions to our approach (Section 5) and
with some concluding remarks in Section 6.

2 Formal Framework

Hierarchical Task Network (HTN) planning is based on the
concepts of tasks and methods [6]. Abstract tasks represent
compound activities like making a business trip or trans-
porting certain goods to a specific location. Primitive tasks
correspond to classical planning operators. Hierarchical do-
main models hold a number of methods for each abstract
task. Each method provides a task network, also called par-
tial plan, which specifies a pre-defined (abstract) solution of
the corresponding abstract task. A planning problem consists
of finding a decomposition of the initial task network, using
the tasks and methods provided by the domain model. Thus,
the planning problem is solved by incrementally decomposing
the abstract tasks in the initial task network until it contains
only primitive tasks and is consistent w.r.t. their ordering and
causal structure. The decomposition of an abstract task by an
appropriate method replaces the abstract task by the partial
plan specified by the respective method.

Our approach [2] relies on a hybrid planning framework [7,
15], which combines HTN planning with concepts of partial-
order-causal-link (POCL) planning. The resulting systems in-
tegrate task decomposition with explicit causal reasoning.
Therefore, they are able to use predefined standard solutions
like in pure HTN planning and can thus benefit from the
landmark technique we will introduce below; they can also
develop (parts of) a plan from scratch or modify a default
solution (i.e., a method’s task network) in cases where the
initial state deviates from the presumed standard. It is this
flexibility that makes hybrid planning particularly well suited
for real-world applications [4, 7].

In our framework, a task network or partial plan P =
〈S,≺, V, C〉 consists of a set of plan steps S, i.e., (partially)
instantiated task schemata, augmented with a unique label to
differentiate between multiple occurrences of the same task.
We denote by Tasks(S) the set of (partially) instantiated
task schemata in S, i.e., S without labels. It also contains
a set of ordering constraints ≺ that impose a partial or-
der on the plan steps, a set of variable constraints V , and
a set C of causal links. Variable constraints are (in-) equa-
tions between variables or between variables and constants.
A causal link si →ϕ sj indicates that the precondition ϕ
of plan step sj is an effect of plan step si and is supported
this way. A domain model D = 〈T,M〉 includes a set of task
schemata and a set of decomposition methods. A task schema
t(τ ) = 〈prec(t(τ )), add(t(τ )), del(t(τ ))〉 specifies the precon-
ditions as well as the positive and negative effects of a task.
Preconditions and effects are sets of literals and τ̄ = τ1 . . . τn
are the task parameters. In the hybrid setting, both primitive
and abstract tasks show preconditions and effects. This en-
ables the use of POCL planning operations even on abstract
levels. However, in this paper we restrict our language to pure
HTN; preconditions and effects are thus omitted for abstract
tasks. A method m = 〈t, P 〉 relates an abstract task t to a

partial plan P , which represents an (abstract) solution or “im-
plementation” of the task. In general, a number of different
methods are provided for each abstract task. Please note that
no application conditions are associated with the methods,
as opposed to other representatives of HTN-style planning.
A planning problem Π = 〈D, sinit, Pinit〉 includes a domain
model D, an initial state sinit, and Pinit, which represents an
initial partial plan. Please note, that in our hybrid planning
framework, one can also specify a goal state. However, since
we restrict ourselves in this paper to pure HTN planning, the
goal state is omitted.

Based on these strictly declarative specifications of plan-
ning domains and problems, hybrid and HTN planning is per-
formed by refining an initial partial plan Pinit of Π stepwise
until a partial plan P = 〈S,≺, V, C〉 is obtained that satisfies
the following solution criteria:

1. P is a refinement of Pinit, i.e., it is a successor of the initial
plan in the induced search space (cf. Definition 1),

2. each precondition of a plan step in P is supported by a
causal link in C,

3. the ordering and variable constraints are consistent, i.e.,
the ordering does not induce cycles on the plan steps and
the (in-) equations of variable constraints are free of con-
tradiction,

4. none of the causal links in C is threatened, i.e., for each
causal link si →ϕ sj the ordering constraints ensure that
no plan step sk with effect ¬ϕ can be ordered between plan
steps si and sj , and

5. all plan steps in S are primitive tasks.

Before we present our planning algorithm in more detail, we
define the search space induced by the HTN planning problem
Π. Refinement steps include the decomposition of abstract
tasks by appropriate methods, the insertion of causal links
to support open preconditions of plan steps as well as the
insertion of ordering and variable constraints. We call such a
refinement step a plan modification.

Definition 1 (Induced Search Space). Let PΠ = 〈V, E〉
be the directed acyclic graph which represents the (possibly
infinite) search space induced by a planning problem Π =
〈D, sinit, Pinit〉. Then, the set of vertexes V is the set of plans
in the induced search space and the set of edges E corresponds
to the set of plan used modifications. By abuse of notation,
we write P ∈ PΠ to state P ∈ V. The root of PΠ is the initial
plan of Π; thus, Pinit ∈ PΠ . The direct successors of a plan
P ∈ PΠ are all Plans P ′, such that P ′ resulted from P by
applying a plan modification m to P . Then, m ∈ E.

Now, we present our planning algorithm (Algorithm 1)
which takes the initial plan of the planning problem Π as
an input and refines it stepwise until a solution is found. Our
algorithm performs an informed search, guided by so-called
search strategies, in the search space induced by the HTN
planning problem Π (cf. Definition 1).

The fringe of the algorithm is a plan sequence 〈P1 . . . Pn〉
ordered by the used search strategy. It contains all non-visited
plans that are direct successors of visited non-solution plans.
According to the used search strategy, a plan Pi leads more
quickly to a solution than plans Pj for j > i. The current
plan under consideration is always the first plan of the fringe.



Algorithm 1: Planning Algorithm

Input : The sequence Fringe = 〈Pinit〉.
Output: A solution or fail.

1 while Fringe = 〈P1 . . . Pn〉 6= ε do

2 F ← fFlawDet(P1)
3 if F = ∅ then return P1

4 〈m1 . . .mn′〉 ← fModOrd(
⋃
f∈F

fModGen(f))

5 succ← 〈app(m1, P1) . . . app(mn′ , P1)〉
6 Fringe← fPlanOrd(succ ◦ P2 . . . Pn)

7 return fail

The planning algorithm loops as long as no solution is found
and there are still plans to refine (line 1). Hence, in line 2,
the flaw detection function fFlawDet calculates all flaws of the
current plan. A flaw is a plan component that violates a so-
lution criterion. For instance, in the HTN planning setting,
(the occurrence of) an abstract task is a flaw. If no flaws can
be found, the plan is a solution and is returned (line 3). In
line 4, all plan modifications are calculated by the modifi-
cation generating function fModGen, which address all found
flaws. Afterwards, the modification ordering function fModOrd

orders all these modifications according to a given strategy.
Finally, this fringe is updated in two steps: First, the plans re-
sulting from applying the modifications are calculated (line 5)
to be inserted at the head of the fringe in line 6. Afterwards,
the plan ordering function fPlanOrd takes the updated fringe
and orders it according to its strategy. This step can also
be used in order to discard some plans (i.e., to delete some
plans permanently from the fringe). This is useful for plans
which contain unresolvable flaws like an inconsistent ordering
of tasks. If the fringe becomes empty, no solution exists and
fail gets returned.

In contrast to other systems, which implicitly define their
search strategy by their search procedure, our approach
– implemented in the planning environment PANDA [21]
(Planning and Acting in a Network Decomposition
Architecture) – explicitly defines the search strategy: It is
the result of the combination of the used modification and
plan ordering functions. Let us take a look at a simple exam-
ple strategy for clarification: To perform a depth first strat-
egy, the plan ordering strategy has to be the identity (i.e.,
fPlanOrd(P ) = P for any plan sequence P ), whereas the mod-
ification ordering strategy fModOrd can be arbitrary (but de-
cides, which branches to visit first). Thus, the plan ordering
strategy is used to prioritize the plans; several strategies can
be concatenated for tie-braking. The plan ordering strategy
uses also its input sequence for tie braking: If two plans are
still invariant after application of the plan ordering function,
the order given in the input is used.

Many different plan ordering strategies2 have been de-
scribed and evaluated in our previous work [21, 22, 23]. In
this work, we will only sketch those used in the experiments
(cf. Subsection 4.1).

2 In previous work, we called the plan and modification ordering
functions plan and modification selection functions, respectively.

3 Local Landmark Extraction

For a given hierarchical planning problem Π =
〈D, sinit, Pinit〉, global landmarks3 are the tasks that
occur in every sequence of decompositions leading from the
initial task network Pinit to a solution plan. However, we
do not calculate (global) landmarks, but – what we call
– local landmarks. Local landmarks are landmarks with
respect to a given abstract task. We will define them more
formally in this section. The local landmark extraction is
performed using a so-called task decomposition tree (TDT)
of Π. Figure 1 depicts such a tree schematically. The TDT
of Π is an AND/OR tree that represents all possible ways
to decompose the abstract tasks of Pinit by methods in D
until a primitive level is reached or a task is encountered
that is already included somewhere in the TDT. Each level
of a TDT consists of two parts: a task and a method level.
Method nodes are AND nodes, because their children are
the tasks that occur in the partial plan of the respective
method, all of which have to be performed in order to apply
the corresponding method. Task nodes, on the other side, are
OR nodes, because their children are the methods that can
be used to decompose the respective task. To avoid loops,
each abstract task is decomposed only once in the TDT;
hence, all but one identical and fully grounded abstract tasks
become leaf nodes in the TDT. Other leaf nodes are the
primitive tasks. A TDT is built by forward chaining from the
(grounded) abstract tasks in the initial task network until all
nodes of the fringe are leaf nodes. The root node on level 0
is an artificial method node that represents the initial partial
plan Pinit.

and

 and and and

 Method level1

Task level1                                                                                   

Task level2

 Artificial level  Root

 t2t1

  method 11   method 12   method 13   method 21   method 22

  t111    t112   t113   t121   t131    t132   t211   t212   t221

Figure 1. A schematic task decomposition tree.

Before we can formally define landmarks and local land-
marks, we first need to define plan and solution sequences,
respectively.

Definition 2 (Plan and Solution Sequences). For a planning
problem Π and a given plan P ∈ PΠ , let SeqΠ(P ) be the set of
all plan sequences in PΠ rooted in that plan, i.e., SeqΠ(P ) =
{〈P1 . . . Pn〉|P = P1, P1 ∈ PΠ and Pi+1 is a direct successor
of Pi ∈ PΠ for all 1 ≤ i < n}.

The set of all solution sequences rooted in P is then
SolSeqΠ(P ) = {〈P1 . . . Pn〉 ∈ SeqΠ(P )|Pn solution of Π, n ≥
1} ⊆ SeqΠ(P ).

Definition 3 (Landmark). A landmark is a grounded (i.e.,
fully instantiated) task that occurs in every sequence of decom-
positions leading from the initial task network to a solution.
That is, the task t is called a landmark of Π = 〈D, sinit, Pinit〉,

3 In the following, we will only call them landmarks.



if for every sequence 〈P1 . . . Pn〉 ∈ SolSeqΠ(Pinit) there is an
1 ≤ i ≤ n, such that t ∈ Tasks(Pi).

Whereas a landmark has to occur in every decomposition
sequence of a solution (which is rooted in the initial plan),
a local landmark only has to occur in each solution sequence
rooted in a plan containing a specific task t.

Definition 4 (Local Landmark of an Abstract Task). For a
given grounded abstract task t, let PΠ(t) be the set of all plans
in PΠ containing t, i.e., PΠ(t) = {P ∈ PΠ |t ∈ Tasks(P )}.

We call the grounded task t′ a local landmark of t, if for
all P ∈ PΠ(t) holds, that for all sequences 〈P1 . . . Pn〉 ∈
SolSeqΠ(P ) there is a Pj with j > 1 such that t′ ∈ Tasks(Pj).

We use the next definition to calculate all tasks that occur
in all available methods for the same abstract task.

Definition 5 (Common Task Set Operator ∩̂). Let t be an
abstract task in the TDT and mi = 〈t, 〈Si,≺i, Vi, Ci〉〉 and
mj = 〈t, 〈Sj ,≺j , Vj , Cj〉〉 two of its methods in the TDT. That
is, both t and its methods are fully grounded. Then, the Com-
mon Task Set Operator ∩̂ of mi and mj is defined as

mi ∩̂mj = Tasks(Si) ∩ Tasks(Sj)

Using this definition, we can calculate the intersection of
an abstract task t, I(t), by intersecting all available methods.
Obviously, the tasks contained in I(t) are local landmarks, be-
cause these tasks are contained in all solution sequences that
are rooted in a plan containing t. It is also notable, that all
tasks in I(t) are local landmarks of t if t is not contained in any
solution sequence4 (i.e., if for all 〈P1 . . . Pn〉 ∈ SolSeqΠ(Pinit)
holds, that there is no Pi, 1 ≤ i ≤ n such that t ∈ Tasks(Pj)).

However, not all local landmarks of an abstract task can be
detected that way because not all local landmarks have to be
in such an intersection.

We would also like to emphasize, that local landmarks are
in general no landmarks. This is obvious, because one can
calculate the local landmarks of an abstract task which is not
contained in all valid decompositions (or even in any valid
decomposition) of the initial plan.

Based on the definition of the common task set operator, we
will now define the remaining task set operator which calcu-
lates the set of tasks in which two (grounded) methods differ.

Definition 6 (Remaining Task Set Operator ∪̂). Let t be
an abstract task in the TDT and mi = 〈t, 〈Si,≺i, Vi, Ci〉〉
and mj = 〈t, 〈Sj ,≺j , Vj , Cj〉〉 two of its methods in the TDT.
Then, the Remaining Task Set Operator ∪̂ of mi and mj is
defined as

mi ∪̂mj = {Tasks(Si) \ (mi ∩̂mj),Tasks(Sj) \ (mi ∩̂mj)}

Analogously to the intersection I(t) of an abstract task t, we
can define its remaining tasks R(t), by applying the remaining
task set operator to all methods of t in the TDT. I(t) and R(t)
can be regarded as a partition of the methods of t in the TDT,
i.e., it holds: {I(t) ∪ r|r ∈ R(t), if R(t) 6= ∅ or r = ∅, else} =
{Tasks(P )|there is a method m = 〈t, P 〉 in the TDT}.

The landmark extraction algorithm (Algorithm 2) calcu-
lates for each abstract task occurring in the TDT these two

4 In fact, all grounded tasks t′ are local landmarks of t if t is not
contained in any solution sequence.

Table 1. A schematic landmark table, showing in each line an

ground instance of an abstract task, the intersection of its decom-

positions and the remaining task sets.

abstr. Tasks Intersection Remaining

t1 I(t1) R(t1)
t2 I(t2) R(t2)
...

...
...

sets and stores it into a so-called landmark table. Table 1
shows such a landmark table schematically. The algorithm
takes a TDT5, which is computed before the algorithm is
called, as input and returns a landmark table after its termi-
nation.

Intuitively, the algorithm simply tests all primitive tasks for
relaxed reachability, starting with the initial plan (the root
of the TDT) and proceeding level by level of the TDT. If a
task can be proven unreachable, the method introducing this
task is pruned from the TDT and all its sub-nodes (and so
forth). After all infeasible methods of an abstract task t have
been pruned from the TDT, this task, its intersection, and
the remaining tasks are stored into the landmark table.

Now, we will take a look, how this is achieved by our al-
gorithm: First, the landmark table and a set for backward
propagation get initialized (line 1). Afterwards, each abstract
task, which is not yet stored into the landmark table is con-
sidered level by level of the TDT (line 2 to 4). For the current
abstract task at hand, line 6 to 8 calculate the intersection
and the remaining tasks in the yet unpruned TDT according
to Definition 5 and 6. In line 8, we subtract the empty set from
R(t), because we are only interested in the tasks, that are ac-
tually remaining; if there are no remaining tasks, R(t) should
be empty, instead of containing an empty set. After the tasks
introduced by decomposition of t have been partitioned into
I(t) and R(t), these sets are analyzed for infeasibility. This
test is performed by a relaxed reachability analysis. First, we
study the primitive tasks of I(t) (line 9). If such a task can be
proven to be infeasible, all methods of t become obsolete and
can hence be pruned from the TDT6 (line 10 and 12). After
this test, each remaining task set is tested for reachability.
If an infeasible task can be found, only this specific method
gets pruned from the TDT (line 13 to 17). If something was
pruned, the loop (line 5 to 18) enters another cycle, because
the set I(t) might have grown. If no more pruning is possi-
ble, the intersection and remaining task sets for t are stored
into the landmark table in line 19. When storing an entry
in line 21, it is checked whether the stored abstract task is
feasible or not (an abstract task is infeasible if it does not
have any methods left, i.e., if I(t) and R(t) are empty). If
some abstract task could actually be proven infeasible, it is
stored for backward propagation, because again all methods
containing this abstract task can be pruned from the TDT
and from the landmark table. Finally, if all abstract tasks are
checked, the backward propagation procedure is called with
the current landmark table and TDT in line 22.

5 We use the indefinite article, because only the task decomposition
graph is unique, whereas the resulting task decomposition tree
depends on the chosen order in which tasks get decomposed.

6 In the presented algorithm, the remaining task sets would still be
tested, which is obviously not necessary. However, for the sake of
readability, we did not handle this case in the algorithm.



Procedure propagate takes as input the already filled land-
mark table, the possibly pruned TDT and a set infeasible

of abstract tasks which have been proved infeasible due to no
remaining methods in the TDT. It works tail-recursively and
returns the final landmark table as soon as no propagation
is possible (line 1). To this end, it first takes and removes
some arbitrary task t′ from the set infeasible. Because this
abstract task was proven infeasible, all methods containing it
have to be removed from the TDT. As a consequence of this
pruning, the intersection and remaining task sets have to be
updated; additionally, further propagation can now be possi-
ble. To calculate the methods that can possibly be pruned,
all parent tasks of t′ are identified (line 3). Then, for all these
parents (line 4), the respective methods are removed in line 5.
Because methods were removed, the intersection and the re-
maining task sets could have changed again. Hence, they are
recalculated in line 6 to 8. Next, the the old landmark table
entry of the current parent t is removed and replaced by the
new one (line 9). In line 11, it is tested again, whether the
new landmark table entry corresponds to an infeasible ab-
stract task. If so, it is put into the set infeasible for later
testing. The procedure is then called with the modified pa-
rameters in line 1.

Without a formal proof, we want to mention that Algo-
rithm 2 (i.e., the initial landmark table calculation as well as
the backward propagation) always terminates. For the first
part of the algorithm, this is easy to see because both loop
conditions (line 2 and 3) cannot be modified within the loops.
For the second part, i.e., the propagate procedure, we have
to show that the set infeasible becomes empty eventually.
This is the case because each task gets inserted at most once
and will be removed at some point.

After the algorithm terminated, the TDT does not have to
be considered anymore. All necessary information is encoded
in the landmark table.

As we have already pointed out, we only calculate lo-
cal landmarks. That is, given a landmark table entry
(t,I(t),R(t)), I(t) contains some of the local landmarks of t,
which, in general, don’t have to be actual landmarks because
t was not proven to be a landmark. However, all local land-
marks of the abstract tasks in the task level 1 of the TDT are
also actual landmarks, because all tasks in the task level 1
are those contained in the initial task and hence landmarks.
Thus, if we restrict our local landmark extraction procedure
to calculate only the local landmarks of tasks which are (lo-
cal) landmarks by themselves, all tasks in the I(t) sets in
the local landmark table returned are actual landmarks, too.
These landmarks are, however, of limited use because every
decomposition contains them anyway. Thus, a “guiding” to-
wards these landmarks as done in classical planning does not
bring any benefit.

Example

In order to illustrate our landmark extraction technique, let us
consider a simple example from the UM-Translog domain [1].
Assume a package P1 is at location L1 in the initial state and
we would like to transport it to a customer location L3 in the
same city. Figure 2 shows a part of the task decomposition
tree of this example.

The local landmark extraction algorithm detects that the

Algorithm 2: Local landmark Extraction Algorithm

Input : A task decomposition tree TDT.
Output: The filled landmark table LT.

1 LT ← ∅, infeasible← ∅
2 for i← 1 to TDT.maxDepth() do
3 foreach abstract task t in level i of TDT do
4 if LT contains an entry for t then continue
5 repeat
6 Let M be the methods of t in the TDT.
7 I(t)← ∩̂

m∈M
m

8 R(t)← ( ∪̂
m∈M

m) \ {∅}

9 foreach primitive task t′ ∈ I(t) do
10 if t′ can be proven infeasible then
11 remove all m ∈M from the TDT,

including all sub-nodes.
12 break

13 foreach remaining task set r ∈ R(t) do
14 foreach primitive task t′ ∈ r do
15 if t′ can be proven infeasible then
16 remove the method m = 〈t, P 〉, with

Tasks(P ) = I(t) ∪ r from the TDT,
including all sub-nodes.

17 continue

18 until no method was removed from TDT
19 LT ← LT ∪ {(t, I(t), R(t))}
20 if I(t) = R(t) = ∅ then
21 infeasible← infeasible ∪ {t}

22 return propagate(LT,TDT,infeasible)

first level in the TDT contains only one abstract task t
= transport(P1,L1,L3) and that there is only one method,
Pi ca de, that can decompose the task into a partial plan,
which contains the subtasks pickup(P1), carry(P1, L1, L3),
and deliver(P1).
I(t) becomes {pickup(P1),carry(P1, L1, L3),deliver(P1)}

and R(t) = ∅. The current abstract task and the sets I(t)
and R(t) are entered as the first row of the landmark table as
shown in Table 2.

The landmark extraction algorithm then takes the (un-
changed) TDT to investigate the next tree level. The ab-
stract tasks to be inspected on this level are pickup(P1) and
carry(P1, L1, L3). The primitive task deliver(P1) is tested
and considered executable. Suppose, the task t = pickup(P1)
is chosen first in line 3 of algorithm 2. As shown in Fig-
ure 2, the TDT accounts for three methods to decompose this
task: Pickup hazardous, Pickup normal, and Pickup valuable.
By computing the common task set and the remaining
task sets we get I(t) = {collect fees(P1)}, and R(t) =
{{have permit(P1)}, {collect insurance(P1)}}. At this point,
the relaxed reachability analysis is performed. First, col-
lect fees(P1) is being tested, because it is contained in the
intersection I(t). Suppose, this task can not be proven to be
infeasible. Then, each primitive task in each set r ∈ R(t)
has to be checked. Assume the primitive task have permit(P1)
is feasible, whereas collect insurance(P1) is not. The method
Pickup valuable is therefore deleted from the TDT. After an



 and

 and

 Method level3

 and and

 Method level2

 Method level1

 Task level1

Artificial level   Root

  transport(P1 ,  L1 ,  L3)

  Pi_ca_de 

 pickup(P1)   carry(P1,  L1, L3)  deliver(P1)

  Pickup_valuable

Task level2

Task level3  collect_fees(P1)  collect_fees(P1)  collect_insurance(P1)

  Pickup_normal

collect_fees(P1)

  Pickup_hazardous

 have_permit(P1)

  Carry_via_hub Carry_normal

 carry_direct(T1, P1, L1, L3)  carry_via_hub(........)  go_through_tcenters(......)

Figure 2. Part of the TDT for the transportation task

Table 2. Example landmark table containing the first three entries for the transportation task illustrated in Figure 2. The sets in the

right most column are indexed by the method’s name that contains its tasks.

abstr. Task Intersection Remaining

transport(P1, L1, L3) {pickup(P1),carry(P1, L1, L3),deliver(P1)} ∅
pickup(P1) {collect fees(P1)} {{have permit(P1)}Pickup hazardous}

carry(P1, L1, L3) {{carry direct(T1, P1, L1, L3)}} ∅

Procedure propagate(LT,TDT,infeasible)

Input : A landmark table LT, a task decomposition
tree TDT, possibly pruned, and a set of
abstract tasks infeasible, which have been
proved infeasible.

Output: the updated landmark table LT, in which
methods are pruned that contain infeasible
abstract tasks.

1 if infeasible = ∅ then return LT
2 infeasible← infeasible \ {t′}, where t′ ∈ infeasible.
3 parents← {t|(t, I(t), R(t)) ∈ LT, t′ ∈ I(t) ∪

⋃
r∈R(t)

r}
4 foreach t ∈ parents do
5 Remove all methods from the TDT, that contain t′ in

its plan, i.e., all m = 〈t, P 〉 with t′ ∈ Tasks(P ).
6 Let M be the methods of t in the TDT.
7 I(t)← ∩̂

m∈M
m

8 R(t)← ( ∪̂
m∈M

m) \ {∅}

9 LT ← (LT\{(t, I ′(t), R′(t)) ∈ LT}) ∪ {(t, I(t), R(t))}
10 if I(t) = R(t) = ∅ then
11 infeasible← infeasible ∪ {t}

12 return propagate(LT,TDT,infeasible)

additional iteration in which I(t) and R(t) get recalculated,
the current abstract task t = pickup(P1), the set I(t), and the
modified set R(t) are added to the landmark table as depicted
in the second line of Table 2. From the fact that R(t) contains
only one set r, we can conclude that there is another method
with no remaining tasks (if there were no such method, the
tasks of r ∈ R(t) would be contained in I(t).

In the second iteration (line 3) the abstract task t =
carry(P1, L1, L3) is considered. The methods Carry normal
and Carry via hub are available to decompose this task. We
obtain I(t) = ∅ and R(t) = {{carry direct(T1, P1, L1, L3)},

{carry via hub(. . . ), go through tcenters(. . . )}}. Suppose the
primitive task go through tcenters(. . . ) is infeasible. The sub
tree with root carry via hub(. . . ) has then to be removed
from the TDT. Because the TDT was changed, the itera-
tion (line 5 to 18) enters another cycle. Because there is
now only one method left, I(t) now contains all tasks of
this remaining method. Hence, the current abstract task t
= carry(P1, L1, L3) together with the modified I(t) and R(t)
are added to the landmark table as depicted in the last line
of Table 2.

4 Landmark Exploitation

The information about landmarks can be exploited in two
ways: The first is to deduce heuristic guidance from the knowl-
edge about which tasks have to be decomposed on refinement
paths that lead towards a solution. But before we investigate
into this matter, we will present a second way of landmark ex-
ploitation, namely the reduction of domain models or, more
precisely, the transformation of a universal domain model into
one that includes problem-specific pruning information.

4.1 Domain Model Reduction

During the construction of the landmark table, the feasibility
check and the consecutive propagation of its result into the
abstract task level lead to a pruning of the task decomposition
tree. The result of this analysis implies that if a method is
removed from the TDT during the operation of our landmark
extraction algorithm, it can be safely ignored as a refinement
option during plan generation.

We consequently supply our refinement generating module
with the landmark table for the current planning problem
and verify for every incoming abstract task flaw, which of the
methods specified in the domain model are reasonably appli-
cable. However, the landmark table is built from grounded
tasks, while the plan generation procedure operates on lifted



instances for which the final grounding is yet to be computed.
We therefore calculate all groundings of the abstract task at
hand that are consistent with the current variable constraints
and match these grounded tasks t with the entries in the land-
mark table. The union of the (lifted) method schemata that
constitute the (grounded) instances in the Remaining Task
Sets R(t) is the set of method schemata that we consider for
application to the currently flawed abstract task. Obviously,
the earlier a task is addressed in the planning process, the
less variable constraints are typically introduced in the par-
tial plan, the more task groundings are implied by the lifted
instance, and consequently the less probable is one of its meth-
ods pruned by this technique.

In order to quantify the effect of this landmark exploitation
technique, we have performed several benchmark tests on the
UM-Translog domain with various different search strategies.
Table 3 shows the domain model sizes after our pruning pro-
cess. According to this table, the pruning technique achieves a
reduction of the number of abstract task instances that ranges
between 33% and 43%, while the reduction of the number of
inapplicable methods per instance varied between 27% and
41%.

Table 3. This table shows the remaining sizes of the domain

model after our reduction for typical problems from the UM-

Translog domain. On all problems that are grouped together the

same reduction was achieved.

Problem
abstr. Tasks Methods

(of 21) (of 51)

Regular Truck Problems

12
(57%)

30
(59%)

Hopper Truck,
Auto Truck,
Regular Truck 3 Locations
Regular Truck 2 Region,
Regular Truck 1,
Regular Truck 2,

Various Truck Type Problems
12

(57%)
32

(63%)
Flatbed Truck,
Armored-R-Truck

Traincar Problems

14
(67%)

32
(63%)

Auto Traincar,
Mail Traincar,
Auto Traincar bis,
Refrigerated Regular Traincar

Airplane Problem 14
(67%)

37
(73%)Airplane

In theory, it is quite intuitive that a reduced domain model
leads to an improved performance of the planning system.
It is however hard to predict the actual effect the pruning
information on the grounded instance level has on the lifted
computations, in particular taking into account that the land-
mark table typically contains a number of “distracting” local
landmarks that are located on non-solution paths. In order
to quantify the practical performance gained by the hierar-
chical landmark technique, we therefore conducted a series of
experiments in the PANDA planning environment [21]. The
planning strategies we used are representatives from the rich
portfolio provided by PANDA, which has been discussed in
previous work [21, 22, 23]. We briefly review the ones on which
we based our experiments.

As was already mentioned in Section 2, the search strategy

is encoded by the combination of the modification and plan
ordering functions. We distinguish ordering principles that
are based on a prioritization of certain flaw or modification
classes and strategies that opportunistically choose from the
presented set. We call the latter ones flexible strategies.

Representatives for inflexible strategies are the classical
HTN strategy patterns that try to balance task expansion
with respect to other plan refinements. The SHOP strategy,
like the system it is named after [17], prefers task expansion
for the abstract tasks in the order in which they are to be ex-
ecuted. The expand-then-make-sound (ems) modification or-
dering strategy alternates task expansion modifications with
other classes, resulting in a “level-wise” concretion of all plan
steps. The third type of classical HTN strategies – the pref-
erence of expansion as it has been realized in the UMCP sys-
tem [6] – has been omitted in this survey because it trivially
benefits from the reduced method set.

As for the flexible modification orderings, we included the
well-established Least Committing First (lcf) paradigm, a
generalization of POCL strategies that prioritizes those modi-
fications higher that address flaws for which the smallest num-
ber of alternative solutions has been proposed. From previ-
ous work on planning strategy development we deployed two
HotSpot-based strategies: HotSpots denote those components
in a plan that are referred to by multiple flaws, thereby quan-
tifying to which extent solving one deficiency may interfere
with the solution options for coupled components. The Di-
rect Uniform HotSpot (du) strategy consequently avoids those
modifications which address flaws that refer to HotSpot plan
components. While the du heuristic takes all flaws uniformly
into account when calculating their interference potential, the
Direct Adaptive HotSpot (da) strategy puts problem-specific
weights on the binary combinations of flaw types that occur
in the plan. The strategy adapts to a repeated occurrence
of type combinations by increasing their weights: If abstract
task flaws happen to coincide with causal threats, their com-
bined occurrence becomes more important for this plan gen-
eration episode. As a generalization of singular HotSpots to
commonly affected areas of plan components, the HotZone
(hz ) modification ordering takes into account connections be-
tween HotSpots and tries to give modifications that deal with
these clusters a low priority.

Plan ordering functions control the traversal through the
refinement space that is provided by the modification order-
ing functions. The strategies in our experimental evaluation
were based on the following five components: The least com-
mitment principle on the plan ordering level is represented
in two different ways, namely the Fewer Modifications First
(fmf) strategy, which prefers plans for which a smaller num-
ber of refinement options has been announced, and the Less
Constrained Plan (lcp) strategy, which is based on the ratio
of plan steps to the number of variable constraints and causal
links in the plan.

The HotSpot concept can be lifted on the plan ordering
level: The Fewer HotZone (fhz) strategy prefers plans with
fewer HotZone clusters. The rationale for this search princi-
ple is to focus on plans in which the deficiencies are more
closely related and that are hence candidates for an early
decision concerning the compatibility of the refinement op-
tions. The fourth strategy operates on the HotSpot principle
implemented on plan modifications: the Fewer Modification-



based HotSpots (fmh) function summarizes for all refinement-
operators that are proposed for a plan the HotSpot values of
the corresponding flaws. It then prefers those plans for which
the ratio of plan modifications to accumulated HotSpot val-
ues is less. By doing so, this search schema focuses on plans
that are expected to have less interfering refinement options.

Finally, since our framework’s representation of the SHOP
strategy solely relies on modification ordering, a depth first
plan selection is used for constructing a simple hierarchical
ordered planner (that is, the plan ordering function is the
identity function).

It is furthermore important to mention that our strategy
functions can be combined into selection cascades in which
succeeding components decide on those cases for which the
result of the preceding ones is a tie: With s1 ◦ s2 we denote,
that the strategy s1 is applied first and afterwards strategy
s2 for tie-braking.

We have built five combinations from the components
above, which can be regarded as representatives for com-
pletely different approaches to plan development. Please note
that the resulting strategies are general domain-independent
planning strategies, which means that they are not tailored to
the application of domain model reduction by pre-processing
in any way.

We ran our experiments on two distinguished planning do-
mains. The Satellite domain is an established benchmark in
the field of non-hierarchical planning. It is inspired by the
problem of managing scientific stellar observations by earth-
orbiting instrument platforms. Our encoding of this domain
regards the original primitive operators as implementations of
abstract observation tasks, which results in a domain model
with 3 abstract and 5 primitive tasks, related by 8 methods.
The second domain is known as UM-Translog, a transporta-
tion and logistics model originally written for HTN planning
systems. We adopted its type and decomposition structure
to our representation which yielded a deep expansion hierar-
chy in 51 methods for decomposing 21 abstract tasks into 48
different primitive ones.

We have chosen the above domain models because of the
problem characteristics they induce: Satellite problems typi-
cally become difficult when modeling a repetition of observa-
tions, which means that a small number of methods is used
multiple times in different contexts of a plan. The evaluated
scenarios are thus defined as observations on one or two satel-
lites. UM-Translog problems, on the other hand, typically dif-
fer in terms of the decomposition structure, because specific
transportation goods are treated differently, e.g., toxic liquids
in trains require completely different methods than transport-
ing regular packages in trucks. We consequently conducted
our experiments on qualitatively different problems by speci-
fying various transportation means and goods.

Table 4 and 5 show the runtime behavior of our system
in terms of the size of the average search space and CPU
time consumption for the problems in the UM-Translog and
Satellite domains, respectively. The size of the search space
is measured in the number of plans visited for obtaining the
first solution. Reviewing the overall result, it is quite obvious
that the landmark pre-processing pays off in all strategy con-
figurations and problems. It does so in terms of search space
size as well as in terms of runtime. The only exception to
this is the problem concerning air freight, on which using the

pruned domain model has a measurable negative effect (de-
crease of performance of 18%). In two configurations in the
easiest Satellite problem the search space cannot be reduced
but a negligible overhead is introduced by pre-processing.

The average performance improvement over all strategies
and over all problems in the UM-Translog domain is about
40% as is documented in Table 4. The biggest gain is achieved
in the transportation tasks that involve special goods and
transportation means, e.g., the transport of auto-mobiles,
frozen goods, and mail via train saves between 53% and
71%. In general, the flexible strategies profit from the land-
mark technique, which gives further evidence to the previ-
ously obtained results that opportunistic planning strategies
are very powerful general-purpose procedures and in addition
offer potential to be improved by pre-processing methods. The
SHOP-style strategy cannot take that much advantage of the
reduced domain model, because it does not adapt its focus
on the reduced method alternatives. It continues to address
the abstract tasks in the order of their inteded execution, re-
gardless of the opportunities that the changes in the method
structure may offer. We believe, however, that there may be
other possibilities for a SHOP strategy to take into account
the reduced domain models.

The Satellite domain does not benefit significantly from the
landmark technique due to its shallow decomposition hierar-
chy. We are, however, able to solve problems for which the
participating strategies do not find solutions within the given
resource bounds otherwise.

4.2 Landmark-Aware Strategies

Our landmark-aware strategies are based on the idea that
the refinement options, which are basically stored in the re-
maining task set column of the landmark table, estimate an
upper bound for the number of expansion refinements that an
abstract task requires before a solution is found. In the pre-
vious example (see Table 2), the implementation options for
the abstract task pickup can be completely explored via the
Pickup hazardous and Pickup normal methods. This heuristic
is only a rough estimation for the “expansion effort” because
the table may contain tasks that turn out to be un-achievable
and it does not take into account the refinement effort it takes
to make an implementation operationable on the primitive
level. For our first strategies, we assume that all methods de-
viate more or less to the same amount in terms of both factors.
We will see that this simplification already yields a heuristic
with good performance.

Our first modification ordering function lm1 is defined as
follows:

Definition 7 (Landmark-Aware Ordering lm1). Let fi and
fj be two abstract task flaws in a plan P and let ti and tj be
ground instances of the abstract tasks that are compatible with
the (in-) equations in the variable constraints of P and that
are referenced by fi and fj, respectively. Furthermore, let the
landmark table contain corresponding entries (ti, I(ti), R(ti))
and (tj , I(tj), R(tj)).

The modification ordering function lm1 then orders a plan
modification mi before mj if and only if mi addresses fi, mj

addresses fj, and |R(ti)| < |R(tj)| holds.

This strategy implements a rationale that is similar to the



Table 4. Results for the UM-Translog domain. The column pruned refers to the reduced domain models, whereas unpruned refers to

the original ones (cf. Table 3). The tests were run with the planning environment PANDA [21] on a machine with a 3 GHz CPU and

256 MB Heap memory for the Java VM. Space refers to the number of created plans and Time refers to the used time in seconds including

pre-processing. Values are the averages of three runs. Dashes indicate that no solution was found within a limitation of 5,000 created nodes

and a time limit of 150 minutes.

Problem
Modification ordering Plan ordering unpruned pruned

function fModOrd function fPlanOrd Space Time Space Time

Hopper
Truck

lcf ◦ hz fmh ◦ fmf 72 147 41 95
lcf ◦ ems fmh ◦ fmf 101 211 72 174
lcf ◦ du fhz ◦ fmf 75 155 46 99
hz ◦ lcf fhz ◦ lcp ◦ fmf 71 143 54 115

SHOP Strategy 160 323 89 212

Flatebed
Truck

lcf ◦ hz fmh ◦ fmf 81 182 58 40
lcf ◦ ems fmh ◦ fmf 120 269 90 216
lcf ◦ du fhz ◦ fmf 96 216 54 129
hz ◦ lcf fhz ◦ lcp ◦ fmf 130 299 69 162

SHOP Strategy 243 595 98 257

Auto
Truck

lcf ◦ hz fmh ◦ fmf 119 301 85 236
lcf ◦ ems fmh ◦ fmf 191 443 114 298
lcf ◦ du fhz ◦ fmf 129 314 92 251
hz ◦ lcf fhz ◦ lcp ◦ fmf 183 469 157 413

SHOP Strategy 226 558 164 433

lcf ◦ hz fmh ◦ fmf 149 377 73 203
Regular lcf ◦ ems fmh ◦ fmf 234 613 105 206
Truck lcf ◦ du fhz ◦ fmf 241 483 131 370

3 Location hz ◦ lcf fhz ◦ lcp ◦ fmf 190 458 115 307
SHOP Strategy 163 479 146 406

lcf ◦ hz fmh ◦ fmf 70 142 42 98
Regular lcf ◦ ems fmh ◦ fmf 106 216 81 182
Truck lcf ◦ du fhz ◦ fmf 83 160 46 105

2 Region hz ◦ lcf fhz ◦ lcp ◦ fmf 75 152 54 122
SHOP Strategy 146 283 106 241

Regular
Truck 1

lcf ◦ hz fmh ◦ fmf 72 149 41 92
lcf ◦ ems fmh ◦ fmf 109 225 78 179
hz ◦ lcf fhz ◦ lcp ◦ fmf 74 153 54 120
lcf ◦ du fhz ◦ fmf 84 173 46 104

SHOP Strategy 409 911 80 177

Regular
Truck 2

lcf ◦ hz fmh ◦ fmf – – 275 1237
lcf ◦ ems fmh ◦ fmf – – 293 1144
lcf ◦ du fhz ◦ fmf 753 2755 295 1262
hz ◦ lcf fhz ◦ lcp ◦ fmf – – 787 3544

SHOP Strategy – – 926 4005

Mail
Traincar

lcf ◦ hz fmh ◦ fmf 380 1241 89 221
lcf ◦ ems fmh ◦ fmf 590 1805 138 313
lcf ◦ du fhz ◦ fmf 559 1450 64 160
hz ◦ lcf fhz ◦ lcp ◦ fmf 93 213 70 171

SHOP Strategy 832 1911 121 274

lcf ◦ hz fmh ◦ fmf 384 1240 89 215
Refrigerated lcf ◦ ems fmh ◦ fmf 634 1861 138 315

Regular lcf ◦ du fhz ◦ fmf 446 1074 64 159
Traincar hz ◦ lcf fhz ◦ lcp ◦ fmf 92 198 70 172

SHOP Strategy 777 1735 173 353

lcf ◦ hz fmh ◦ fmf 342 1137 144 421
Auto lcf ◦ ems fmh ◦ fmf 460 1425 177 477

Traincar lcf ◦ du fhz ◦ fmf 365 1044 107 328
bis hz ◦ lcf fhz ◦ lcp ◦ fmf 357 958 278 770

SHOP Strategy 541 1282 247 963

Airplane

lcf ◦ hz fmh ◦ fmf 164 507 141 435
lcf ◦ ems fmh ◦ fmf 142 413 167 471
lcf ◦ du fhz ◦ fmf 257 749 200 621
hz ◦ lcf fhz ◦ lcp ◦ fmf 280 777 240 700

SHOP Strategy 335 821 150 450



Table 5. Results for the Satellite domain. The column pruned refers to the reduced domain models, whereas unpruned refers to the

original ones. The tests were run with the planning environment PANDA [21] on a machine with a 3 GHz CPU and 256 MB Heap memory

for the Java VM. Space refers to the number of created plans and Time refers to the used time in seconds including pre-processing. Values

are the averages of three runs. Dashes indicate that no solution was found within a limitation of 5,000 created nodes and a time limit of

150 minutes.

Problem
Modification ordering Plan ordering unpruned pruned

function fModOrd function fPlanOrd Space Time Space Time

lcf ◦ hz fmh ◦ fmf 38 41 37 42
1obs- lcf ◦ ems fmh ◦ fmf 46 51 46 53
1sat lcf ◦ du fhz ◦ fmf 67 72 67 72

1 mode
hz ◦ lcf fhz ◦ lcp ◦ fmf 58 62 53 60

SHOP Strategy 61 67 57 61

lcf ◦ hz fmh ◦ fmf 602 788 539 708
2obs- lcf ◦ ems fmh ◦ fmf 964 1631 903 1428
1sat lcf ◦ du fhz ◦ fmf 1135 1319 901 1030

1 mode
hz ◦ lcf fhz ◦ lcp ◦ fmf 1468 1699 1216 1474

SHOP Strategy 251 270 237 264

lcf ◦ hz fmh ◦ fmf – – – –
2obs- lcf ◦ ems fmh ◦ fmf – – – –
2sat lcf ◦ du fhz ◦ fmf – – 2821 3353

1 mode
hz ◦ lcf fhz ◦ lcp ◦ fmf – – – –

SHOP Strategy – – 1406 1780

least commitment principle of the lcf, because it favors those
plan refinements that impose less successor plans, that means,
is reduces the effective branching factor of the search space.
We note, that the proper choice of the grounded task instances
ti and tj in the above definition is crucial for the actual per-
formance, because the plan modifications typically operate
on the lifted abstract tasks and method definitions. For our
first experiments, we implemented a random choice on the
compatible grounded landmark table entries, future work will
however focus on a better informed candidate selection.

While the above heuristic focuses on the very next level of
refinement, the following definition also takes into account es-
timates for subsequent refinement levels thus minimizing the
number of refinement choices until no more decompositions
are necessary.

Definition 8 (Indirect Landmark-Aware Ordering lm2). Let
fi and fj be two abstract task flaws in a plan P and let ti and
tj be ground instances of the abstract tasks that are compatible
with the (in-) equations in the variable constraints of P and
that are referenced by fi and fj, respectively.

Furthermore, let R∗(t) be the transitive closure of a recur-
sive traversal of the landmark table that begins in t. More
formally: R∗(t) = {r|r ∈ R(t) for (t, I(t), R(t)) ∈ LT or r ∈
R(t′) for (t′, I(t′), R(t′)) ∈ LT, t′ ∈ r′, and r′ ∈ R∗(t)}.

The modification ordering function lm2 then orders a plan
modification mi before mj if and only if mi addresses fi, mj

addresses fj, and |R∗(ti)| < |R∗(tj)| holds.

We would like to point out that R∗ is always finite due to
the finiteness of the landmark table, even for cyclic method
definitions.

The results of our first experimental evaluation in the UM-
Translog domain are given in Table 6: The two landmark-
aware heuristic functions lm1 and lm2 do outperform the other
strategies on practically all problems in terms of both, size of
the explored search space and computational time. We believe

that it is because of the relatively unreliable random choice
of grounded candidates for the lifted task instances that the
supposedly better informed lm2 does not consistently perform
better than lm1. We will address this crucial issue in future
work by focusing the computational methods for lifting the
landmark information: We will investigate into, for example,
calculating the average remaining task set sizes of the com-
patible ground task instances, use the minimal set sizes for
consistently underestimating the effort (analog to admissible
heuristics), and the like.

5 Outlook

We have empirically shown that pruning the planning prob-
lem can significantly reduce the explored search space. This
pruning relies on a relaxed reachability analysis of fully
grounded primitive tasks. So far, a very basic reachability
test has been used, which only tests for unsatisfied rigid predi-
cates7. In future work, we will use a more elaborated technique
as, for instance, explained by Fox and Long [8].

Our empirical evaluation has also shown the success of the
two introduced search strategies which use the calculated local
landmarks in order to guide the search process. As has been
shown earlier [21, 22, 23], many different search strategies can
be developed. Future work will introduce additional landmark
strategies and discuss the results in more detail.

The techniques discussed in this paper directly apply to
hierarchical planning. However, there are various extensions
possible that apply to hybrid planning. One of the main dif-
ferences between those two approaches is that in hybrid plan-
ning, not only primitive tasks show preconditions and effects,
but also abstract tasks. This allows to test even the abstract

7 Rigid predicates are predicates that are interpreted state-
independently and hence their truth value cannot be changed
by actions. Their usage is therefore restricted to preconditions
and the initial state specification.



Table 6. Results for the UM-Translog domain. The table shows the impact of the used modification ordering functions on the planning

process. In all experiments, except in the SHOP case, the plan ordering function fmf was used. In the case of SHOP, the plan and

modification ordering functions were used that simulate SHOP’s search process. The tests were run with the planning environment

PANDA [21] on a machine with a 3 GHz CPU and 256 MB Heap memory for the Java VM. Space refers to the number of created plans

and Time refers to the used time in seconds including pre-processing. Values are the averages of three runs. Dashes indicate that no

solution was found within a limitation of 5,000 created nodes and a time limit of 150 minutes. The best result for a given problem is

emphasized bold, the second best italic.

Mod. ordering Hopper Truck Flatbed Truck Auto Truck Reg. Truck 3 Location
function fModOrd Space Time Space Time Space Time Space Time

lcf 55 118 62 179 155 470 162 463
hz 55 121 159 399 197 527 191 473

lm1 52 111 63 155 133 329 145 374
lm2 51 109 61 144 135 462 154 430
ems 147 295 1571 3797 405 976 211 507
da 144 352 99 237 644 2077 239 562
du 101 224 1047 2601 459 1304 1508 4097

SHOP 89 212 98 257 164 433 146 406

Mod. ordering Reg. Truck 2 Region Regular Truck 1 Regular Truck 2 Mail Traincar
function fModOrd Space Time Space Time Space Time Space Time

lcf 78 173 127 222 327 1278 79 209
hz 55 117 55 137 – – 81 224

lm1 62 135 53 122 291 1172 75 184
lm2 52 112 65 142 266 1162 78 205
ems 127 262 114 235 – – 879 1806
da 114 257 148 352 723 2560 641 2031
du 160 460 117 258 – – 424 1090

SHOP 106 241 83 190 926 4005 121 274

Mod. ordering Refrigerated Regular Traincar Auto Traincar bis Airplane
function fModOrd Space Time Space Time Space Time

lcf 90 225 227 926 247 798
hz 76 196 701 1616 345 1323

lm1 72 180 183 608 142 441
lm2 89 212 158 543 189 676
ems 500 1048 2558 6447 784 2517
da 588 1958 184 705 172 620
du 307 775 1390 4018 643 2134

SHOP 173 353 247 963 150 450



tasks for reachability. Another difference is that hybrid plan-
ning problems also specify a goal state that has to be accom-
plished. Using this goal state, one can use techniques from
classical planning in order to generate classical (action) land-
marks which can then be used in the hybrid setting.

6 Conclusion

We have presented an effective landmark technique for hier-
archical planning. It analyzes the planning problem by pre-
processing the underlying domain and prunes those regions of
the search space where a solution cannot be found. Our ex-
periments on a number of representative hierarchical planning
domains and problems give reliable evidence for the practical
relevance of our approach. The best performance gain could
be achieved for problems with a deep hierarchy of tasks. Our
technique is domain- and strategy-independent and can help
any hierarchical planner to improve its performance. We have
also introduced two search strategies which use the local land-
marks in order to guide the search process more efficiently to-
wards a solution. In our empirical evaluation, both strategies
outperform the other strategies we chose for comparison in
most cases.

ACKNOWLEDGEMENTS

This work is done within the Transregional Collaborative Re-
search Centre SFB/TRR 62 “Companion-Technology for Cog-
nitive Technical Systems” funded by the German Research
Foundation (DFG).

REFERENCES

[1] Scott Andrews, Brian Kettler, Kutluhan Erol, and James A.
Hendler, ‘UM Translog: A planning domain for the develop-
ment and benchmarking of planning systems’, Technical Re-
port CS-TR-3487, University of Maryland, (1995).

[2] Susanne Biundo and Bernd Schattenberg, ‘From abstract cri-
sis to concrete relief (a preliminary report on combining state
abstraction and HTN planning)’, in Proc. of the 6th European
Conference on Planning (ECP 2001), pp. 157–168. Springer
Verlag, (2001).

[3] Blai Bonet and Héctor Geffner, ‘Planning as heuristic search’,
Artificial Intelligence, 129, 5–33, (2001).

[4] Luis Castillo, Juan Fdez-Olivares, and Antonio González, ‘On
the adequacy of hierarchical planning characteristics for real-
world problem solving’, in Proc. of the 6th European Confer-
ence on Planning (ECP 2001), (2001).

[5] Mohamed Elkawkagy, Bernd Schattenberg, and Susanne Bi-
undo, ‘Landmarks in hierarchical planning’, in Proc. of the
20th European Conference on Artificial Intelligence (ECAI
2010), (2010).

[6] Kutluhan Erol, James Hendler, and Dana S. Nau, ‘UMCP: A
sound and complete procedure for hierarchical task-network
planning’, in Proc. of the 2nd International Conference on
Artificial Intelligence Planning Systems (AIPS 1994), pp.
249–254, (1994).

[7] Tara A. Estlin, Steve A. Chien, and Xuemei Wang, ‘An ar-
gument for a hybrid HTN/operator-based approach to plan-
ning’, in Proc. of the 4th European Conference on Planning:
Recent Advances in AI Planning, pp. 182–194, (1997).

[8] Maria Fox and Derek Long, ‘The automatic inference of state
invariants in TIM’, Journal of Artificial Intelligence Research
(JAIR), 9, 367–421, (1998).

[9] Peter Gregory, Stephen Cresswell, Derek Long, and Julie Por-
teous, ‘On the extraction of disjunctive landmarks from plan-
ning problems via symmetry reduction’, in Proc. of the 4th
International Workshop on Symmetry and Constraint Satis-
faction Problems, eds., W. Harvey and Z. Kiziltan, pp. 34–41,
(2004).

[10] Ronny Hartanto and Joachim Hertzberg, ‘On the benefit of
fusing DL-reasoning with HTN-planning’, in Advances in Ar-
tificial Intelligence, Proc. of the 32nd German Conference
on Artificial Intelligence (KI 2009), eds., Bärbel Mertsching,
Marcus Hund, and Zaheer Aziz, pp. 41–48, (2009).

[11] Patrik Haslum, Blai Bonet, and Héctor Geffner, ‘New admis-
sible heuristics for domain-independent planning’, in Proc. of
the Twentieth National Conference on Artificial Intelligence,
volume 3, pp. 1163–1168, (2005).

[12] Malte Helmert and Carmen Domshlak, ‘Landmarks, critical
paths and abstractions: What’s the difference anyway?’, in
Proc. of the 19th International Conference on Automated
Planning and Scheduling (ICAPS 2009), pp. 162–169, (2009).

[13] Jörg Hoffmann and Berhard Nebel, ‘The FF planning sys-
tem: Fast plan generation through heuristic search’, Journal
of Artificial Intelligence Research, 14, 253–302, (2001).

[14] Jörg Hoffmann, Julie Porteous, and Laura Sebastia, ‘Ordered
landmarks in planning’, Journal of Artificial Intelligence Re-
search, 22, 215–278, (2004).

[15] Subbarao Kambhampati, Amol Mali, and Biplav Srivastava,
‘Hybrid planning for partially hierarchical domains’, in Proc.
of the 15th National Conference on Artificial Intelligence,
pp. 882–888. American Association for Artificial Intelligence
(AAAI Press), (1998).

[16] Erez Karpas and Carmel Domshlak, ‘Cost-optimal planning
with landmarks’, in Proc. of the 21st International Joint Con-
ference on Artificial Intelligence (IJCAI 2009), pp. 1728–
1733, (2009).

[17] Dana S. Nau, Yue Cao, Ammon Lotem, and Héctor Muñoz-
Avila, ‘SHOP: Simple hierarchical ordered planner’, in Proc.
of the 16th International Joint Conference on Artificial In-
telligence (IJCAI 1999), pp. 968–975, (1999).

[18] Julie Porteous and Stephen Cresswell, ‘Extending landmarks
analysis to reason about resources and repetition’, in In Proc.
of the 21st Workshop of the UK Planning and Scheduling
Special Interest Group (PLANSIG 2002), pp. 45–54, (2002).

[19] Julie Porteous, Laura Sebastia, and Jörg Hoffmann, ‘On the
extraction, ordering, and usage of landmarks in planning’,
in Proc. of the 6th European Conference on Planning (ECP
2001), eds., A. Cesta and D. Borrajo, pp. 37–48, (2001).

[20] Silvia Richter, Malte Helmert, and Matthias Westphal, ‘Land-
marks revisited’, in Proc. of the Twenty-Third AAAI Con-
ference on Artificial Intelligence (AAAI 2008). AAAI Press,
(2008).

[21] Bernd Schattenberg, Hybrid Planning & Scheduling, Ph.D.
dissertation, Ulm University, Germany, 2009.

[22] Bernd Schattenberg, Julien Bidot, and Susanne Biundo, ‘On
the construction and evaluation of flexible plan-refinement
strategies’, in Advances in Artificial Intelligence, Proc. of the
30th German Conference on Artificial Intelligence (KI 2007),
eds., Joachim Hertzberg, Michael Beetz, and Roman Englert,
volume 4667 of Lecture Notes in Artificial Intelligence, pp.
367–381. Springer, (2007).

[23] Bernd Schattenberg, Andreas Weigl, and Susanne Biundo,
‘Hybrid planning using flexible strategies’, in Advances in
Artificial Intelligence, Proc. of the 28th German Conference
on Artificial Intelligence (KI 2005), pp. 249–263. Springer-
Verlag Berlin Heidelberg, (2005).

[24] Laura Sebastia, Eva Onaindia, and Eliseo Marzal, ‘Decom-
position of planning problems’, AI Communications, 19(1),
49–81, (2006).

[25] Vincent Vidal and Héctor Geffner, ‘Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming’, Artificial Intelligence, 170, 298–335, (2006).

[26] Lin Zhu and Robert Givan, ‘Landmark extraction via plan-
ning graph propagation’, in Proc. of the ICAPS 2003 Doctoral
Consortium, pp. 156–160, (2003).


	Introduction
	Formal Framework
	Local Landmark Extraction
	Landmark Exploitation
	Domain Model Reduction
	Landmark-Aware Strategies

	Outlook
	Conclusion

